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Abstract—Many well-cited theories for visualization design state that a visual representation should be optimized for quick and 
immediate interpretation by a user. Distracting elements like decorative “chartjunk” or extraneous information are avoided so as not 
to slow comprehension. Yet several recent studies in visualization research provide evidence that non-efficient visual elements may 
benefit comprehension and recall on the part of users. Similarly, findings from studies related to learning from visual displays in 
various subfields of psychology suggest that introducing cognitive difficulties to visualization interaction can improve a userʼs 
understanding of important information. In this paper, we synthesize empirical results from cross-disciplinary research on visual 
information representations, providing a counterpoint to efficiency-based design theory with guidelines that describe how visual 
difficulties can be introduced to benefit comprehension and recall. We identify conditions under which the application of visual 
difficulties is appropriate based on underlying factors in visualization interaction like active processing and engagement. We 
characterize effective graph design as a trade-off between efficiency and learning difficulties in order to provide Information 
Visualization (InfoVis) researchers and practitioners with a framework for organizing explorations of graphs for which 
comprehension and recall are crucial. We identify implications of this view for the design and evaluation of information 
visualizations. 
Index Terms—desirable difficulites, cognitive efficiency, active processing, engagement, individual differences. 

 
  

 INTRODUCTION 
A commonly-held view in InfoVis is that visualizations should 
present data as clearly as possible, refraining from using distracting 
visual elements and irrelevant information and leveraging labelling 
and graphical formats that reduce cognitive processing by the user. 
It is thought that by optimizing the cognitive efficiency of the 
external representation a designer likewise optimizes the 
visualization’s ability to support rapid, accurate communication of 
information as well as to act as an external memory aid. Edward 
Tufte is one well-cited source of design principles for the efficient 
design of graphs of abstract, quantitative information, including the 
guideline of avoiding extraneous elements (e.g., chartjunk) and 
maximizing the data-ink ratio. Other seminal works support such 
guidance with semiotic and psychologically-based theories of 
graph design and interpretation [20], [37], [51] or empirical 
evidence of the benefits to response time and accuracy that can 
result from cognitively efficient graphics [16]. The reasons 
proposed to explain these performance improvements tend to cite 
how visualizations augment cognition by providing external 
information storage (i.e. memory), which if optimized, can reduce 
visual search times. By offloading cognitive processing to the 
perceptual system, the natural abilities of humans to visually 
identify patterns can also be leveraged. 

The cognitive efficiency view is also reflected in many 
evaluation models for Infovis, which frequently default to 
measurements such as response time and response accuracy. 
Recently, however, InfoVis researchers have voiced concerns that 
the design and evaluation guidance supplied by the cognitive 
efficiency view may not accurately capture the complex nature of 
visualizations as devices for communication and cognition [7]. 

With very few exceptions, evaluation measures tend to assess how 
a user interacts with a visualization and not how well they learn the 
important concepts or patterns represented. It has been noted that it 
is somewhat unrealistic to hold visualizations to an efficiency-
based standard of minimal response times and high response 
accuracy as in practice these measures tend to be in a trade-off, 
with higher accuracy requiring more time examining the 
representation [34]. This observation raises the question of whether 
maximizing accurate comprehension might conversely involve 
increasing the visual difficulty of the representation or otherwise 
obstructing automatic processing. 

This viewpoint might explain findings relevant to InfoVis that 
seemingly contradict cognitive efficiency models. Bateman et al. 
[5] found that subjects who were shown highly embellished, Nigel-
Holmes-style charts had a significantly higher chance of accurately 
interpreting and recalling the chart’s message weeks later 
compared to less embellished, cognitively-efficient alternatives 
(see Fig. 1). Participants also subjectively preferred embellished 
charts as being more attractive, more enjoyable and easier to 
remember. However, the particular cognitive mechanisms that 
underlie these findings remain ambiguous due to confounds in the 
experimental design.  

Insights into the question of whether and why such efficiency 
contradictions are possible can be found in psychological and 
educational studies related to learning from graphs and other visual 
displays. For example, science education research on learning from 
graphs and diagrams suggests that techniques that rely on focused, 
engaged thinking about the graph in combination with constructive 
activities (e.g., generating self-explanations or manipulating 
internal visualizations) could benefit understanding and transfer of 
the patterns in a graph  (e.g., [19], [45]). Mary Hegarty argued for 
the importance of internal cognitive processes of the end-user in a 
2010 InfoVis keynote [30], in which she summarized experimental 
evidence suggesting the importance of understanding the role 
played by mental hypotheses and representations that a user 
engages with in visualization interaction. The new demands placed 
on users’ cognitive abilities by these advances call for 
consideration of how to better leverage users’ abilities to generate 
high-quality internal representations and inferences, without 
necessarily overwhelming them with possible functionality. 

A focus on characterizing successful learning and cognition 
with a visualization holds promise for helping explain the observed 
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limitations of conventional evaluation frameworks and design 
principles. Yet little research synthesizes the empirical evidence so 
as to derive the underlying forces that allow some effective graphs 
to  contradict cognitive efficiency assumptions.  

In this paper, we make three contributions to InfoVis design and 
theory. First, we provide a counterpoint to conventional InfoVis 
wisdom on effective graph design by summarizing a large body of 
psychological research on learning from graphs and diagrams that 
suggests that introducing visual difficulties to visualizations can be 
an effective way to stimulate important ingredients like active 
processing of information and engagement. We conceptualize 
visual difficulties as the set of beneficial learning and cognitive 
processing obstructions that may be applied to static and 
interactive information visualizations. This include but are not 
limited to visual techniques that manipulate the visual 
representation, also including manipulations of accompanying 
information and task and contextual characteristics of visualization 
interaction. In doing so, we propose a model of effective graph 
design as a trade-off between cognitive efficiency and obstructions 
that induce deeper learning strategies. Secondly, we use these 
alternative forms of guidance to derive design guidelines for 
InfoVis that can help designers better negotiate goals of both 
cognitive efficiency and desirable difficulties. This includes 
outlining moderating factors like individual differences. Lastly, we 
explain how evaluation frameworks for InfoVis could be updated 
to account for under-emphasized components of graph 
comprehension.   

Figure 1: "Chartjunk” graph by Nigel Holmes used in Bateman et al 
[5]. 

1 COGNITIVE EFFICIENCY MODEL OF GRAPH DESIGN 
Before elaborating how visual difficulties can be adapted to benefit 
a user’s performance with visualization, we summarize theories on 
the importance of cognitive efficiency to InfoVis interpretation. 
We present common “talking points” or categories of concerns for 
which empirical efficiency research has proposed explicit design 
guidance. These include theories that focus predominantly on 
optimizing the efficiency of the end-user’s cognitive operations, 
through the visual representation, forms of interacting like 
animation, or the use of labels. 

1.1 Cognitive Operations 
Inspired by information processing models of decision-making, 
cognitive psychologists theorized in the 1980’s that graphic 
depictions are preferable over more conceptual representations as 
aids to cognition, based on their ability to visualize abstract 
relationships that otherwise remain implicit [40]. Larkin and Simon 
[46] provided empirically-supported guidelines for increasing the 
efficiency of graphic presentations as a means of quickly 

conveying information. These include (1) allowing users to 
substitute perceptual inferences for more demanding logical 
inferences, and (2) reducing search for needed information. This is 
captured by a belief that distinguishing the “steps” taken to process 
a graph could predict response times [43]. More recent work [38] 
places more focus on interaction rather than the representation, but 
with the same  ‘cognitive cost’ motivation.  

These ideas are congruent with models of graph comprehension 
that break the process into multiple stages (e.g. [51]). Low-level 
parallel processing decomposes the visual scene into basic 
elements (e.g. form, color, texture), which are input to a pattern 
formation stage constrained by Gestalt laws of grouping and prior 
experience [51]). From this visual description, the user extract 
objects and patterns and generate propositions or conceptual 
messages about the variables. Such models informed principles for 
effective design (e.g. [37]) based on visual processing abilities. For 
example, graphs should maximize discriminability and manage 
complexity within perceptual and cognitive limits. Other early 
studies (e.g. [20]) provide evidence that some types of visual 
encoding (e.g., length judgments in bar charts versus arc judgments 
used in pie charts) are more accurate for representing quantitative 
information. More recent cognitive work echoes many of these 
assumptions [68]. 

Harnessing the low-level visual perceptive system also led to 
automatic methods for creating visualizations optimized for rapid, 
accurate visual processing (e.g. [16]). Systems like Tableau [64] 
represent comprehensive packages of visualization functions 
informed by literature on efficient design.  

1.2 Visual Representation 
Using the number of cognitive operations to operationalize 
visualization efficiency provided other researchers with a basis for 
testing and refining further design principles. We survey work 
related to optimizing data-ink ratios and information organization.  

1.2.1 Data-ink 
Tufte [66] proposed that effective visual displays for 
communicating information should optimize the data-ink ratio, 
calculated by dividing the ink used for displaying data (data-ink) 
by the total ink used in a graphic. Gillan and Richman [27] showed 
that high data-ink ratios correlated with faster response times and 
greater accuracy in experiments using bar and line graphs, while 
[10] found that high-data ink also increased awareness of variables. 
However, the effects of ink in the meaningful elements of a graph 
depended on the location and function of the element. For example, 
redundant ink in the objects in the graph indicating values had 
limited effects on performance, but pictorial backgrounds generally 
increased response time and decreased accuracy. Adding x- and y- 
axis lines decreased response time. 

Studies on dimensionality, such as the addition of a gratuitous 
third dimension, have assessed the expectation that the third 
dimension would degrade performance. Carswell et al. [14] found 
that 3D line graphs resulted in less accurate recall and were 
associated with an overall performance decrement in a trend 
estimation task. Siegrist [61] similarly found that 3D bar and pie 
charts usually take more time to evaluate, although with accuracy 
on par with 2D versions.  

An additional finding by Levy et al. [41] provided evidence that 
efficiency can be achieved by appropriately pairing data types with 
graph formats. Line graphs were more readily associated with 
trends, while bar graphs are associated with discrete points. Line 
graphs also appeared to be better for promoting memorability than 
for immediate use, whereas the opposite was true for bar graphs. 
Zacks et al. [70] manipulated rendering characteristics and relative 
heights of bars in bar graphs, finding that adding 3D depth cues 
decreased accuracy (see Fig. 2). The height of nearby bars and 
positions of other nearby elements also affected accuracy, 
supporting the general assumptions of efficiency principles that 

 



propose avoiding unnecessarily distracting elements in graph 
design. 

 
 

 

 
 

 

Figure 2: Recreation of graphs from Zacks et al.1998 [70] that vary 
rendering characters and depth cues. 

1.2.2 Organization of Information 
Psychological studies have investigated how a graph’s ability to 
foreground important information using the visual organization can 
increase its effectiveness for depicting patterns such that end-users 
can spontaneously pick them out. This bears similarity to the 
‘immediate insight’ goal of cognitively efficient visualizations. 
Carpenter and Shah [13] found that the time taken to interpret a 
graph is strongly related to the complexity of the graph, with three 
processes proposed to characterize graph comprehension: 1) 
detecting and encoding the visual patterns; 2) identifying the 
quantitative relationships that those visual features represent; and 
3) relating those quantitative relations to the variables. Shah and 
Carpenter [58] show that the number of gazes on a line graph 
correlates strongly with the number of distinct line functions, each 
of which constitutes a visual chunk in a line graph. The model 
suggests that the cycle of processes scales up as the graph 
complexity grows, as a result of the additional chunks to encode 
and interrelate. Shah et al. [60] examined how graph formats that 
make trends appear more salient and require less mental 
computation better support viewers’ abilities to spontaneously pick 
out patterns of interest. For example, reversing the variables on the 
x-axis can lead to a more (or less) salient presentation of a trend. 
Their Organization Hypothesis claims that if relevant trend 
information is perceptually grouped to form readily identifiable 
visual chunks (e.g., the relevant data points are grouped closely 
together in bar graphs), graph viewers are more likely to describe 
relevant trends [ibid].  

1.3 Animation 
While the question of whether animated visualizations are 
generally more effective than static representations may be 
debatable, many explorations of animation in InfoVis indicate an 
adherence to values of cognitive efficiency. Requiring a user to 
mentally animate or imagine transitions from a single static graph 
or set of graphs is often thought to be harder than animating the 
visualization so that the user might passively receive the 
information. Additionally, incorporating animation into 
visualization tools has been framed as beneficial to the user due to 
the speed with which it can convey the same information over 
multiple static graphs [54]. Animation can effectively draw 
attention to changes, retain context and help make occluded 
information visible (e.g., [29] [53]), and has been found to be 
preferable in some cases when accuracy is important [4]. A recent 
meta-analysis found an overall positive, although modest, effect of 
animation on learning [33]. This analysis also shed substantial light 
on moderators of the effect of animation, including whether 
animations are representational or decorational and whether they 
are used to communicate information about the time sequence of 
events, presumably because animation unfolds over time. 

1.4 Labeling 
Orienting the user to understand how visual elements in a graph 
represent data values is a vital consideration in graph design.  
Annotations help direct a user’s attention and foreground particular 
insights. Generally, it has been proposed that direct labelling of 

important information supports the most efficient inferences. 
Kosslyn [37] noted that performance is affected by the 
considerable demands placed on short-term memory when using 
legends as a result of an individual being required to maintain a 
representation of the associations contained within the legend while 
they performed a task. This is supported by Lohse’s [42] finding 
that adding a legend to a line graph can degrade performance 
measures like decision accuracy and the number of eye 
movements. 

2 VISUAL DIFFICULTIES FOR INFOVIS DESIGN  
Much of the work supporting the argument for cognitively efficient 
design is motivated by the scaffolding that increased visual 
efficiency can provide for several key roles a graph may play in 
cognition: acting as external memory or information storage and 
making abstract trends salient. In turning to assess graph design 
from an alternative view to the cognitive efficiency model, we 
suggest that interacting with an information visualization can also 
be considered a learning process. Decoding, assimilating, and 
drawing inferences from the visualized information represents a 
particular form of a more general process of learning in which new 
information is assimilated and integrated with existing knowledge. 
Constructive mental operations comprise the learner’s active 
process of organizing and making sense of her emerging 
understanding. If it is represented at all, learning in the cognitive 
efficiency paradigm is reduced to whether a graph increases the 
speed and the accuracy of identification of patterns. Yet research in 
educational psychology and multimedia learning suggests that such 
measures may not capture the full range of factors that characterize 
effective learning, a concern echoed in calls for revisions to 
InfoVis evaluation models (e.g. [7]).  

Motivated by the observation that predicting effective learning 
is more complex than merely the time spent studying or immediate 
recall of information, psychologists have applied the term desirable 
difficulties to a class of techniques that hinge on “going against 
one’s intuitions” and “deviating from standard instructional 
practices” [9]. While some of this work focuses on adding 
difficulties to learning independently of study materials, such as by 
varying the conditions for study periods [8], various empirical 
studies have shown the potential benefits of introducing desirable 
difficulties to learning from visual media. By introducing 
obstructions, these studies provide a counterpoint to cognitive 
efficiency-motivated graph design research. In this section, we 
summarize research that finds that more difficult to interpret graphs 
and other visual materials yields better learning. We start with 
cognitive explanations for why difficulties might benefit 
comprehension. Specifically, we note that difficult displays require 
mentally manipulating internal representation, forming self-
explanations, and appraising and noting disfluency, all of which 
promote active processing on the part of the user.  We argue that 
this active processing leads to better long-term memory and 
comprehension. Related to the importance of active processing is 
the motivational-component of graph use, which we summarize as 
engagement. Often visual difficulties induce engagement with a 
graph design by manipulating novelty, tailoring and 
personalization, challenge and game-play, and aesthetic appeal. 
Engagement, in turn, increases the likelihood of active processing 
and thus may benefit learning. 

2.1 Inducing Active Processing 
All learning requires encoding information, yet the differing 
degrees to which learners can constructively process incoming 
information (as opposed to passively absorbing it through listening 
or reading) has led to definitions of active processing as active, 
self-directed searching for meaning on the part of the learner. At a 
basic cognitive level, active processing implies additional cognitive 
operations in the interest of reaching deeper understanding. When 
visual difficulties stimulate active processing, these additional 



 

operations stand in contrast to the minimization goal of cognitive 
efficiency research. We describe particular forms of active 
processing including self-explanations and the manipulation of 
internal visualizations, and explain how a user’s perceived 
processing effort can interact with active cognitive processing.  

2.1.1 Self-explanation 
One manifestation of active cognitive processing identified in 
multimedia learning research is self-explaining of information to 
oneself (e.g. [19]). In self-explaining, one attends to target material 
in a meaningful way such as by generating inferences to fill in 
missing information, integrating new information with prior 
knowledge, and monitoring and repairing faulty knowledge. Self-
explanation is typically elicited by having learners spontaneously 
explain the meaning of sentences in a passage as they study a target 
domain, then coding responses into “low quality” statements based 
on simple rereading or paraphrasing and “high quality” statements 
that involve linking statements from the text using tacit knowledge 
or making inferences to fill gaps [19]. 

Several studies provide a precedent for how visual difficulties 
designed to induce self-explanations can be integrated into 
visualization interaction. In this sense, visual difficulties refers to 
means of stimulating more intense cognitive activity with a 
visualization, rather than specific manipulations to the visual 
representation. In studying risk communication, Natter and Berry 
[47] found in two experiments on the effects of active processing 
of graphs of risk information that completing a reflective task that 
involved portraying the size of risk on a bar chart in one 
experiment and answering a reflective question in the second 
(active conditions) increased participants’ satisfaction with the 
information and led to more accurate judgments and estimates. 
Using textual or task prompts may be a more reliable way to induce 
self-explanation with a visualization. Evidence suggests that even 
highly relevant diagrams which learners might use as aids to self-
explaining of concepts addressed in a text sometimes have no 
demonstrable effect on learning [21].  

Designers of visual analytics tools often minimize cognitive 
operations as proposed by the efficiency model, by guiding users 
through execution of important functions or allowing them to 
automatically run complex processes after defining them. Yet just 
as some static graphs fail to support the “deep learning” facilitated 
by self-explaining, so too can automation of a complex process in 
an interactive visualization present risks to a user’s understanding 
of a process in some cases. Automating processes central to solving 
a problem, for example, such as saving filters or views in a visual 
analytics tool, may reduce active self-explaining on the part of the 
user as she recreates the process a second time. While not ideal in 
all cases, the self-explanations that accompany early repetitions of 
the processes may provide her the opportunity to catch errors in her 
thinking. Evidence comes from results on “wizard” interfaces that 
break tasks into a sequence of steps rather than simply providing 
information on how to perform the task (which the user must 
integrate and translate to a sequence of actions themselves). 
Research suggests that users have trouble transferring knowledge 
gained from wizards to other, less guided environments [11]. A 
visualization-based example is the SocialAction tool [50], which 
uses the Systematic-Yet-Flexible model that, while ensuring 
completeness of analysis, assists users by “playing through” 
analyses through the use of shortcut buttons.  Similarly, through 
automation the IVEE system [1] allows users to immediately 
visualize and explore data.  While noting that a custom widget 
might lead to better specifications of query environments, the 
authors opt to reduce the cumbersome process of setting defaults to 
enhance efficiency. While both these systems represent innovative 
interface designs that may reliably benefit expert users, the 
aforementioned experimental findings tell a cautionary tale for the 
application of “low effort” designs in all situations. 

2.1.2 Manipulating Internal Visualizations 
Various cognitive psychologists studying the use of graphs and 
diagrams have made an argument for the importance of requiring 
viewers to manipulate internal visualizations to aid comprehension. 
Recent work in InfoVis by Liu and Stasko [44] argues for the 
importance of internal representations—mental representations 
overlaying text, visuals, and spatial relationships—in achieving 
interaction objectives like external anchoring, information 
foraging, and cognitive offloading. As such, prompting the 
manipulation of internal visualizations represents an alternative 
goal for visualization designers seeking to improve comprehension 
through visual difficulties. As in self-explaining, visual difficulties 
describes the addition of more cognitively intensive processing into 
a visualization task. 

An example of beneficial manipulations of internal is provided 
by Trafton et al. [65]. They found that experts who formed and 
compared schematic internal representations to external 
visualizations drew the user’s attention to gaps in her knowledge. 
Similarly, Mayer et al. [45], found that static displays lead to better 
comprehension than animations when users were appropriately 
cued to use the displays to identify and fill gaps in their knowledge. 
Like the reflective thinking prompt that has been used to induce 
self-explaining, requiring users to engage with internal 
visualizations can be accomplished by soliciting their predictions 
of how a visualized process works prior to examining a 
visualization of the process.  

The benefits of visual difficulties that induce manipulation of an 
internal visualization can be contrasted with much of the dynamic 
graph drawing literature, which tends to be motivated by a desire to 
preserve mental models throughout visualization interaction by 
removing the need for internal visualization. Many algorithms for 
graph drawing rely on animations between time-slices, where the 
positions of nodes are interpolated between graph states and added 
or removed nodes fade in or out correspondingly. Design strategies 
aim to minimize the number of nodes that must be moved between 
time-slices and retain the overall graph shape, in order to preserve 
mental maps by reducing the need for internal visualizations of the 
changes. It is also generally assumed that minimizing movement 
and change improves graph readability [69]. However, preserving 
the mental map only brings benefits in certain tasks, such as in 
tasks that require identifying nodes by name [52].  

In contrast to animated graphs that remove the need to 
manipulate an internal visualization to preserve one’s mental map, 
small multiples graphs require some mental or internal animation 
to infer graph evolution. Thus using small multiples over 
animations represents one manifestation of visual difficulties based 
on internal visualization. Archambault et al. [4] compare small 
multiples versus animation with regard to how effective each is for 
comprehending how a graph changed over time. Despite the time 
saved in using animation to convey a complicated transition over 
using multiple static graphs, they find that small multiples graphs 
are generally more effective for quickly answering questions about 
particular states. For several types of questions, however, error 
rates were lower with animation. They also examine whether 
maintaining a mental map between graph time-slices, using either 
small multiples or animations, is effective for understanding graph 
evolution. Only small improvements in error rates and response 
times were observed when the mental map was preserved. These 
results suggest further exploring small multiples representations 
with an eye toward understanding how the internal visualization 
manipulation they promote can be more beneficial than supporting 
mental map preservation alone. Given the limitations of response 
times and error rates as performance measures, a natural next step 
would be to use alternative measures like transfer strength or long-
term recall. 



2.1.3 Perceptual Disfluency 
The visual difficulties argument provides support that disfluent 
learning experiences—those that are perceived as more effortful—
may often be more beneficial. Psychologists define fluency as a 
metacognitive judgment (e.g. [3]). As an example, consider the 
more effortful task of reading a passage of text in a degraded font 
like Haettenschweiler rather than one designed for clarity, such as 
Arial. While readers perceive degraded fonts as more effortful to 
read, they actually can lead to better comprehension and memory 
because disfluency cues the reader to avoid heuristics and defaults 
and reliance on peripheral cues (e.g. [2]).  

Fluency research suggests the possibility that “easy-to-process” 
graphs may actually lead to more superficial interpretations. 
Fluency research problematizes the optimally “easy-to-process” 
graphs predicted to satisfy cognitive efficiency assumptions by 
suggesting that subjective assessments of processing ease can cause 
a learner to use representations that negatively affect 
comprehension and transfer compared to more difficult-to-process 
representations ([9]). This is partially the result of a learner 
interpreting the ability to recall information in the graph as storage 
strength (the degree to which the information is inter-associated 
with prior knowledge). In the case of minimalist graphics that 
strive for immediately clarity, the same misassumptions on the part 
of users may result. 

Another benefit of visual difficulties in the form of perceptual 
disfluency is that a graph user’s awareness that they are exerting a 
high level of effort can prompt processing that is more likely to be 
accurate for a task. One way such benefits have been explained is 
that perceived disfluency can lead a user of graphs or other 
learning materials to use systematic, deliberative analytical 
reasoning in place of less effortful, automatic, intuitive and 
heuristic reasoning processes [2]. This parallels the way that adding 
“difficulties” to a graph comprehension task may induce 
realizations of gaps in one’s emerging mental model that stimulate 
a learner to work harder to understand the information. For 
example, recent research provides evidence that legends on graphs 
can increase understanding and memorability. Shah et al. [59] 
demonstrate that while labelling graph features improves response 
time as predicted by the efficiency model, using harder-to-process 
legends can increase data memorability and induce more explicit, 
thoughtful descriptions of the main effects and interactions 
depicted in the graph as compared to using labels.  

2.2 The Role of Engagement  
We define active processing as user-directed psychological activity 
in a learning context. Yet active processing need not imply a 
personal motivation to engage on the user’s part. Rather, it is a 
neutrally defined cognitive activity that can be induced by 
experimental rewards or other extrinsic incentives. While the line 
between extrinsic and intrinsic motivation is often ambiguous, we 
present the following means of introducing visual difficulties as a 
second set of strategies for more explicitly engaging a user on an 
intrinsic motivational level. Doing so makes active processing of 
important content more likely.  

We use case studies to present four potential strategies for 
increasing a user’s engagement: novelty, aesthetic appeal, tailoring 
and personalization, and challenge and game-play (Fig. 3). We 
briefly summarize each of these relationships, before elaborating 
on their implications for design and evaluation.  

2.2.1 Novelty 
Engagement can be stimulated naturally by information 
presentation forms that are new to a user. Novel forms of media 
have been shown to enhance active information processing, 
resulting in better recall and recognition over non-novel stimuli 
(e.g., [25]). Novel stimuli can distract a user’s self-focus away 
from an internal state to shift focus on the environment, as 
evidenced by studies in public health messaging such as findings 

that periodically changing cigarette package warning messages is 
predictive of the warnings’ salience and perceived effectiveness 
([28]).  

Novelty may help explain results in information visualization 
research suggesting that chartjunk, or ornamentation that is 
unnecessary to the data being visualized, may yield positive 
effects. Bateman et al. [5] found that subjects who were shown 
embellished Nigel Holmes-style charts had a significantly higher 
chance of comprehending the message of the chart as compared to 
non-embellished charts (see Fig. 2), as well as recalling relevant 
information several weeks later. Participants also found the 
Holmes-type charts to be more attractive, more enjoyable and 
easier to remember. These preferences are echoed by Inbar et al. 
[35]. 

It should be noted, however, that questions remained 
unanswered as to whether novelty was the primary driver of 
Bateman et al.’s results. The positive benefits may be the result of 
congruency of the form chosen and the message being visualized 
(such as the design of a graph depicting ’Monstrous Costs’ that 
uses a drawing of a monster as background). In addition, the study 
used graphs with a small number of data values (~5) while the no-
chartjunk rule was originally directed at displays depicting large 
numbers of data points.  

2.2.2 Aesthetic Appeal 
Graph aesthetics, referring to the experience and appreciation of a 
visualization’s sensual qualities, have been avoided in many 
studies, and framed in opposition to graph readability [36]. This 
may suggest that an implicit belief in InfoVis asserts that 
aesthetically complex graphs are less efficient.  Yet a system that is 
perceived as visually appealing as a result of aesthetic dimensions 
can also stimulate use (although in some cases such effects may be 
difficult to separate from novelty effects). The positive results from 
Bateman et al.’s chartjunk study, for example, may in part result 
from the attractiveness of the colored background graphics 
compared to the plain versions of the charts.  

Sprague and Tory [63] provide some evidence to the 
motivational potential of aesthetic appeal in studying animation use 
in a music library visualization. Using an animated glyph 
correlated with clear performance decreases in a task, however, 
most subjects preferred a moving glyph, in part due to the aesthetic 
appeal of its ‘dancing’ appearance. The authors conclude that in 
designing casual visualizations, pragmatism can be emphasized for 
some users and aesthetics for others. We reflect further on the 
effects of individual differences on visualization effectiveness 
below. 

While aesthetic considerations have been under-explored in 
many efficiency-motivated studies, an equally viable belief might 
be that aesthetically pleasing visualizations ease a user’s ability to 
process depicted information. This highlights the proposal of this 
paper for a view of InfoVis design choices as a trade-off between 
cognitive efficiency and visual difficulties, with the same 
techniques playing differing roles depending on other features of 
interaction. 

2.2.3 Tailoring and Personalization 
Various studies have documented the positive results of tailoring or 
personalizing graphical information in order to subtly induce 
interest in and active processing of the information content by users 
(e.g. [62]). Hence tailoring the display of visualization tools to 
users’ prior knowledge or other attributes may similarly lead to 
increased motivation to attend to the data, spurring cognitive 
activity on the part of the user.  

Personalization can also ease processing effort though, 
highlighting the trade-off between visual difficulties and cognitive 
efficiency. Mental models as conceptualized by [44] can help 
explain the potential efficiency of tailoring. By connecting either 
the framing or the nature of the information presentation with a 
user’s prior knowledge and expectations, a message can have a 



 

more pronounced effect on beliefs and behaviour. Transfer noise is 
minimized, allowing relevant information to be processed more 
easily.  

Yet the benefits associated with the efficiency benefits of 
personalization are problematized by findings that show that 
applying graphical adaptation features to interface design can 
optimize performance on particular tasks, but often comes at the 
cost of deeper understanding of the tool’s full functionality [26]. 
Hence some forms of personalization may become a crutch rather 
than a panacea for deeper understanding. Using tailoring to 
increase engagement and processing of visualized information is 
most likely to bring benefits where there are significant risks that 
users may not be sufficiently motivated to use the visualization in 
the first place. 

Figure 3: Guessing game version of an interactive health data 
visualization [22]. 

2.2.4 Challenge and Game-play 
 

Interest in external stimuli like visualizations can also arise from a 
challenging environment that demands high attention and an 
intention to explore. Like novelty, stimulation and challenge are a 
prerequisite of personal development through the development of 
knowledge and skills, which in turn is a basic human need (e.g., 
[57]). Introducing visual difficulties offer a promising way to 
leverage a user’s desire to be challenged in interaction.  

One implementation of visual difficulties supported by work in 
social computing and InfoVis is through elements of game play, 
such as rules and goals. These have been used in social computing 
applications like games with a purpose (GWAP) (e.g., [24]), and 
online movie recommender systems, where they have been shown 
to increase user contributions [6]. Within InfoVis, incorporating 
challenges or problem solving tasks into visualization tools has 
been suggested to help turn visual data analytics into a game-like 
activity and motivate exploration of data [28]. More recently, 
Diakopoulos et al. [22] used game elements like rules and goals in 
an information visualization of health data. An online experiment 
showed that gamification led to demonstrable effects on 
exploration of the visualization, insights and learning, and 
enjoyment of the experience. In particular a guessing game led to 
significantly more exploratory behavior (e.g., unique health 
parameters visualized, hover activity, volume of interaction with 
slider feature), learning (e.g., number of insights, self-reported 
learning), and enjoyment (self-reported reliability ratings). The 
guessing game frame is one implementation of a prediction task 
such as that suggested by Hegarty et al. [32] as a way of deepening 
understanding by inducing internal visualization.  

3 APPLYING VISUAL DIFFICULTIES IN INFOVIS 
An important conclusion to be drawn from Sections 2 and 3 is that 
designing visualizations with lasting effects on knowledge 

formation may not be achieved simply by easing users’ effort and 
providing high levels of flexible interaction. In many cases, 
effective visualization practice requires navigating tradeoffs 
between the benefits of active processing through learning 
obstructions on the one hand, and the benefits of representation 
efficiency through more immediate pattern detection on the other. 
In this section, we demonstrate how the visual difficulties 
perspective can be applied to the “talking points” or common 
design concerns addressed by  efficiency-based principles. A series 
of design implications intended to act as guiding goals for 
designers interested in using visual difficulties in their designs are 
then laid out. Additionally, we consider the implications for 
evaluation, and suggest ways in which InfoVis evaluation models 
can be adapted to account for benefits of visual difficulties.  

3.1 Revisiting Common InfoVis Concerns 
Table 1 summarizes how the visual difficulties findings on 
common InfoVis concerns compare to recommendations from the 
cognitive efficiency view. 
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Choose the format that best stimulates 
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intuitively visualize 
important processes 

Use static representations to induce 
interval visualization processing around 
causal mechanisms; consider animation in 
cases where mental animation lies beyond 
users’ capacities 

La
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g Use labels rather than 

legends to optimize 
immediate clarity 

Use legends to stimulate deeper reflection 
on data 

 

Table 1: Efficiency versus difficulties recommendations in InfoVis. 

3.1.1 Cognitive operations 
Cognitive efficiency research proposes minimizing the number of 
cognitive steps required by a graph (see Section 2.1). The visual 
difficulties work suggests that cognitive steps do not accurately 
capture learning by a user (including comprehension and recall). 
Instead, researchers seek to increase the depth of cognitive 
operations. Classifying users’ statements in response to a graph 
based on whether they represent low- or high-quality self-
explanations [55] or spurring internal visualization manipulations 
[32] are several ways that this has been accomplished.  

3.1.2 Visual representation – Data-Ink Ratio 
Charts with higher data-ink ratios have conventionally been 
equated with ‘embellishment’ or ‘decoration’ (see Section 2.2.1). 
However, in a meta-analysis of 39 experiments, Carswell [15] 
found no support for the data-ink rule.  The visual difficulties 
perspective provides evidence that low data-ink ratios may be 
functional in cases where the extra ink is used to personalize, 

.  



aestheticize, or otherwise make the visualization more enticing to 
end-users so as to drive more intrinsic desires to engage. 
Additionally, results like Levy et al. [41] stand in contrast to the 
studies on 3D that using immediate responses (e.g., reaction time, 
immediate recall) as performance measures by examining 
communication-based preferences instead. For example, a 3D 
graph can be preferred for group communication, for depicting 
details than trends, and for memorability than immediate use. Thus 
before opting for a more cognitively efficient 2D graph, designers 
might consider whether intrinsic motivation to engage might 
increase with the addition of the third dimension.  

3.1.3 Visual representation – Information Organization 
Cognitive efficiency dictates that designers should minimize the 
complexity of a visualization, by reducing the number of visual 
elements like line segments, and using formats that make trends 
readily salient (see Section 2.2.2). Yet under some conditions, 
using a complex visual organization may be preferable, such as 
when the complex visual more accurately represents the target 
relationship and is presented with a prediction task to insure that 
users will reflectively engage with the content. Doing so guards 
against the risk that users with little prior knowledge in a domain 
will rely on the abstraction presented in a simpler graph without 
considering the full implications of the depicted trends. 

3.1.4 Animation 
The visual difficulties view proposes evaluating the usefulness of 
animation on a case-by-case basis, rather than relying on a 
general rule. The main questions that a researcher should ask are 
1) Does the animation direct user’s attention to the information in 
the visualization that will be most helpful for the construction of 
accurate mental models?, and 2) Is the animation allowing the 
user to gain insight that is beyond the limits of their mental 
animation abilities?  

3.1.5 Labeling 
Visual difficulties can be beneficial to a graph comprehension task 
when legends are used in place of labels to stimulate deeper 
reflection on the part of users [59]. Using relatively disfluent fonts 
in labels may be preferable over use of fluent fonts when the 
presented information is crucial to a decision, such as in the design 
of graphs for score reporting that will inform college decisions, or 
graphs of an individual’s health information. 

4 IMPLICATIONS FOR DESIGN 
The visual difficulties evidence highlights the importance of 
approaching design as a trade-off between efficiency and beneficial 
obstructions, one that is not easily captured by rules intended to 
apply to all visualization designs alike. Below, we present four 
considerations that designers can look to for guidance in navigating 
these trade-offs regardless of the specific combinations of cognitive 
efficiency and implementations of visual difficulties employed.  

4.1.1 Individual Differences as Moderating Factor  
Various visualization studies have noted that individual differences 
in prior knowledge can affect visualization interpretation and even 
bias perception. The quantity, specificity, and accuracy of a user’s 
existing knowledge are important considerations in deciding 
whether to introduce visual difficulties. By improving an 
individual’s sense of gaps in their mental model, prior domain-
relevant knowledge can stimulate the conflict between internal and 
external representations that motivates revision of a developing 
mental model (e.g. [55]). Without the requisite prior knowledge to 
judge gaps in their understanding, novices can become 
overconfident [56]. In such cases, including visual difficulties that 
bring this to a user’s awareness can offset negative effects on 
comprehension. 

The benefits of introducing visual difficulties can also be 
constrained by cognitive abilities. For example, a technique to 
induce manipulation of internal visualizations should only be used 
when the required manipulations will be within the limits of the 
user’s spatial abilities (e.g. [31]). Additionally, users can differ in 
their higher-level cognitive abilities in ways that influence the 
effects of using visual difficulties. Chi [19], for example, observed 
that learners differ in their natural tendencies to produce self-
explanations while studying examples or reading text.  

Cognitive needs represent a final individual difference that can 
interact with the effectiveness of visual difficulties. Need for 
cognition describes individuals’ tendencies to differ in the degree 
to which they seek out and enjoy difficult mental work (see [12] for 
a review). Individuals low in need for cognition are more likely to 
ignore, avoid, or distort new information; rely on others’ thinking; 
react negatively to a lack of structure; use cognitive heuristics; or 
use social comparisons in problem solving rather than independent 
reflection and reasoning. In applying visual difficulties to a 
visualization, an individual’s need for cognition can affect how 
likely they are to meet the challenges presented versus to seek 
external help or give up. Low need-for-cognition users are also 
more likely to rely on superficial visual cues like the attractiveness 
of an information presentation, suggesting that increasing aesthetic 
appeal may be an effective way to motivate these users. 

4.1.2 Managing Data and Task Complexity  
Some of the strategies outlined above may not scale up 
appropriately as the complexity or dimensionality of the data set 
increases (or decreases). Yee et al. [80] find that preferences for 
polar versus linear coordinates in dynamic graph animation 
differed based on graph size and were lowest for a middle-ground 
condition, capturing an apparent trade-off between the benefits and 
weaknesses of the two approaches. The results of Bateman et al. 
[5] and Inbar et al. [41] on the validity of the chartjunk and data-
ink principles, respectively, may be flawed due to over-
simplification of the visualized data sets compared to the larger 
data sets that were presumably intended when the principles were 
presented. Similarly, introducing perceptual disfluency or 
substituting static diagrams for animations may not work if broadly 
applied within systems for complex analyses procedures that by 
nature impose high cognitive load. In fact, it may be the case that 
part of the effectiveness of these highly interactive environments 
comes from the natural difficulties imposed by having to vary 
parameters and explore large data sets with little guidance. While 
not identical to gamification, the success of these systems may 
derive from positive motivational influences that are similarly 
based on challenge. Future work might deepen understanding of 
the mechanisms driving successful interaction by examining more 
closely how the level of challenge presented to a given user by a 
system drives it’s utility. 

The above possibility again highlights the trade-off between 
difficulties and efficiency. When data and tasks are highly 
complex, difficulties may already be present and designers must 
thoughtfully balance difficulties with efficiency techniques. In 
addition to validating particular strategies using pilot studies, 
designers should consider user experience levels. As common 
operations in the context of a larger task become automatic for 
expert users, it may productive to pinpoint particular spots in the 
workflow where an analyst must transition to more focused 
thought, and introduce difficulties at these points in order insure 
highly active cognition. Hence a limitation of the visual difficulties 
view may be that many of the researched benefits may not produce 
the same benefits in expert visual analytics systems. An important 
direction for future work involves carefully evaluating the 
appropriateness of visual difficulties in highly complex scenarios 
where visualization is maximally useful. On the other hand, 
researchers should be aware that introducing too many obstructions 
to a novice user’s interaction with an already unfamiliar 
visualization tool may induce unproductive levels of frustration.  



 

4.1.3 Guiding Expectations and Inference Strategies 
A user’s sense of what is expected from them in using a 
visualization, including whether to use analytical or intuitive 
reasoning and the extent to which they should “let the graph do the 
work” can be a powerful influencer on how they structure their 
interaction. For example, improvements in learning can result when 
users of a graph are provided with the necessary information to use 
the self-explanation technique [55]. Visualization designers might 
put to use a variety of training procedures that have been used to 
induce self-explanation, ranging from simple prompting (e.g. 
[18]), to providing a pre-question, prediction task, or other 
internal visualization activity to guide learners’ self-explanations 
in multimedia environments ([32]). In educational contexts, 
directly training graph users how to engage in high quality self-
explanation and self-regulation strategies can be effective.  

Depending on the characteristics of the intended users of a 
visualization, it may be necessary to provide higher levels of 
situational support to compel some users to engage in cognitively-
demanding constructive activities like self-explaining [55]. An 
environment can encourage learners to bring their prior 
knowledge to bear on interpretations and allow them to monitor 
and test their developing understanding. In cases where prior 
knowledge is expected to facilitate accurate interpretation, it may 
be useful to use multiple representational formats to increase the 
chances of activating relevant prior knowledge [55].  

The effectiveness of these strategies may be explained in part 
by how self-explaining and prediction or internal visualization 
tasks can help subjects to articulate and assess their intuitions about 
how target processes work in comparison to a visualization. Along 
these same lines, providing dynamic and timely feedback when 
possible can help a user to accurately assess her own learning and 
make adjustments to more deeply process content [49].  

4.1.4 Cueing Self-Doubt and Representing Ambiguity 
When presented with a difficult-to-read piece of text or otherwise 
disfluent visualization, the subject is cued to be more cautious, and 
potentially switch from using intuitive System 1 reasoning to more 
analytical and systematic System 2 reasoning [2]. For 
visualizations of problem domains where significantly better 
alternatives exist but may not be found using intuition (for 
instance, in a less personal task like deciding on nutritional 
supplements), this can lead to more accurate and informed 
decisions.   

There are several ways that this goal can be accomplished. One 
is by giving the user opportunities to recognize holes in her 
learning during visualization interaction by introducing learning 
events that cue uncertainty, such as a prediction task prior to 
graph interaction (e.g. [32]). This can help curb the common yet 
unjustified confidence that often accompanies understanding of 
causal relationships [56].  

In some situations an interactive visualization might cue 
uncertainty simply by instructing a user to double-check her 
inferences. This is best suited to visualizations where the user can 
actively represent the outcomes of their analyses, such as by 
highlighting or saving particular views or parts of a graph as 
evidence of some underlying mechanism. The system can use 
insurance measures like checklists at these points, such as through 
pop-ups, improving the analyst’s accuracy. 

A final strategy that is similarly motivated to induce doubt is to 
visually represent uncertainty around the values or patterns in a 
graph. The most common example of this may be the addition of 
error bars to represent confidence intervals in a box plot, or 
annotations describing the limits of inference (e.g. [67]). 

4.2 Implications for Evaluation 
The visual difficulties evidence problematizes InfoVis evaluation 
models that rely heavily on cognitive efficiency performance 
metrics by suggesting that these are only one view of how to assess 

a visualization. To capture the benefits of learning obstructions, 
evaluation models must allow for the role of active, constructive 
processing and the desire to engage with a visualization in the first 
place.  

Prior work has pointed out that conventional evaluation models 
may not fully characterize the role of visualization in analysis [7]. 
Even evaluation methods based on an expanded view of the risks to 
validity that can occur in design tend to refer back to efficiency 
theories for validating visualizations (e.g. [46]). Yet measures like 
response time and accuracy may not be sensitive enough to catch 
differences between some visualizations, as the same levels of each 
can be achieved from different amounts of cognitive effort [34]. 
These conventional measures tend not to acknowledge the trade-off 
that often exists between comprehension and response times. 

In recent years, approaches have been proposed which address 
particular considerations missed by a focus on response time and 
accuracy. Lam et al. [39] distinguish seven scenarios that entail 
alternative evaluation criteria. Examples include evaluating visual 
data analysis and reasoning (e.g., measuring eye movements, visual 
search times), human factors like user experience and performance 
(e.g., users’ perceived effort, response times, and accuracy), work 
practice outcomes, and communication through visualization. We 
consider several alternative approaches to conventional evaluation 
as examples that encapsulate one or more of these scenarios, and 
discuss the potential for integrating visual difficulties into each. 
Our goal is not to provide a comprehensive treatment of proposed 
evaluation frameworks, but to demonstrate the questions that visual 
difficulties findings pose to evaluation. 

One way in which conventional performance measures have 
been amended is through insight-based techniques that focus on 
productivity in knowledge gain (e.g. [48]). While introductions of 
visual difficulties are congruent with an emphasis on the quality of 
the new knowledge, it can be hard to define what constitutes an 
insight in a way that applies across users. Viewing graph design as 
a trade-off between cognitive efficiency and visual difficulties also 
may require expanding the ways in which insights are evaluated. 
For example, asking how active a role the user played in reaching 
the insights may help predict longer-term learning. This can be 
operationalized by capturing user’s explanations of how they 
arrived at an insight using a graph and classifying these based on 
how many reflective thoughts were prompted (for example, ‘I first 
considered [A], but then noticed [details] in the graph, and thought 
[B]’). Another way of asking this might be, who did more work, 
the system or the user? In cases where insights have been gained 
but there is no evidence of active effort on the part of the user, 
visual difficulties predict that learning may not last as it could.  

Some models have proposed approaching evaluation from a 
human factors perspective where user experiences, including self-
reported usability and effort with a tool, represent an important 
dimension in visualization effectiveness (e.g. [34]). The evidence 
of the potentially beneficial role of disfluent stimuli and conditions, 
often in the face of less favorable assessments of the learning 
experience by users, introduces a novel quandary to these 
techniques. What happens when a user prefers what is worse for 
them, in terms of understanding and retention of visualized 
content? Evidence on disfluency suggests using user-reported 
effort measures as indicators of the degree of disfluency different 
visualizations assume, and combining this data with more 
conventional metrics for better predicting which of several 
visualizations will more likely increase comprehension and 
retention.    

An important observation is that many visual difficulties studies 
consider a visualization as one of multiple representations in a 
group of learning materials. In some cases, a visualization might 
most concisely represent a concept while texts or other 
instructional aids introduce beneficial obstructions. Research in 
educational contexts aims to optimize lasting, transferable 
knowledge overall rather than isolating features of the visual 
representation to evaluate. This outcome-focused approach is 



paralleled by learning-based methods like Chang et al.’s [17] 
model for assessing how well a user transfers the knowledge 
gained with a visualization to a new task. A new tension posed by 
visual difficulties evidence, however, is that the level of 
constructive cognition entailed in one task (which tends to predict 
comprehension and retention) may not be cued in a second, similar 
task regardless of the visualization’s effectiveness. If a user’s prior 
knowledge is cued differentially across original and transfer tasks, 
the performance with new data may not be as effective. Similarly, 
if the user does not challenger herself to think actively in the 
transfer task based on lower intrinsic engagement with the data, the 
evaluation method is unlikely to generate reliable assessments. 
Evaluators could be better prepared to explain such situations by 
capturing users’ prior knowledge and levels of interest. 

Chang et al. frame their model against methods that measure 
how rather than how well a user learns with a visualization. The 
former learning efficiency concern is least congruent with visual 
difficulties evidence. Huang et al.’s [34] cognitive load approach, 
for example, suggests that cognitive load represents mental effort, 
or the amount of cognitive capacity that is allocated to 
accommodate the demands imposed by a task. The predictions of 
the model tend to support the conventional efficiency maxims: 
when memory demand is consistently lower than maximum 
memory capacity, task performance (e.g., accuracy, response time, 
perceived effort) is likely to be good assuming the load is not so 
low as to lead to boredom. When memory demand reaches 
maximum capacity, performance plummets. Yet the common 
discordance between a user’s perceived mental effort and her 
learning gains challenges learning efficiency techniques, 
suggesting that some difficulty may be best when performance is 
most crucial.  

In sum, while evaluation methods for InfoVis have expanded to 
consider characteristics beyond the visual encodings and sought 
new measures that capture the quality of learning, viewing graph 
design as a trade-off between difficulties and efficiency raises 
questions that existent models should address, including the 
importance of a user’s depth active processing, the risks of using 
subjective effort appraisals as a sign of visualization quality, and 
her incentives to interact. 

5 CONCLUSION 
Cognitive effort appears to represent a natural guideline for 
designing effective information visualizations and has benefitted 
InfoVis as a foundation for practice. Yet contextualizing 
experimental support for cognitive efficiency against psychological 
and educational graph design literature suggests that visualization 
effectiveness is better characterized as a trade-off between efficient 
processing and desirable visual difficulties to stimulate learning. At 
the basis of this trade-off is active processing, which can guide 
designers considering diverse graph design strategies, including 
means of generating engagement. The visual difficulties evidence 
carries implications for design such as the importance of 
considering the expectations, level of certainty, and knowledge and 
abilities of the user. At the same time, the new questions that visual 
difficulties pose to evaluation approaches stand to increase the 
sophistication of those methods by integrating important 
psychological principles into the InfoVis evaluation toolbox.  
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