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ABSTRACT

Evaluation criteria like expressiveness and effectiveness favor
optimal use of space and visual encoding channels in a single
visualization. However, individually optimized views may be
inconsistent with one another when presented as a set in rec-
ommender systems and narrative visualizations. For exam-
ple, two visualizations might use very similar color palettes
for different data fields, or they might render the same field
but in different scales. These inconsistencies in visualization
sets can cause interpretation errors and increase the cogni-
tive load on viewers trying to analyze a set of visualizations.
We propose two high-level principles for evaluating visualiza-
tion set consistency: (1) the same fields should be presented
in the same way, (2) different fields should be presented dif-
ferently. These two principles are operationalized as a set
of constraints for common visual encoding channels (x, y,
color, size, and shape) to enable automated visualization
set evaluation. To balance global (visualization set) consis-
tency and local (single visualization) effectiveness, trade-offs
in space and visual encodings have to be made. We devise
an effectiveness preservation score to guide the selection of
which conflicts to surface and potentially revise for sets of
quantitative and ordinal encodings and a palette resource
allocation mechanism for nominal encodings.
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1. INTRODUCTION

Traditional visualization evaluation metrics, including de-
sign guidelines and heuristics such as Mackinlay’s effective-
ness and expressiveness criteria [16] and Tufte’s data density
theory [29] are designed to be applied to a single visualiza-
tion independently. However, today we often see visualiza-
tions as sets rather than standalones. In applications such
as recommender systems [34, 30, 18] and narrative visualiza-
tions [23, 13], the viewer needs to interpret many different
visualizations in parallel or in quick succession. This process
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Figure 1: Two maps show different UK healthcare
group locations. The same colors represent different
data in the two views, requiring viewers to maintain
several meanings for each color value in memory as
they analyze the set.
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Figure 2: Two views depicting of Horsepower and
Miles_per_Gallon (views 1 and 2) are inconsistent in
x and y scales but show the same underlying fields.
View 2 shows mean values for both variables, group-
ing models by country of origin. View 2a revises
view 2 so that the x scale is consistent with view 1;
View 2b makes both x and y scales consistent with
view 1. Data source: [1].

is often cognitively difficult due to inconsistencies in encod-
ings across the views, in spite of authors’ efforts to group
similar visualizations together [34, 13] and use animation
and annotations to guide viewers [12, 23].

For example, the two maps in Fig. 1 look similar. As a
result of Gestalt principles like similarity [32], a viewer of
these maps might think that they represent two overlapping
fields because the same color values appear in each . Even
when the viewer notes the non-overlapping meanings be-
tween the fields by reading the legend, she may have trouble
moving between the plots. To do so requires her to inten-
tionally suppress the meanings she just decoded in order to
learn the new encoding. Had the map author realized the
potentially confusing encoding reuse, he or she might have
chosen a more consistent design given the semantics of the
data fields, such as selecting a different nominal palette to
apply to each map.



In other cases, sets of visualizations depict different filters
and transformations of the same underlying data fields, but
with different visual representations. Both visualizations in
Fig. 2.1 and 2.2 represent the same fields Horsepower and
Miles_per_Gallon, but Fig. 2.1 depicts the raw data for all
observed cars, while Fig. 2.2 depicts MEAN (Horsepower) and
MEAN (Miles_per_Gallon) for US, European, and Japanese
cars. However, the two visualizations encode the data us-
ing different x and y scales, which hinders comparing the
views without effort. Had 2.2 been generated with consistent
scales such as in Fig. 2.2b, the viewer would more quickly
recognize that the fields are the same as Fig. 2.1. She could
also easily compare data across the views, for instance not-
ing that cars from each of the countries fall near the densest
center portion of the full distribution.

‘We propose that the traditional single-visualization evalu-
ation metrics may not be sufficient in motivating cognitively
efficient visualization sets: sets of views that align with view-
ers’ natural impressions of encoding semantics and reduce
the effort required to move between views in analysis. We
outline our vision of an approach for evaluating sets of visu-
alizations that can be automatically instantiated in design
tools to support these goals.

We envision several applications of an automated approach
to evaluating visualization sets:

Scenario 1: An analyst is exploring the cars data set
[1] using a visualization recommendation browser like Voy-
ager [34]. The system generates multiple distinct views of
the data, each optimized by single visualization evaluation
criteria (e.g., Fig. 2.1, 2.2). Before presenting the views to
the analyst, an automated “set evaluator assistant” checks
for inconsistencies in the set using the constraints we pro-
pose in Sec. 6. In the case of Fig. 2 the evaluator detects that
the x scales are inconsistent. For each constraint violation,
the evaluator decides the appropriate next step using mech-
anisms we propose in Sec. 7 to balance loss of comparability
of data in a single view with the added ease of mental in-
tegration of information across views from consistency. The
evaluator concludes that revising Fig. 2.2’s x and y axes to
be consistent with those of Fig. 2.1 does not significantly im-
pact perception of the data in Fig. 2.2, and therefore makes
the revision.

Scenario 2: A designer is using an authoring tool such
as Tableau Public [2] or Lyra [21] to create multiple visu-
alizations about UK National Health Services (like Fig. 1)
for a data story. After the designer assigns a categorical
color palette to a nominal field (Fig. 1.1), a built in “set
design assistant” records which colors are consumed. When
the designer later applies the same or an overlapping scale
to depict a different nominal field (Fig. 1.2), the design as-
sistant detects the potential conflict and surfaces it for the
designer to address.

The approach we propose begins with two high level de-
sign constraints: C1: The same data fields should be en-
coded the same way. C2: Different data fields should be
encoded differently. We contribute an operationalization
of these constraints for common quantitative, ordinal, and
nominal encodings, which we developed through case stud-
ies using real-world visualization set examples. We further
propose two mechanisms for negotiating trade-offs between
local (single visualization) optimization of encodings (where
maximizing comparisons in the visualization is often a goal),
and global consistency constraints. Our effectiveness preser-

vation score analyzes the loss in data comparisons of the ren-
dered view if an encoding is applied consistently between two
views. A color and shape palette allocation strategy helps ne-
gotiate trade-offs in nominal encoding resources (i.e., color
hues and shapes). We conclude with a discussion of areas
where future research is needed to determine how inconsis-
tent encodings affect interpretation and how to quantify the
loss in perceptual discriminability in a single view.

2. RELATED WORK

Most existing work on principles for evaluation, whether
proposing value-driven approaches [25] or visualization-specific
heuristics [27, 35] assume a single visualization and do not
explicitly consider visualization sets.

Automatic visualization design has used evaluative met-
rics such as Mackinlay’s expressiveness and effectiveness cri-
teria in an automated generation system [16]. Expressive-
ness violations resemble hard constraints. Showing nominal
data using a length encoding, for example, is not clearly
more or less confusing than showing nominal data with an
area encoding; both are undesirable. Effectiveness is bet-
ter represented as a ranking function for encodings based
on the accuracy with which viewers can decode the infor-
mation. More recently, work in visualization recommender
systems has approached automated recommendation of sets
of views of relational data with the aim of including views
that vary both the depicted data and the encodings used [34,
33]. Some design choices made by these systems aim to ease
cognitive processing of multiple charts, such as VoyageréAZs
use of consistent colors for variables (which satisfies our con-
straints C1.5 and C2.3). However, our work provides ex-
plicit mechanisms and more detailed requirements for ensur-
ing encoding consistency across the set, which has not been
a focus in the prior work.

Work on coordinated and multiple view (CMV) systems
for exploratory analysis assumes an analyst viewing a set of
visualizations at once (e.g,. [20]). In a classic CMV paradigm,
the analyst manually generates the views. Instead of con-
sistency between views, the focus is usually on enabling in-
teractive coordination between views, such as brushing and
linking where highlighting marks across two views is the
common strategy for drawing attention to their shared iden-
tity. Work in narrative visualization sequence has proposed
a model of the cognitive cost between pairs of views in a set,
but for the purpose of ordering views rather than ensuring
consistency [13].

Small multiples are the clearest example where maintain-
ing identical encodings across views is used, in this case
to allow the viewer to compare the views [28]. We believe
that encoding consistency can be helpful both for supporting
comparison and reducing semantic confusion beyond small
multiples settings as well.

We take inspiration from Kosslyn [15], who proposes that
evaluating the semantic clarity of a graph includes assessing;:
1) whether elements represent the meaning of the viewer’s
preferred representation (representativeness), 2) whether the
appearance of the marks is compatible with their meanings
(congruence), 3) whether the design aligns with graphical
conventions (schema availability), 4) whether every mean-
ingful difference in the value of a variable is mapped to a
detectable difference in marks (perceptual discriminability),
and 5) whether every mark has only one meaning (between-
level mapping principle). Kosslyn advises applying the frame-



work to multi-chart composite visualizations first by analyz-
ing each chart separately, then by analyzing the composite
view. However, few examples of such analysis appear in his
or others’” work. More recently, Kindlmann proposed the
principles of Invariance and Unambiguity [14]. These two
principles align with our two high level principles that the
same data should be presented in the same way and that dif-
ferent data should be presented differently. The difference
is that Kindlmann’s algebraic process model was a more
theoretical contribution demonstrated as a way for a human
designer to critique and improve a single visualization in her
mind, whereas our high-level principles and specific consis-
tency constraints are stated from a domain-specific-language
(e.g., Vega) perspective for sets of visualizations and may be
automated by a design or analysis tool.

3. METHODS

To develop our approach, we first examined real-world vi-
sualization sets from various sources including The Guardian,
New York Times, Financial Times, and Tableau Public. We
applied a variety of classic design guidelines (e.g., [16, 29,
31]), observing where threats to semantic interpretation of
the data that we noticed were not characterized by these
guidelines.

To further understand specific forms of conflicts, we pro-
totyped a testbed for generating configurations of views with
varying properties to test our approach. We used declara-
tive visual specification grammars Vega [22, 4] and Vega-Lite
[34, 3] because these languages make it easy to enumerate
the visualization design space for a given data set.

4. COMPARISON SET

Our approach assumes a comparison set in applying our
evaluative constraints: a set of visualizations in which all
visualizations are supposed to be compared with each other.
For instance, Figs. 1, 5, 6 and 7 are comparison sets.

A comparison can be generated in various ways depend-
ing upon the application. A comparison set could be man-
ually constructed by a designer for a narrative visualization
(e.g., [13]). Or, a comparison set could be automatically gen-
erated by a visualization recommender like Voyager [34]. A
set of visualizations may contain multiple comparison sets.
For example, a designer of a multi-tab interactive visualiza-
tion may define views under each tab as a comparison set,
within which consistency should be evaluated.

S. TWO HIGH-LEVEL CONSTRAINTS

We propose two high level constraints for evaluating visu-
alization set consistency:

C1: The same data field is encoded the same way.

C2: Different data fields are encoded differently.

C2 implies that the field differences between individual
visualizations should be visually perceivable. C1 implies
that the viewer’s attention is not drawn to visual changes
given a constant data field across views — in other words, the
configuration of views should not create unnecessary “noise”
for the perception system. Assuming C1, C2 aims to en-
sure that any field that does change between visualizations
is likely to draw the viewer’s attention. In devising these
principles, we informally tested their usefulness in detecting
confusing encodings in case studies involving real-world vi-
sualization set examples. With these examples we derived

more detailed constraints (C1.* and C2.%*) in Sec. 6.

5.1 Defining “the Same Field”

Visualization sets can include different transformations of
the same underlying data variables across views. For ex-
ample Fig. 2.1 plots tuples representing car models by the
data variables (Horsepower, Miles_per_Gallon). Fig. 2.2
shows the same variables with aggregation applied to the
tuples (MEAN (Horsepower), MEAN(Miles_per_Gallon)). We
use the term “field” to refer to the subset of data presented
in a view, which can be a function on data variables repre-
senting measures (outcome variables) and dimensions (inde-
pendent variables). Our high level constraints require a way
of inferring whether the same underlying data variable with
different transformations should still be interpreted as the
“same field” in multiple visualizations.

Ideally, a system determines whether two fields are “the
same” or “different” by assessing the underlying semantics
of each. For example, it is relatively easy to automatically
identify transformations that derive from the same (raw)
data variable and classify these as the same as the non-
transformed variable. For example, BIN (Horsepower) and
MEAN (Horsepower) both derive from Horsepower and thus
should be classified as “same field” for our high-level con-
straints C1 and C2. C1 will then surface a potential conflict
when BIN(Horsepower) and MEAN (Horsepower) are encoded
using different scales.

For transformations that involve combinations of multiple
different variables (including dimensions or measures and /or
constants), it becomes more challenging to infer when two
fields are semantically similar enough to count as the same.
For example, if two fields show the same measure (e.g., to-
tal sales) but with transformations applied (e.g., total sales
versus total sales for coffee only, adjusted for inflation),
whether they should be considered the same fields depends
on the greater context of the data and presentation scenario.
Data “semantics”, including determining the relationships
between different variables and inferring when it is desirable
to compare them across plots, remains a challenging and un-
derexplored area in information visualization. However, we
believe that it is possible to develop reasonable defaults that
could be used to surface conflicts which a human user could
then assess using their understanding of the context.

6. VISUAL ENCODING CONSTRAINTS

We propose a set of specific constraints that operationalize
the two high level constraints for common encodings. Field-
channel mappings constraints ensure that the same fields
are mapped to the same channels across the views. These
constraints detect conflicts in channel pairs by evaluating
what fields are mapped to what channels. Quantitative
and nominal encoding constraints are channel-specific
constraints that detect conflicts between how a field is mapped
to a channel across a set of views. These constraints can be
hard, such that a conflict is believed to be always likely to
cause confusion, and is therefore important to surface to a
designer. Or a constraint can be soft, such that consistency
is desirable for better cognitive efficiency but not achieving
consistency may not cause error is lower priority for surfac-
ing. Conflicts between constraints are identified by these
two levels of processing, and the constraints processed in
order from hard to soft. Trade-off negotiation mecha-
nisms are used to determine the severity of a conflict for



Table 1: Data field types and their visual encoding
channels. The channels are ranked (from top to bot-
tom) by their effectiveness for encoding the specific
type of data, based on [16, 8].

Quantitative Ordinal Nominal
X, ¥ X, ¥ X, ¥
size color.quantitative | color.nominal
color.quantitative size shape

either form of constraint (Sec. 7). We describe terminology,
then outline field-channel mappings and encoding specific
constraints.

6.1 Terminology

To facilitate discussion we use Vega-Lite’s definition of
channel as a visual encoding resource that can be allocated
to data fields [3]. Given a channel, a scale is a specific map-
ping function from a data domain (e.g., [0, 25], [USA’, 'Eu-
rope’, 'Japan’]) to a visual range (e.g., 0-100 pixels, [red,
green, blue]). Hence all properties of how a scale is pre-
sented (e.g., number of axis ticks, axis label, etc) are consid-
ered part of a scale. We consider how quantitative, ordinal
and nominal fields are encoded through five commonly used
visual encoding channels [3]: x, y, color, size, and shape
(see table 6.1). Note that x and y channels can encode all
types of fields and are also the most effective [16, 8]. Sym-
bol size typically only encodes quantitative data. Symbol
shape most commonly encodes nominal data. Interestingly,
color can vary in hue, lightness and saturation to encode all
three data types. Therefore we split color into two channels:
color.nominal and color.quantitative. color.nominal
is perceived as unordered and can encode nominal data.
color.quantitative is perceived as ordered and can encode
ordinal and quantitative data.

color.nominal color.quantitative

Qualitative Scale Sequential Scale

L [

0 » Max  Max < 0 » Max

Diverging Scale

Figure 3: Two color channels: color.nominal and
color.quantitative. color.nominal is perceived as un-
ordered and color.quantitative is perceived as or-
dered. Diverging schemes are reserved for data with
a meaningful midpoint. Source: [5].

6.2 Field-Channel Mappings Constraints

Each individual visualization contains at least one field-
channel mapping. For example, the same field may appear
as size in one view and color.quantitative in another. In
comparing visualizations, higher level inconsistencies arise
from differences in field-channel mappings. Prior to com-
paring pairs of encodings to channel-specific constraints, our
approach is designed to detect field-channel mapping differ-
ences.

For any two visual encoding channels in two visualizations,
there are three types of differences between field-channel
mappings: swap, shift and update. These differences are
possible between any two channels that can encode the same
type of fields, namely: x and y, color.quantitative and

size, color.nominal and shape, x and color, x and size,
x and shape, y and color, y and size, and y and shape.
Figure 4 illustrates swap, shift and update for the first three
channel pairs. A swap means two channel pairs encode the
same two fields but have swapped the field-channel map-
pings. In other words, in the first pair channell encodes
field A and channel?2 encodes field B; in the second pair chan-
nell encodes field B and channel2 encodes field A. A shift
means two channel pairs have only one field in common, but
that common field is not encoded by the same channel. For
example, the first channel pair encodes field A and B, the
second channel pair encodes field A and C; in the first pair,
A is encoded by channell; in the second pair, A is encoded
by channel2. If two channel pairs only have one field in
common and that field is encoded by the same channel, we
call it an update between two channel pairs. If two channel
pairs have no common fields, we also call it an update. From
our experience, a swap or a shift between two channel pairs
are problematic for global consistency because they encode
the same data fields in different ways (in this case, differ-
ent channels). An update situation encodes the same fields
with same channels and different fields with different chan-
nels and thus does not hurt consistency at the field-channel
mapping level. However, an update situation can still have
lower level inconsistencies when we consider specifically how
a field is encoded in a channel (see Sec. 6.3 and Sec. 6.4 for
channel-specific constraints).
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Figure 4: Field-channel mappings swap, shift and
update for x and y, color.quantitative and size, and
color.nominal and shape channel pairs.

To summarize, inconsistencies raising from field-channel
mappings can be prohibited by the following two constraints:

C1.1 There should be no swap between two field-
channel mappings.

C1.2 There should be no shift between two field-
channel mappings.

Inconsistencies between field-channel mappings can be re-
solved by having the viewer reading the axes titles and leg-
end, but maintaining awareness of how a field is mapped
to different channels across views increases cognitive load.
Additionally, like other constraint violations, field-channel
mapping violations work against view comparability.

6.3 Quantitative Encoding Constraints

A quantitative field can be encoded by x, y, size, or
color.quantitative channel. We describe encoding-specific
constraints for quantitative fields.



6.3.1 x/y

In light of C1 and C2, we derive:

C1.3 If two x (or y) channels encode the same field,
the scales should be the same.

In this case, all scale properties should be the same: scale
domain and range, as well as aspects of the scale depic-
tion, such as axis ticks and labels and so on. Detecting
conflicts with this constraint can help a human designer bet-
ter achieve cognitive efficiency and avoid tasking the viewer
with unnecessary effort to determine the differences between
views, as in Fig. 2.1 and Fig. 2.2, where the x channels have
inconsistent scales.

C2.1 If two x (or y) channels encode different fields,
the scales should convey the difference.

We do not constrain visualizations sets against re-using
x and y for encoding different fields because this quickly
eliminates the two most effective channels for all data types.
Additionally, we believe that reuse of x and y in sets of visu-
alizations is a type of inconsistency between views that most
viewers are accustomed to by convention. When two x chan-
nels encode different fields, viewers scan the axis to learn
that they are different fields. Constraint C2.1 should be
naturally satisfied in most cases because it’s unlikely for two
different fields (e.g., Horsepower and Miles_per_Gallon) to
have identical axes.

6.3.2 size

Size is typically used to encode quantitative fields and is
often broken down to discrete steps due to Weber’s law and
the phenomena of just noticeable difference [10, 26, 31]. We
propose that:

C1.4 The same field should have a consistent size
scale in a comparison set

For example, the Human Development Trends slide show
[11] keeps a consistent size scale for population throughout
the presentation. Between Fig. 5.4 and 5.5, continent popu-
lation and country population use the same scale. This helps
viewers make more accurate judgements of the populations
and also allows viewers to quickly find a specific country
(e.g., China) through size given prior knowledge about the
relative size of the country’s population.

Where possible, we also propose:

C2.2 (Soft Constraint) A visualization set should
not map more than one field to the size channel

Like x, y channels, we believe size can be reused for
encoding different fields in some visualization sets without
causing too much confusion for views based on convention.
However, viewers have to consult legends to learn that size
has different meanings in different views. Therefore we pro-
pose a soft constraint C2.2 to discourage size reuse.

In cases where channel reusing becomes unavoidable, the
field differences should be made readily apparent. The most
obvious way to explicitly state field differences is through
size legends. Additionally, if redundant coding [31] is possi-
ble (when a visualization set has some unassigned nominal
encoding resources like color hues and symbol shapes, de-
scribed further in Sec. 7.2), we could assign different color
hues to the different fields, so that the field differences be-
come more perceptually apparent.

6.3.3 color.quantitative

To encode quantitative data, the color.quantitative chan-

nel can vary hue, lightness and saturation to form either se-
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Figure 5: Screenshots of Human Development
Trends, 2005 [11]. This classic interactive slide show
presents global economic and health growth from
1970 to 2015. It contains field transformations such
as calculate percentages (3), data drill down (5), and
filter by time (3 and 4). Gapminder keeps a consis-
tent size scale to show continent population as well
as country population. It also keeps consistent map-
pings between continents and nominal colors.

quential or diverging color scales [6] (see Fig. 3. Diverging
scales are used to encode data with a meaningful midpoint.
In ordered color scales, it is common to see people associat-
ing darker colors with larger data values and lighter colors
with smaller data values.

Assuming each single visualization follows single visual-
ization color design guidelines, we propose two constraints
for consistent use of ordered color scales across a comparison
set:

C1.5 If two visualizations use color to encode the
same quantitative field, they should use the same
color scale.

Specifically, the two ordered color scales should have the
same scale domain, mapped to the same color scale range,
and have the same color breaks. For example, in The Guardian
“Wealth and Poverty in Africa” comparison set (Fig. 6),
views 1-4 represent population percentage through a yel-
low to purple color scale. The only difference between the
views is that each represents a different subset of income lev-
els. However, in view 1, the color scale maps from [0, 82.1%)
to the [yellow, purple], whereas in views 2-4 the scales map
from [0, 25%)] to the same color range. This violation of C1.5
makes it virtually impossible to compare the first view with
the other views in the set. The visual similarity across all
views may lead viewers to assume that views 2-4 apply the
same scale as view 1, leading to interpretation errors.

C2.3 If two quantitative color channels encode dif-
ferent quantitative / ordinal fields, the two channels
should have different color scales.

Continuing with the same example, Fig. 6 views 5 and
6 encode different fields (Gini index and GDP per capita)
on the same color ranges as views 1-4. In addition to fixing
the color scale applied to all population views, we propose
that the comparison set would be easier to process if views
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Figure 6: Wealth and poverty in Africa, The Guardian [19]. Note that views 1-4 use inconsistent color scales
to encode the same field population’%. Views 5-6 encode different fields using the same color scale.

5 and 6 mapped their distinct fields to distinct color scales
(e.g., [lightblue, darkblue], [pink,red]) that do not overlap
with the scale in views 1-4.

6.4 Nominal Encoding Constraints

6.4.1 color.nominal

Color can vary in hue, lightness and saturation to create a
qualitative scale that is suitable for encoding nominal data.

In light of C1, we derive:

C1.6 If two nominal color channels encode the
same nominal field, the mappings from the nominal
data values to the nominal colors should be identical

For example, the Gapminder comparison set (Fig. 5) con-
sistently uses red for Africa, cyan for OECD, orange for East
Europe and so on.

Conversely, in light of C2, we derive:

C2.4 If two nominal color channels encode differ-
ent nominal fields, the same color should not be
reused for different nominal values

When this constraint is violated, such as in Fig. 1 where
color scales with many overlapping colors encode distinct
fields, viewers will experience a higher cognitive load due
to the need to “unlearn” a set of mappings every time they
transition between the views.

C2.5 If a nominal color channel encodes a nominal
field and a quantitative channel encodes a quantita-
tive / ordinal field, the color semantics established
by the two channels should not contradict

For example, Fig.7 1 establishes nominal color semantics
for race: white people is green, black is blue, Hispanic is yel-
low and Asian is red. The ordered color channels in views 2-5
encode population filtered by race. These channels could
all have used a gray scale to encode population, but the
author decided to honor the nominal race-color mappings
established in view 1 so he carefully picked the meaningful
colors for each scale. By doing so, he not only made views 2-
5 more distinct but also associated them better with view 1.
Unfortunately, the color semantics are challenged by view 6,
which inconsistently reuses the same blue for foreign-born
population. A distinct hue would better represent the in-
dependence of black and foreign-born that is otherwise
implied.

6.4.2 shape

Shape typically encodes nominal fields. The constraints
we derive for shape are similar to that of color.nominal:

C1.7 If two shape channels encode the same nom-
inal field, they should maintain the same mappings
from nominal values to symbol shapes

C2.6 If two shape channels encode different nom-

inal fields, they should use distinct symbol shapes.

Like color hue constraint violations, violating shape con-
straints is likely to increase cognitive processing and lead to
confusion.

7. GLOBAL VS. LOCAL TRADE-OFFS

Our constraint-based approach is intended to allow auto-
mated detection of potential global inconsistencies. Surfac-
ing potential conflicts can alert a designer to reconcile them
if desired, or can be used as input to a revision stage in a fully
automated scenario. A naive reconciliation approach is to
detect and try to resolve all conflicts for optimal global con-
sistency. For example, a “set evaluator assistant” built into a
tool like Tableau or Lyra could point out every conflict in a
finished set of visualizations to a designer, implying that he
or she should fix them all. Or an automated visualization
recommender could try to resolve all conflicts by directly
revising the visualization set. However, while the naive ap-
proach may successfully achieve global consistency, is likely
to suggest revisions that can significantly compromise local
effectiveness. In the case of a design assistant in a visual-
ization creation tool, surfacing all possible conflicts is also
likely annoy or overwhelm the user. Ordering constraints
a priori by their anticipated consequence on interpretation
could allow ranking (and triaging) of suggested revisions.
Our process proceeds by first considering hard constraints,
then soft constraints. However, the severity of a detected
conflict may not be predictable from the constraint alone
(e.g., it may depend on the data and the space for presen-
tation). We therefore propose mechanisms for negotiating
global-local tradeoffs for quantitative and qualitative encod-
ings.

7.1 Trade-Offs in Quantitative Comparisons:
Effectiveness Preservation Score

Our negotiation mechanism for quantitative encoding vio-
lations is based on an assumption that an effective single vi-
sualization maximizes the accuracy with which a viewer can
compare data values. A classic example is Edward Tufte’s
advocation for high data-ink ratio, high data density de-
signs [29]. A common design practice for achieving maximal
accuracy in decoding data is to set the scale domain of any
rendered encoidng to be large enough to encode all values in
the data domain but not much larger (e.g., adding only slight
padding to ensure readability of extreme values in mapping
a variable like horsepower to an x-axis). We operational-
ize this assumption and use it to quantify the impacts to
each single visualization for which a consistency conflict is
detected. This quantification is used to prioritize which de-
tected conflicts to surface, either for resolving by a human
designer or fully automated revisions.
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Figure 7: Cropped screenshots of New York Times “Mapping America: Every City, Every Block” [17]. All
views show population percentage. For views 1-5, white people = green, black people = blue, Hispanic =
yellow, Asian = red. For view 6, foreigners = blue. View 6 has a different domain ([0, 40%+]) than views 2-5.

Consider the conflicts in x and y scales between Fig. 2.1
and Fig. 2.2. To make the views consistent, one potential
revision is to set the domains of the x and y position en-
codings in view 2 to the domains of x and y in view 1 (e.g.,
Fig. 2.2b). Or one could do the reverse: set the domains of
the x and y encodings in view 1 to the domains of x and
y in view 2. However, the latter revision results in view 1
no longer representing all values in its original domain. In
applying our trade-off negotiation approach to quantify the
impact of conflicts, for any detected encoding conflict we
therefore only consider revisions to the scale with a smaller
domain. However in practice, there may be cases where a de-
signer prefers to lose data visibility in some views to achieve
consistency.

Specifically, we devise a measure that we call the effec-
tiveness preservation score to operationalize the intuition
that a single visualization may not want to apply a consis-
tent quantitative encoding if the loss in ability to make data
comparisons in the revised view is large. For each local re-
vision proposed by a constraint, we define its effectiveness
preservation (EP) score as:

# Comparison evised
# Comparisoneriginal

EP =

where

# Comparison,eyised is the number of possible pairwise vi-
sual comparisons supported by the revised visualization, and
# Comparisonoriginat is the number of possible pairwise
visual comparisons supported by the original visualization
(without applying the proposed revision).

EP is a ratio between 0 and 1. If a EP is close to 1,
it means the proposed revision preserves local effectiveness
(operationalized as number of pairwise comparisons) rela-
tively well and should be accepted. If a E'P is close to 0, it
means the proposed revision will severely impact local effec-
tiveness and should be rejected. Users can define a threshold
for EP to specify how much compromise in local effective-
ness is acceptable for a detected conflict to be surfaced. For
Fig. 2, the EP score would identify that no pairwise com-
parisons in view 2 are lost by revising view 2 for consistency
with view 1’s scales (Fig. 2.2b). Hence, this conflict would be
surfaced for a human designer in a design assistant scenario,
optionally with the suggestion for revision, or automatically
done in a fully automated visualization recommender sys-
tem.

To calculate the number of possible visual comparisons in
a visualization requires a model that can predict the dis-
criminability of different configurations of marks and at-
tributes. For example, to determine the number of com-

parisons supported by a particular rendered y position en-
coding of a quantitative variable in a scatterplot requires
predicting when the occlusion of rendered points will pre-
cludes comparing their precise values. An important avenue
for future work toward negotiating between evaluative cri-
teria for single and sets of visualizations is to build better
perceptual kernels [9], distance matrices representing percep-
tual differences between and within visual variables.

In cases where the best solution is to break consistency,
various strategies can be used to eliminate potential confu-
sion on the part of the viewer, such as presenting the con-
flicting view using a consistent encoding initially, then ani-
mating a transition to the conflicting encoding to bring the
user’s attention to the difference. Or, textually annotating
the conflicts across multiple views can warn the viewer to
carefully read axes guides and legends. In some situations,
log scales are an alternative way to avoid a conflict while
still allowing comparability of values in both views.

7.2 Trade-Offs in Nominal Comparisons:
Palette Allocation

Conflicts between nominal encodings can be thought of
as “harder” constraints than those between quantitative en-
codings, due to the preattentive nature of assumptions that
two identical hues (e.g., red points across two scatterplots)
should depict the same underlying data. We propose several
additional mechanisms to help prioritize nominal conflicts
for surfacing, and suggests revisions to negotiate conflicts.

In general, when different nominal data fields in a com-
parison set, unused hues and/or symbol shapes (geometric
shapes, ISOTypes, texts), can be put to use to maximize
symbol distinctiveness. When overlapping values are de-
tected between multiple rendered nominal palettes (i.e., hues
in a categorical color scale, or shapes being used to encode
different data), a tool could allocate preferred nominal en-
codings (e.g., color hue over shape, and the most discrim-
inable categorical hue palettes) for the nominal fields that
appear most frequently across the set of views, applying less
optimal nominal encodings for fields that appear less. The
development of larger palette sets (e.g., the addition of more
shapes, such as icons chosen for the particular dataset [24])
can support allocation while still avoiding conflicts.

Another strategy treats the hues across a set of sequential
or diverging color palettes used to encode fields in differing
views as a color palette, detecting repeated hues used to
show different fields. In such cases, an automated revision
assistant could surface the conflict to a designer to fix, or
even suggest different hues to encode different quantitative



fields across a set of visualizations (e.g., Fig. 7).

7.3 Task Dependency

We note that the optimal use of the E'P score and palette
allocation techniques, as well as other aspects of our ap-
proach, can be task dependent. For example, consider two
simple visualizations depicting population data in the US
for different demographic groups for two different years. The
first visualization is a one dimensional scatterplot where each
mark represents different education level groupings in 1980.
Population is encoded redundantly using both size and x
position. The domain of the x position encoding is [0, 72
million], and the range is [0, 200px]. The second visualiza-
tion is identical to the first, except that marks represent the
same education levels but in the year 2016. In visualization
2, the domain of the x position encoding is therefore different
([0, 140 million]), but the range is the same: [0, 200px].

The question of whether z is encoded consistently depends
on the viewer’s goal. If the goal is to get a better sense of the
ratios of the population with different education levels at the
two time points, then the lack of consistency in x position is
not necessarily problematic. However, if the goal is to get a
better sense of the increase in absolute population across the
two years, the inconsistency bars easy mental integration of
information across the two views.

8. IMPLEMENTATION

Our approach to visualization set evaluation and revision
can be thought of as a pipeline with two primary steps:
1) detecting conflicts, and 2) deciding whether a conflict is
worth surfacing for a human author or automated revision
by assessing the loss of effectiveness for each possible revi-
sion. These steps can be implemented in various ways.

One approach is to encode definitions of field-channel map-
ping and encoding-specific constraints in a constraint solver,
which searches a pre-determined design space of channels
and encodings for states that reduce conflicts. Another ap-
proach is to model the set as a graph with two types of edges,
representing 1) when visualizations have the same field and
1) when they use an identical encoding. Patterns of edges
representing conflicts can be identified. Future work should
determine how feasible it is for either approach to find a
satisfactory sets of designs given different configurations of
views.

9. DISCUSSION

Our work represents a first step toward devising an eval-
uative approach that integrates considerations similar to
APT’s expressiveness and effectiveness but for sets of visu-
alizations. Our approach is designed to detect conflicts that
can make a set of visualizations likely to produce interpreta-
tion errors. We believe that this goal is especially important
for visualizations intended for casual users. Some conflicts
may allow for clear-cut suggestions from an automated de-
sign assistant on how to potentially revise the encodings
(e.g., use consistent hues across nominal and filtered quanti-
tative views). However, we believe that whereever possible,
human input is the best way to identify the most appropriate
design revisions to address a conflict in a given context. Un-
derstanding when conflicts result in erroneous spontaneous
interpretations, how to determine discriminability for differ-
ent encodings, and how to account for contextual effects are

important topics for future work.

9.1 Determining spontaneous interpretations

Visualization interpretation is driven by both top-down
(e.g., a priori interests) and bottom-up (perceptual, Gestalt)
factors [7]. We believe a constraint-based framework for
evaluating visualization sets, such as we have presented, can
help designers and visualization recommenders avoid unnec-
essarily increasing the cognitive load of the viewer. However,
to apply our framework in visualization construction or rec-
ommender systems may require interpretation experiments
to develop specific enough knowledge on how encodings and
conjunctions of encodings are likely to be interpreted. Con-
sider two scatterplots depicting two distinct sets of x and y
variables but using the same marks (e.g., circles), the same
default mark hue (e.g., blue) and the same palette to en-
code a distinct third quantitative variable as size in each
view. Will the combined encoding similarities produce con-
fusion despite the common reuse of x, y, and size to depict
data? The perceptual literature on the separability of encod-
ing conjunctions can help, but further work may be required
to build more specific predictive models.

9.2 Determining discriminability

Additional work is needed to inform the perceptual models
on discriminability used to calculate the effectiveness preser-
vation scores in our approach. Our work aligns with [14, 15]
which stated that more significant changes in data should
lead to more noticeable changes in the visual impression
and vice versa. We believe that the approach of [9], which
builds crowdsourced “perceptual kernels” that summarize
perceptual differences between and within visual variables,
is promising.

9.3 Contextual effects

Our approach is designed to detect conflicts between pairs
of views and determine the severity of particular conflicts. It
is possible that the degree to which conflicts cause confusion
for viewers is a function of the number of views in which
an encoding is consistent versus those in which it is not.
For example, consider the interactive slideshow excerpted
in Fig. 6, in which 4 views use the same yellow to purple
color encoding to show the percent of population with a
given income level, but 3 of these views using the encoding
consistently and one using it inconsistently.

10. CONCLUSION

We presented a technique for evaluating the consistency
of visualization sets. Our approach uses two high level con-
straints: Don’t show the same data in different ways, and
Don’t show different data in the same way, to detect of
constraints across specific encoding pairs in a set of views.
We present an initial formulation of specific constraints plus
mechanisms to prioritize conflicts for surfacing and/or au-
tomated revision while monitoring loss in local (single) vi-
sualization effectiveness. We describe areas for future work
toward making automated visualization set evaluation a fea-
sible approach for information visualization tools.
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