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ABSTRACT
Information visualizations use interactivity to enable user-
driven querying of visualized data. However, users’ interac-
tions with their internal representations, including their ex-
pectations about data, are also critical for a visualization to
support learning. We present multiple graphically-based tech-
niques for eliciting and incorporating a user’s prior knowledge
about data into visualization interaction. We use controlled
experiments to evaluate how graphically eliciting forms of
prior knowledge and presenting feedback on the gap between
prior knowledge and the observed data impacts a user’s ability
to recall and understand the data. We find that participants
who are prompted to reflect on their prior knowledge by pre-
dicting and self-explaining data outperform a control group in
recall and comprehension. These effects persist when partici-
pants have moderate or little prior knowledge on the datasets.
We discuss how the effects differ based on text versus visual
presentations of data. We characterize the design space of
graphical prediction and feedback techniques and describe
design recommendations.
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INTRODUCTION
Information visualizations are common in news articles, scien-
tific papers and other forms of digital resources, and serve to
inform viewers by engaging with them in ways that text alone
cannot. Visualizations often use interactivity, such as filter-
ing, transformation and view navigation, to stimulate viewers’
interest and enable user-driven querying of the data. Close
studies of visualization comprehension indicate that users’ in-
teractions with their internal representations—mental models
of what they know and are learning about a dataset—of the
data are critical to the interpretation process [6, 20, 21, 33,
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47]. Asking a person to express their internal representations
can enhance critical thinking and prompt changes to existing
beliefs to account for new information [16, 24, 46].

Most visualizations do not provide ways for users to explicitly
incorporate their internal representations. The recent New
York Times interactive visualization “You Draw It” [2] is a
rare exception that attempts to prompt reflection by enabling
a user to explicitly incorporate her prior knowledge. The in-
teractive visualization asks viewers to draw their expectation
of the data before presenting the observed data alongside their
predictions. To prompt reflection on the difference, the in-
terface provides feedback based on the accuracy of a user’s
expectation. However, it remains unknown whether the reflec-
tion on prior knowledge induced by such visualizations can
positively impact recall and comprehension of data, or how to
design such visualizations for maximal benefit.

We expand on prior work with five contributions: We con-
tribute (1) a set of novel elicitation techniques for eliciting
users’ prior knowledge in visualization interaction. These
include a graphical prediction technique for eliciting users’
predictions of data, a feedback technique for presenting person-
alized feedback on the gap between predictions and observed
data, and a self-explanation prompt to explicitly ask partici-
pants for self-explanations, which have been found to improve
learning from texts and diagrams [1, 11, 12, 10], among others.

We contribute (2) a controlled experiment to test the effect
of these techniques on recall and comprehension of data. We
find that prompting participants to first predict data, or to self-
explain presented data, or to do both, improves data recall and
comprehension.

By further contributing (3) replications of our controlled study
with datasets that differ in familiarity, we find that these tech-
niques improve recall for datasets for which participants have
moderate or little prior knowledge.

We also (4) evaluate how the impact of the techniques differs
based on whether the information is presented using text or
information visualization. We find that the visualization con-
ditions benefit from predicting the data and viewing the gap
between their prediction and the observed data whereas the
text conditions do not.

Finally, we contribute (5) a characterization of the design space
of data prediction and feedback techniques for information
visualization and provide practical design recommendations.



HYPOTHESIS DEVELOPMENT
To generate hypotheses, we survey research in two main areas:
(1) studies in cognitive psychology around the role of internal
representations in information visualization comprehension,
and (2) theories and studies on self-explanation in learning.

Internal Representations of Data in Visualizations
Researchers have developed multiple models describing how
people interpret information visualizations (e.g., [30, 38, 44]).
Though often overshadowed by research on lower level per-
ceptual processes, “top-down” effects can guide interactions
(e.g., eye movements) based on prior knowledge and beliefs,
including knowledge about graphs and data analysis [30, 38,
48] and about the content of the data [7].

Studies in graph comprehension indicate that internal repre-
sentations of relevant knowledge that one already possesses
often play a critical role in reasoning with an external static
or interactive visualization [20, 31, 33, 47]. Mayer et al. [35]
compared well-designed animations to well-designed texts and
diagrams for teaching, finding that performance on retention
and transfer tests was better among the static media group that
relied on internal representations to understand how concepts
related. Similarly, Hegarty et al. [23] found that viewers who
initially engaged in mental animation of a set of static views,
then used an external animated visualization, understood the
content better than those who used only the animated visual-
ization. Other studies suggest that externalizing one’s internal
representations leads to better understanding of visualized in-
formation [15, 24, 37, 46]. For example, Stern et al. [46] found
that individuals who had to construct a line graph of presented
stock data were more accurate on transfer questions involving
a new problem with a similar structure than participants who
passively viewed a chart of the data. Constructing external
representations is believed to help individuals to translate infor-
mation between different representations, resulting in a more
nuanced understanding of the concepts [16, 46]. Building on
these results, we contribute various novel interactive elicitation
techniques for information visualization that prompt a user to
incorporate her prior knowledge in her interaction.

Self-Explanation in Learning
Self-explaining information to oneself is a constructive “meta-
cognitive” learning activity in which a person actively reflects
on the mechanism behind a given phenomena [11]. Self-
explaining has been elicited by having learners explain the
meaning of sentences [10, 11, 12], or diagrams [1], as they
study a target domain. When quality self-explanations are
generated, such as statements that link concepts from the text
using tacit knowledge or attempt to fill in gaps through in-
ferences [10], comprehension tends to be better than without
self-explanation [10, 11, 12]. A mental model repair hypothe-
sis is proposed to describe the benefits of self-explaining: by
generating inferences to fill in missing information, integrat-
ing new information with prior knowledge, and monitoring
and repairing faulty knowledge, learners who self-explain de-
velop more accurate internal representations of a concept [10].
In this hypothesis, it is assumed that learners engage more
with the process if they identify the discrepancy between their

mental model and the presented information [10]. While stu-
dents who spontaneously generate self-explanations perform
better [11, 18, 39, 40, 41], most learners tend not to natu-
rally self-explain [5, 43]. However, even simple prompts [12,
5, 43] have been found to be effective at triggering the self-
explanation process [12]. Other studies have shown that im-
mediate feedback on the accuracy of self-explanations can
prevent wrong inferences in the explanation process [14, 3,
9]. We develop and test explicit and implicit prompts for
self-explanation applied to information visualizations.

Self-explanation techniques have been widely applied in on-
line learning environments, typically to text-based learning ma-
terials [13, 14, 3, 4, 40, 25]. A handful of studies have included
a combination of diagrams and text [11, 42, 4]. However, stud-
ies that attempt to understand how self-explaining of visual
representations is different from text are rare. An exception is
Ainsworth et al. [1], who compared self-explaining across text
and diagrams in a small group (n=20). They find that learn-
ers who used diagrams performed better on a comprehension
test, generated more self-explanations, and appeared to benefit
more from self-explaining than users of texts. We conduct a
comparison of the benefits of multiple interactive elicitation
techniques, including explicit self-explanation prompting, for
data presented through information visualization versus text.

Curiosity theory describes a similar process to self-explanation.
A person’s curiosity is piqued when she perceives an infor-
mation gap between her current knowledge and the informa-
tion she is interested in [34]. Prompting people to guess is
thought to be one way to arouse curiosity by making this gap
explicit [34]. Awareness of the gap results in an increasing de-
sire to seek knowledge to fill this gap [34], and inspires people
to explore more information [29], including in crowdsourc-
ing contexts [32]. We examine whether techniques aimed at
implicitly prompt curiosity, such as by having people predict
data before they see it, can improve comprehension and recall
by enhancing their desire to see the true data.

Formulating Study Conditions & Hypotheses
Based on the previous research in psychology and education,
we devise and evaluate several elicitation techniques for infor-
mation visualization with associated hypotheses.

Study Conditions: Elicitation Techniques
Our techniques are based on three non-mutually exclusive
mechanisms for eliciting reflection on prior knowledge and its
relationship to presented data in a visualization.

1. Prompting a user to generate self-explanations of the
observed data: In a digital setting, prompting a user to type
in sentences explaining the data is an explicit way to elicit
self-explanations [4].

2. Prompting a user to predict the data before seeing it:
Asking a user to predict the data has two advantages for
prompting reflection on prior knowledge: (1) Prior work
showed that asking a user to actively construct an external
representation of her prior knowledge about data results in
a deeper understanding of the meaning of a dataset and its
visual representation [16, 46]. Predicting may also trigger self-
explanation [16]. (2) By asking the user to provide predictions



Figure 1. The study interface for experimental visual conditions.

of the data, an interface can then visualize the gap between
the user’s expectations and the observed data. Reviewing the
gap may implicitly prompt self-regulated learning, in which
the user becomes motivated to generate inferences to repair
her knowledge [36].

3. Providing the user with feedback on her prediction:
Providing direct feedback on the gap between the user’s prior
knowledge and the observed data may increase the likelihood
that a user will recognize the gap and generate inferences to
repair her knowledge [14, 3, 9].

Using these three mechanisms, we designed four elicitation
techniques and one baseline condition. The observed data
is presented using visualization in the visual conditions, and
using text in the text condition.:
• None (baseline): The user is prompted simply to examine

the observed data (Fig. 1(a)).

• Explain-Only: The user is prompted to type self-
explanations in a text box as she views the observed data
(Fig. 1(b)).

• Predict-Explain: The user is shown the observed data, but
with some of the data omitted. The user is prompted to
predict the omitted data. After her prediction, the user
is shown the observed data against her prediction. She is
prompted to type in self-explanations about the gap between
her prediction and the observed data in a text box (Fig. 1(c)).

• Predict-Only:The user is shown the observed data, but with
some of the data omitted. The user is prompted to predict
the omitted data. After her prediction, the user is shown the
observed data against her prediction (Fig. 1(d)).

• Predict-Feedback: The user is shown the observed data,
but with some of the data omitted. The user is prompted
to predict the omitted data. After her prediction, the user
is shown the observed data against her prediction. Textual
and visual feedback are presented to annotate the difference
between her prediction and the observed data to draw her
attention to the gap (Fig. 1(e)).

Hypotheses
Since explicitly prompting self-explanations improves compre-
hension of information in texts and diagrams [1, 12, 11, 10],
we expect a similar beneficial effect for data in visualizations:

H1: Participants in the Explain-Only conditions will recall
data more accurately than participants in the None condition
for visual and text modalities.

Based on the implicit prompting toward reflection by predict-
ing, we expect that:

H2: Participants in the predict conditions (Predict-Explain,
Predict-Feedback, Predict-Only) will recall data more accu-
rately than participants in the None condition for visual and
text modalities.

While reviewing their predictions and the observed data, par-
ticipants in the text conditions must actively seek and infer
the gap as opposed to the visual conditions where the gap is
visually available [1]. We therefore expect that effects of pre-
dicting will be less pronounced in the text conditions compared
to the visualization conditions:

H3: The effects of predicting using text (Predict-Explain-Text,
Predict-Only-Text) on recall will be smaller than the effects of
predicting using visualizations.

PRELIMINARY SURVEY: CHOICE OF DATASETS
To select a dataset for our main study, we conducted a pre-
liminary survey on Amazon’s Mechanical Turk (AMT). We
sought a dataset with properties amenable to our elicitation
techniques. If a user is extremely familiar with a dataset, pre-
diction or explanation may not offer benefits over her prior
knowledge. If a dataset is too unfamiliar, it may be too dif-
ficult for a user to make predictions about it. Additionally,
our interest in comparing techniques across visualization and
text modalities is best supported by a dataset that includes
both a higher level relational structure (i.e., trends, which vi-
sualizations are often best at depicting) as well as individual
data points, which can be remembered with greater numeri-
cal accuracy from text [27]. By quantitatively measuring the
familiarity of multiple datasets, the preliminary survey also



enables us to later test the robustness of our results across
datasets of varying familiarity.

Figure 2. Multivariate
data format to allow
value and trend esti-
mation.

We selected datasets with a range of
topics from the results of a scientific
experiment to the average smart phone
price from different manufacturers (all
datasets are available in the supplemen-
tary materials.) The datasets had the
same format, consisting of two categori-
cal dimensions and one continuous mea-
sure, resulting in six total data points
(Fig. 2). This format is commonly used in the social and phys-
ical sciences [8] and allows us to evaluate how well people
observe and recall the higher level patterns (e.g., trend lines)
as well as how well people observe and recall individual data
points. We formulated three measures that approximate prior
familiarity with each dataset:

Perceived familiarity: How familiar participants perceive
themselves to be with the data after seeing a short description
and a visualization with labeled axes but without data points.

Value familiarity: The absolute error of participants’ predic-
tions for each data point. We calculated the absolute difference
between the participant’s prediction of each data point and the
observed data. We normalized the values by dividing by the
maximum value on the y-axis to allow for comparison of the
value familiarity across the datasets.

Trend familiarity: The difference between participants’ pre-
dicted slopes and the true slopes for each line in the visu-
alization. We calculated the absolute difference between a
participant’s slope and the true slope for each of the three
groups in each dataset.

Figure 3. A pair of visualizations with the data omitted. Participants
were asked to choose which dataset is more familiar based on labels.

Procedure
The survey consisted of two parts. In the first part, we ex-
amined perceived familiarity by presenting participants with
15 visualization-pairs (resulting from the pairwise combina-
tions of the six datasets), one at a time in a randomized order
(Fig. 3).

The visualizations did not reveal any data; instead, participants
only saw labeled axes with a short description of each dataset.

Participants were asked to select the dataset that they were
more familiar with using a radio button. After watching a
short tutorial video on how to enter a data point in a chart, par-
ticipants were asked to predict the values of all six data points
for each of the six datasets (Fig. 4). Each dataset appeared on
a separate screen in randomized order. Each screen presented
an empty chart area with labels. Three buttons appeared to the
right of the chart labeled with each of the three groups for that
dataset (e.g., french fries, coke, shake).

Figure 4. Example of a prediction inter-
face.

The range of the
y-axis of the visual-
izations was set to [0,
1.2*max_data_value].
To input a prediction,
participants selected a
group by clicking the
button for that group,
then clicked the chart
area to set the position
of the two data points
for that group. Participants could drag the circles to adjust
their prediction for each group.

Results
We recruited 100 workers from AMT. To calculate the per-
ceived familiarity of each dataset, we summed the number of
votes per dataset from the first part of the study.

Table 1 shows the ranking of the datasets by these three mea-
sures. While perceived familiarity and value familiarity are
highly correlated (Spearman’s ρ = .84, p < .001), perceived
familiarity and trend familiarity are more weakly correlated
(Spearman’s ρ = .42, p < .001). We see evidence of this in
the dataset on median house prices, where participants’ per-
ceived familiarity is relatively low (rank 5), but they do well on
the prediction tasks (rank 1 for predicting trend). We suspect
that various factors might contribute to a difference between
perceived familiarity and prediction accuracy. In addition
to having prior knowledge specific to the dataset, heuristics
may allow participants to guess reasonably accurately because
they have some knowledge of the domain. In particular, do-
main specific knowledge (e.g., the average price of houses is
cheaper in Colorado than those in New York), and domain
general knowledge (e.g., prices tend to go up over time) may
allow participants to make reasonable guesses even when they
feel they have little expertise on a topic.

We aggregated the three familiarity rankings and sorted the
datasets by the aggregated familiarity (the order of the Ta-
ble 1). For our main study, we chose the Colorado voting
results data, since this dataset was neither clearly familiar nor
unfamiliar to participants. To ensure that recalling the data is
sufficiently challenging in our main study, we included two
visualizations of voting results, for Connecticut and Colorado.
We used the more familiar fast food calorie content dataset
and the more unfamiliar pre-diabetic experiment dataset to
later check the robustness of results from our main study in
partial replications.



Table 1. Three familiarity measures for the six datasets. The order of
rows in the table is by the mean rank across the three measures. The
number indicates the ranking of the dataset with the actual measure in
parentheses. Perceived familiarity votes are out of 500 (100 workers * 5
maximum votes per dataset).

Perceived
Familiarity

Value
Familiarity

Trend
Familiarity

Fast Food Calorie Content 1 (348) 1 (0.14) 2 (0.11)
Smartphone Price 2 (312) 2 (0.15) 3 (0.13)

Median House Price 5 (188) 3 (0.18) 1 (0.10)
Voting Result 3 (297) 4 (0.21) 4 (0.20)

National Budget 4 (283) 5 (0.26) 5 (0.25)
Pre-diabetic Experiment 6 (72) 6 (0.28) 6 (0.36)

STUDY DESIGN
Study Objectives & Experimental Conditions
To understand how different techniques for eliciting prior
knowledge with visualization impact data recall and com-
prehension, we designed a between-subjects factorial study.
Participants were assigned to a baseline condition (None) or
one of four elicitation techniques: Explain-Only, Predict-
Explain, Predict-Only, Predict-Feedback.

Additionally, to better understand the effects of the elicitation
techniques with a visualization, we varied whether a partic-
ipant interacts with (and makes predictions about) the data
using text or visualization (Text or Vis).

We crossed the elicitation techniques with modality, with the
exception of Predict-Feedback, resulting in 9 possible con-
ditions: None-Vis, Explanation-Only-Vis, Predict-Explain-
Vis, Predict-Only-Vis, Predict-Feedback-Vis, None-Text,
Explanation-Only-Text, Predict-Only-Text, Predict-Explain-
Text. We excluded a Predict-Feedback text modality treatment
due to the difficulty of generating personalized feedback based
on freeform text predictions.

Participants
A prospective power analysis was performed for sample size
determination based on the effect size and standard error of
each technique and modality in pilots using a mixed effects
model. We achieved 0.8 power under α = 0.05 with 42 partic-
ipants per condition. We then recruited 378 participants (42
per condition) from AMT, rewarding their participation with
$1.50.

Procedure
Fig. 5 shows an overview of the study procedure. The study
started with an introduction (Fig. 5(1)), in which we explained
the data domain as the percentage of voters of different eth-
nicities (Hispanic, White, Black) who voted Republican in
the 2008 presidential election, for several income brackets
and states. To eliminate possible difficulties with the interac-
tive nature of data entry, participants in the visual conditions
watched a tutorial video to learn how to set and adjust a value
in an related line chart. On the next page, participants in the
prediction conditions (Predict-Explain, Predict-Feedback, and
Predict-Only) were asked to predict the voting percentages for
one randomly selected ethnic group across two income levels
for each state (Colorado, Connecticut) in randomized order.

To ensure that participants interacted to a similar degree across
treatments, participants who were not prompted to predict
were asked to retype a paragraph about elections in the U.S.
(Explain-Only and None condition) (Fig. 5(2)).

Figure 5. Overview of the study procedure. If participants were not
asked to predict, they were asked to retype a general text on elections. If
participants were not ask to generate self-explanations, they examined
either the data or feedback depending on the condition.

On the next page, all participants examined the observed data
(Fig. 5(3)), with prompts and feedback varying by condition.
Participants in the None conditions were asked to examine the
observed data several times (Fig. 1(a)).

Participants in the Explain-Only conditions were asked to
generate and type in a few sentences of explanations to help
themselves understand the data (Fig. 1(b)).

Participants in the Predict conditions saw their predictions in a
lighter color against the observed data in the visual conditions.
In the text conditions, the textual predictions that the partic-
ipant made were shown with the observed data presented in
text.

Participants in the Predict-Explain conditions were asked to
self-explain the difference between their prediction and the
observed data (Fig. 1(c)).

Those in the Predict-Feedback condition saw accuracy feed-
back based on their predicted values (Fig. 1(e)). Feedback
contained 1) the directionality of the participant’s error (e.g.,
“Your prediction overestimated the percentage of Hispanic
voters.”), 2) verbal statements that reiterated the participant’s
prediction and the observed data (e.g., “You guessed 66%, but
the true answer is 23%”), and 3) comparative information that
indicated high-level patterns (e.g., Higher portions of white
voters vote for John McCain then hispanic voters.), if the par-
ticipant violated the pattern (e.g., “The percentage of Hispanic
voters was lower than those of White voters”).

Participants in the Predict-Only condition were asked to ex-
amine their predictions and the observed data several times
(Fig. 1(d)).

As a distractor task, all participants then completed as many
questions on a 10 question digital paper folding test as they
could in three minutes [17]. The task also served to gather in-
formation on participants spatial visualization abilities, which
have been shown to correlate with effective use of internal
representations [23, 20, 22], (Fig. 5(4)).



After completing the paper folding test, participants in all
conditions were asked to recall the percentage of voters of
different ethnicities (Fig. 5(5)). Recall interfaces for each state
were provided on separate pages and presented in reverse order
from that in which the data was examined. Participants used
an interface that matched the modality by which they viewed
the data (text or visualization).

Participants were asked to respond to demographic questions,
including age, education level, gender, and ethnicity, and were
asked about their experience with visualizations.

RESULTS

Data Preliminaries
The average time to complete the experiment was 19.4 minutes
(SD=8.4), with no differences in response time across the
conditions (F(4) = 1.073, p = .37) There were no significant
differences between participants’ demographic responses or
relevant experience across the conditions (see supplementary
materials for a detailed analysis). We excluded 3 participants
that did not specify predictions in the text conditions, and 2
participants who participated multiple times.

Analysis Approach
We used two mixed effects models implemented in R’s lme4
package to evaluate H1, H2, and H3. We used the normal
approximation to calculate p-values of fixed effects using t-
scores produced by lme4. The R code and detailed analyses
are available in the supplemental materials 1.

Dependent Variables
We considered two types of error indicating how well partici-
pants could recall the observed data. The accuracy in recalling
individual data points was measured using the absolute error,
i.e., the absolute difference between the recalled value and the
observed value. To measure accuracy in recalling the higher
level structure of datasets (e.g., trends within each group), we
calculated the trend error, i.e., the absolute difference between
the recalled and the actual slope of each line (set of values for
an ethnicity) in the visualization.

Model Specification
In each mixed effects model, we included the four elicita-
tion techniques (Explain-Only, Predict-Explain, Predict-Only,
and Predict-Feedback), modality, and the interaction terms
between modality and the techniques as fixed effects, with the
control/baseline condition as the omitted reference condition.
We included the participant id and the ethnicity group (e.g.,
Hispanic, etc.) as random effects. The spatial ability score, cal-
culated as the number of correct answers out of 10 on the paper
folding task, was included as a fixed effect. We centered the
spatial ability score by its mean so that fixed effects describe
a participant of average spatial ability. For easier interpreta-
tion, we report the intercepts for each elicitation technique
separately for visual versus text with 95% confidence intervals.
Coefficients are expressed in terms of the actual units used in
the datasets (i.e., percentage).

1https://github.com/yeaseulkim/ExplainingTheGap

Figure 6. Estimated fixed effect coefficients from analyzing absolute er-
rors for (a) visual and (b) text conditions for the voting result dataset.
The error bars indicate 95% confidence intervals. Intervals that do not
include include zero imply that we can be reasonably sure that some ef-
fect exists.

Core Results
Visual Conditions
Absolute Error: Participants who used one of the four elicita-
tion techniques recalled individual data points more accurately
than those in the None-Vis condition (Fig. 6(a)). Proceed-
ing by magnitude of effect, the Predict-Explain-Vis condi-
tion had the lowest absolute error relative to the None-Vis
condition by -4.08 (i.e., participants in the Predict-Explain-
Vis condition were, on any given recalled point out of the
12 total, more accurate at recalling the voting percentage by
4.08% out of 100% compared to the those in the None-Vis
condition: t =−4.02, p < .0001) The Predict-Feedback-Vis
condition had the next lowest effect (-3.54; t = −3.49, p <
.001), followed by the Explain-Only-Vis condition (-3.52;
t = −3.47, p < .0001), and the Predict-Only-Vis condition
(-2.30; t =−2.25, p < .05). Hence, interactive elicitation ap-
pears to be reliable way to improve absolute recall of data
presented through visualizations, even with variations in how
prior knowledge is elicited.

Participants’ scores on the spatial ability test also predicted a
lower absolute error, as we would predict from prior work indi-
cating the relationship between spatial visualization ability and
visualization comprehension [23, 20, 22]. With each additional
correct answer in the paper folding task, participants’ expected
absolute recall error decreased by 0.44 (t =−3.63, p < .001).

We observed no difference in absolute error between the four
elicitation techniques.

Trend Error: Only participants in the Predict-Explain-Vis
and the Predict-Feedback-Vis conditions had a lower trend
error compared to the None-Vis condition. Specifically, being
in the Predict-Explain-Vis condition lowered errors by -2.06
relative to the None-Vis condition (t =−2.07, p < .05), while
being in the Predict-Feedback-Vis condition lowered errors
by -2.79 relative to the None-Vis condition (t = −2.80, p <
.05). We observed no effect of the spatial ability score on
participants’ trend errors (t =−0.53, p = .596).

Comparing Effects of Techniques: Visual vs Text
Absolute Error: Overall, we observed 3.76 percentage points
(36%) more errors on average per recalled value among visual
conditions compared to text. This aligns with prior research



indicating that text is better for exact value retention than
visualization [27].

In comparing the absolute error between the text conditions,
the Explain-Only-Text condition was the only condition that
led to lower absolute errors than the None-Text condition, by
an average of -2.00 (t =−2.07, p < .05). We observed no ef-
fect from the Predict-Explain and the Predict-Only techniques
in the text modality conditions when we compared them to
the None-Text condition (Fig. 6(b)). Text presentations may
not provide the same type of natural support for prompting
implicit reflection and correction of one’s prior knowledge
compared to visualizations.

Participants with higher spatial ability scores again had a lower
absolute error on recall by 0.31 (t =−2.04, p < .05).

Trend Error: Overall, we did not observe differences in av-
erage trend errors between visual conditions and text condi-
tions. In comparing the trend error between the text conditions,
we found no effect of any of the elicitation techniques (i.e.,
Explain-Only-Text, Predict-Explain-Text, or Predict-Only-
Text) compared to the None-Text condition. We saw no appar-
ent decrease in trend error from spatial ability (t =−1.30, p =
.193).

Anchoring in the Prediction Conditions
Participants in the Predict-Only-Vis, Predict-Explain-Vis, and
Predict-Feedback-Vis conditions may have a tendency to re-
call aspects of their own prediction due to the deliberate at-
tention required to generate the prediction. We observed
a weak positive correlation between the values that partici-
pants predicted and the values that they recalled (R2 = 0.176,
intercept=−1.28, slope = 0.18) Additionally, we found that
for 75.9% of the data points from participants who were asked
to predict, their recalled value showed a bias in the same direc-
tion as their predicted value: if they underestimated the value
in the prediction phase, they tended to underestimate the value
in the recall phrase. The same pattern could be observed when
they overestimated. Hence, a slight anchoring effect appears
to be present.

Quantity and Quality of Self-Explanations
The quantity and quality of self-explanations have been shown
to affect comprehension in prior work [12, 42]. We analyzed
the correlation between self-explanation quantity and quality
and recall performance for participants in the Explain-Only
condition. As a proxy of quantity we counted each sentence as
a self-explanation (mean:3.2, range: 1-7). We tallied the total
number of self-explanations generated by a participant and
regressed the average recall error made by the participant on
the sum. We observed no effect of the number of explanations
on recall error (R2 = 0.001,F = 0.39, p < .533).

To measure the quality of each self-explanation, we devised
criteria informed by Chi’s approach to distinguish high and
low quality explanations [10]. We differentiated between
two factors that characterize the quality of self-explanations:
the level of prior knowledge involved in inference (inference
with prior knowledge, inference with no prior knowledge, no
inference), and the level of detail of the inference (high, low).

Inference without prior knowledge, High detail: “Gener-
ally, people with incomes over 75k were less likely to vote
for John McCain in 2008. Blacks who made over 75k were
slightly more likely to vote for him, but it was a very small
increase to 3% meaning not many blacks voted for McCain in
any income category.”

Inference without prior knowledge, Low detail: “Majority
of people no matter ethnicity voted for the Democrats and not
Republicans.”

Inference with prior knowledge, High detail: “There was a
slight increase in the White voting population with the higher
income bracket, I could assume that this is due to McCain’s
policies which benefit the wealthier. ”

Inference with prior knowledge, Low detail:“People are
more conservative in Colorado.”

No inference: “Each colored line is a different race. Each
point is a different income bracket.”

Two researchers coded the set of 42 explanations (Cohenś
kappa = 1). We conducted a two way factor analysis on the
average absolute error and the trend error, but observed no
effect of either quantity or quality on factors. It may be that
the difference between participants’ self-explanation quality
was smaller overall than in educational studies of spontaneous
self-explanation, perhaps due to the incentives to work quickly
on AMT. Detailed results are available in the supplemental
materials.

Replication on Low & High Familiarity Datasets
We conducted two additional partial replications of our study
to evaluate the effect of elicitation techniques on datasets that
our preliminary survey identified as more and less familiar on
average. We replicated all visual conditions.

Low Familiarity Dataset: Scientific Experiment Results
We created two visualizations depicting results from a scien-
tific experiment on the blood glucose level of various groups
of mice after antibody injection [19]. Each visualization dif-
ferentiated two amounts of time since injection (0 and 30mins,
and 60 and 120mins). Each visualization included lines for
three groups (Lean, 2H10, and control) similar to the three
groups of Hispanics, White, and Black voters in the main
study. Hence, the two visualizations replicated the structure of
the voting results data across two states.

Absolute Error: We observed a similar pattern of effects of
the techniques on decreasing absolute error as for the vot-
ing result data, with the exception of the Predict-Only-Vis
conditions (Fig. 7(a)). The Explain-Only-Vis condition had
lower errors by 1.78 (t = −3.75, p < .001), and the Predict-
Explain-Vis conditions had lower errors than the None condi-
tion by 1.27 (t =−2.62, p < .01). The Predict-Feedback-Vis
condition had lower errors than the None condition by 1.31
(t =−2.69, p< .01). Predict-Only-Vis condition had no effect
compared to the None condition (t =−1.43, p = .152).

We observed no difference in recall performance between the
Explain-Only-Vis, the Predict-Explain-Vis, and the Predict-
Feedback-Vis condition.



Trend Error: We also observed no effects of the elicitation
techniques on decreasing trend error compared to the None
condition.

Figure 7. Estimated fixed effect coefficients from analyzing absolute er-
rors for visual conditions (a) for the scientific experiment dataset, and
(b) the fast food calories dataset.

High Familiarity Dataset: Calorie Content of Fast Food
We created two visualizations using data on the calorie content
of three fast foods (Milkshake, Coke, French fries) for two
serving sizes (small, large) at McDonald’s and Burger King.

Absolute and Trend Error: Results of the mixed effect
model for absolute error (Fig. 7(b)) and trend error indicate no
differences between any conditions for the fast food dataset.
Detailed results are available in supplemental material.

We conclude from these additional partial replications that
prediction, when combined with additional mechanisms like
explicit self-explanation or feedback, can lead to lower abso-
lute error even for very unfamiliar data where prediction might
be difficult. Perhaps because the data was already too familiar,
we saw no replication of effects for any elicitation technique
on the high familiarity dataset.

DISCUSSION
Our results suggest the promise of incorporating mechanisms
for eliciting prior knowledge in visualization.

First, our work extends prior work on self-explanation by
showing that prompting users to self-explain information vi-
sualizations can improve their ability to recall specific data
points later.

Additionally, our work is the first to show that incorporating
prediction tasks, as in our Predict-Explain-Vis, Predict-Only-
Vis, Predict-Feedback-Vis also improves users’ ability to recall
specific data. We hypothesize that predicting focuses a user’s
attention on their prior knowledge, making them more likely
to attend to the gap between their prior knowledge and the
observed data when it appears. We expected that predicting
would be less effective in the text modality than in the visual
modality. In fact, we did not observe an effect of any of the pre-
diction techniques on improving recall in the text conditions.
This may be because participants in the visual conditions are
shown the gap in a visual form, reducing the deliberative effort
required to process the gap in a text format. Using a visual-
ization of the gap is likely to free up participants’ cognitive

resources in contrast to text, so that they can focus on more
meaningful activities [45] such as updating and repairing their
mental model.

Except for the Predict-Only-Vis conditions, we were able to
replicate the effect of the elicitation techniques for decreas-
ing absolute error with a less familiar dataset, the scientific
experiment results. These results suggest that prior knowledge
about a dataset is not necessarily required for a user to benefit
from prediction, explanation, and feedback techniques. The
fact that we were not able to replicate the effects in the Predict-
Only condition may indicate that when familiarity is lower, a
user needs additional reinforcement to recognize the gap, such
as being prompted to explain or being given visual feedback
on the gap.

We could not replicate the effects of the elicitation techniques
on the high prior familiarity dataset, the calorie content of fast
food. One possible reason that we did not see an effect here is
that participants were already relatively accurate in estimating
the values, such that the initial ‘gap’ is too small to see much
positive impact from the elicitation techniques.

We observed that the Predict-Feedback-Vis and Predict-
Explain-Vis techniques decreased the trend error in recalling
the visualized trends for the voting results data. However, we
did not see similar improvements of trend errors with either
of the other datasets. Varying graphical complexity may be
one reason for this discrepancy: in the voting results data, two
of the lines intersect (thus adding complexity), whereas in the
other two datasets all three lines have similar, non-intersecting
trends.

We believe that prompting predictions and providing feedback,
which we found to reduce both the absolute and relative re-
call error, would work well when presenting visualizations in
practice. Compared to explicitly prompting a user to provide
self-explanations, first prompting a user to make predictions is
likely to engage a user’s curiosity. Once the user has “invested”
attention by predicting, they may be more open to feedback
that can further direct their attention to needed adjustments in
their prior knowledge.

Though we asked participants in the predict conditions to
predict only select data points, we observed a decrease in
recall error across all data points. In the Predict-Explain-Vis
conditions, we see evidence that participants are generating
explanations associated with all three ethnic groups despite
being prompted to explain only the difference between the
predicted group and observed data. For example, participants
wrote in the comments:

“I really overestimated the numbers of black people. I
expected more of them to vote than the Hispanics.”

“I may have underestimated the population of Hispanics
(and Blacks) in Colorado. I assumed both were minorities
who held liberal viewpoints, since traditionally minorities
tend to prefer Democratic candidates.”

This suggests that a designer need not require a user to predict
every data point in the visualization to engage users with the
entire dataset.



Figure 8. Possible tasks.

Design Space for Graphical Prediction & Feedback
Our study shows the benefits of eliciting users’ prior knowl-
edge, such as their expectations of data, and prompting them
to reflect on how their knowledge relates to the data. How-
ever, the design space for applying graphical prediction and
feedback techniques to information visualization remains rel-
atively unexplored. In the following, we characterize key
considerations in applying these techniques to visualizations.

We informed our elaboration of the design space through sev-
eral forms of evidence: observations from our studies; exam-
ples in the media, primarily from the New York Times [2]; and
our own development of prototypes applying the techniques
to visualizations like bar charts and line charts.

Based on these experiences, we differentiate three considera-
tions that influence the effectiveness of graphical prediction
and feedback applications: the prediction task and graphical
elicitation technique (for what tasks and in what ways can
the user express her prior knowledge?), the contextualization
mechanism (how does the interface provide clues to constrain
the user’s prediction?), and the feedback technique (how does
the interface draw the user’s attention to the gap between her
predictions and the observed data?).

Prediction Task & Elicitation Technique
A first question in designing a visualization that elicits predic-
tions is “What should the user predict?”. A visualization can
elicit value predictions for quantitative or nominal (categori-
cal) variables, or the outcome of a model or analysis.

Direct manipulation is a natural way to implement the first
one, value prediction. For example, a user might click to add a
mark, or drag a mark from an axis to set or update its position
in a 2D plot like a scatter plot. Other marks require different
interactions: a user might drag a bar to set its height or click
to position the top of the bar in a bar chart, and use a smooth
dragging operations to position a line in a line chart.

Data encoded in the visual attributes of marks, such as color
or shape may also be predicted. For example, nominal data
(categories) might be encoded by the color hue of marks in a
scatter plot. Predicting categorical membership can be instru-
mented with interactions like brushing. For example, some
points may remain uncolored in a scatter plot where color
encodes the categorical membership of data. The designer can
have a user select a color from an interactive legend, and drag

across points to assign that category. In The New York Times’
elicitation of users’ predictions for the 2014 senate election,
a user was able to cycle through different binned probability
levels for the voting percentage for each party by repeatedly
clicking on a state in the map [28].

Similar to categorical membership, the designer of a visual-
ization may ask a user to predict clusters in a scatterplot or
network diagram. For example, given an interactive network
diagram, the user can draw a contour around the nodes or use
brushing interactions similar to those described for categorical
membership to designate clusters of related nodes. Predicting
connectivity could also be applied to support edge prediction
in a network diagram.

Alternatively, the designer can ask the user to visualize her ex-
pectations for the outcome of more complex analyses applied
to raw data. For example, graphical prediction techniques
could be used to elicit predictions on multivariate correla-
tions, uncertainty, or other results attained through statistical
modeling. For example, the New York Times ‘You Draw It’
interactive prompts the user to predict a regression line repre-
senting the relationship between parents’ income percentile
and percent of children who attended college [2]. To facil-
itate understanding of uncertainty in data, a user might be
prompted to predict a confidence interval or region given a 2D
presentation of bars, points, or lines denoting sample statistics.

Regardless of what is predicted, the directness of the predic-
tion interaction and degrees of freedom provided to the user
by the interface are important design considerations. Freeform
interactions can be used to allow the user greater flexibility in
drawing, such as providing a high degree of resolution (i.e.,
space of possible fits) to users drawing regression lines in 2D
visualizations. More constrained forms of interaction can be
realized through snapping functions (e.g., snapping a predicted
regression line to the nearest grid point). Similarly, a designer
may choose to only allow the user to manipulate certain pa-
rameters of components (e.g., drag a curve or slider to change
line curvature, drag the edge of a circle to increase size while
maintaining shape). While more constrained interactions may
serve to reduce error and focus user’s attention on key param-
eters (e.g., slope or magnitude alone), they are likely to add
abstraction. Our own experimentation with interactive proto-
types suggest that many users enjoy the novelty of using an
interactive visualization interface to draw with few constraints.



Contextualization Mechanism
Contextualization mechanisms can be used to guide the user’s
prediction as they form a guess. For example, the amount of
effort required for the user to make a guess can differ based
on the number of reference marks (e.g., dots, bars, lines) that
the visualization initially presents. In our study, we presented
two of the three ethnic groups by default, which provided cues
to guide users’ predictions of the remaining group. How much
data to reveal through reference marks can be decided based
on how familiar users are expected to be with the dataset (less
familiar=more reference marks). Or, the reference marks can
be selected dynamically through personalization. For example,
for datasets that depict regional data, identifying and initially
presenting marks depicting the user’s region based on their
IP address may increase engagement while providing useful
context for the user.

Prediction hints provide more direct guidance, either through
text or visual annotation, on where a user’s prediction should
be made, helping educate users about the meaning of the
encodings. As the New York Times’ visualization “You Draw
it” [2] demonstrates, one or more data points can be presented
as a hint that the user’s prediction line should pass through.

Designers should consider the scale of the x and y-axes in 2D
charts. In piloting our preliminary study for choosing a dataset,
we observed that users’ predictions were quite sensitive to the
axis range. When we presented the full 0-100% percentage
range for percentage variables (e.g., the percentage of the
U.S national budget of health care), users’ estimates showed
a bias toward the center in the plotting range. This effect
was lessened when we trimmed the axis range based on the
maximum value of the dataset, suggesting that users implicitly
view the axis range as a clue to the data scale.

Feedback Technique
After a user draws her prediction, feedback on how the user’s
prediction compares to the observed data can help prompt
reflection on prior knowledge.

For example, personalized feedback can provide information
on the accuracy of a prediction, as we provided in our study.
Feedback may take the form of aggregated, quantified accuracy
information (e.g., “Overall, you were 80% right in guessing
the amount of CO2 emission in U.S") or information on the
directionality of biases (e.g., “You over-estimated the overall
trend."). Feedback may also occur at a more granular level,
encouraging the user to adjust her expectations of individual
data points: “Your guess on year 2001 was 6 points off; a little
higher and you would be correct."

As users’ predictions are collected, social feedback may serve
to further engage users to think about the data and their own
expectations. However, social feedback may also overshadow
user’s own interpretations; hence social feedback might be
withheld until after the user has provided their own predic-
tion [26] The interface can prompt social comparisons by
visualizing other users’ predictions alongside the user’s.

General design considerations affecting feedback include how
specific and in what modality feedback is presented (e.g.,
visual, text, etc.). Based on our study finding that textual

presentations are less effective for drawing attention to the
gap, we except visual feedback or a combination of visual and
text feedback to be more powerful. Animating feedback, such
as by dynamically moving marks added by the user to their
true positions, or adding textual feedback to prediction errors
point by point, may be particularly effective for drawing a
user’s attention to the gap.

Limitations and Future Work
Our study focused on data with a particular structure, chosen
to allow us to examine effects for both absolute data values
and trends. We also deliberately chose to test on two sets
of visualization with 12 data points to ensure that the recall
task was challenging. Future work should evaluate the same
techniques applied to other datasets with varying formats and
sizes. In our study, all predict conditions predicted one group
(e.g., ethnicity) out of three. We did not systematically vary
the contextualization mechanism (e.g., number of reference
marks provided). However, we suspect that the effects of
the techniques can be increased or decreased by adding or
removing forms of context.

Elicitation techniques may provide an engaging way to help-
ing novices to learn about data analysis and statistics. Our
future work will test whether people are more likely to interact
with the interface longer or in more engaged manner, if they
prompted to predict and see feedback [32].

Finally, eliciting users’ predictions of data opens the possibility
for more sophisticated forms of modeling of users’ evolving
mental conceptions as they use an interactive visualization. As
the interface maintains a model of the user’s current knowl-
edge, dynamic suggestions can be provided on what content to
view next, or on how to correct errors in mental conceptions
before continuing to explore data. Developing natural and
effective elicitation interfaces and studying how elicitation
and feedback can be incorporated into existing visual analysis
pipelines are important tasks for future work.

CONCLUSION
Our work began by asking, “What if visualizations integrated
users’ prior knowledge about the dataset?” Informed by prior
work in cognitive and educational psychology, we developed
multiple novel elicitation techniques for incorporating users’
prior knowledge in visualization interaction. We tested the
effects of these techniques, including eliciting users’ predic-
tions of data, presenting personalized feedback on predictions,
and explicitly prompting self-explanations with a visualization.
We observed that providing opportunities for users to interact
with their prior knowledge improves recall of data values, and
is more powerful when used with visualization than with text.
Our findings pave the way for a new paradigm of interactive
visualization that enables users to interact with their internal
representations to deepen their understanding of data.
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