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ABSTRACT

Tukey emphasized decades ago that taking exploratory findings as
confirmatory is “destructively foolish”. We reframe recent con-
versations about the reliability of results from exploratory visual
analytics—such as the multiple comparisons problem—in terms of
Gelman and Loken’s garden of forking paths to lay out a design
space for addressing the forking paths problem in visual analytics.
This design space encompasses existing approaches to address the
forking paths problem (multiple comparison correction) as well as
solutions that have not been applied to exploratory visual analytics
(regularization). We also discuss how perceptual bias correction
techniques may be used to correct biases induced in analysts’ under-
standing of their data due to the forking paths problem, and outline
how this problem can be cast as a threat to validity within Munzner’s
Nested Model of visualization design. Finally, we suggest paper
review guidelines to encourage reviewers to consider the forking
paths problem when evaluating future designs of visual analytics
tools.

Index Terms: Human-centered computing—Visualization—
Visualization design and evaluation methods

1 INTRODUCTION

In this garden of forking paths, whatever route you take
seems predetermined, but that’s because the choices are
done implicitly.

— Gelman and Loken, 2013 [9]

The replication crisis in scientific fields like psychology and
medicine is due in part to researchers’ failure to distinguish between
exploratory and confirmatory analyses. In theory, confirmatory
analyses are those specified before looking at the data; any analyses
that are not pre-specified which are carried out after an analysts see
the data are exploratory [29]. This distinction is blurred in practice:
A common practice in psychology, for example, has been to
conduct many exploratory analyses and publish a small subset of
them as if they were confirmatory [20]: e.g., to hunt around in
experimental results for significant p values, and then to publish
only those analyses that are significant. Gelman and Loken liken
this to wandering a garden of forking paths [9]: many paths through
the garden (analyses) are tried, but only the final, successful path is
reported. This practice has been known for years—theoretically—to
lead to problems like overfitting [2], multiple comparison problems
such as inflated false discovery rates [3], or publication bias
(inflated effect sizes) [19]. Indeed, even as he introduced the term
exploratory data analysis and advocated for its increased adoption,

*e-mail: xpu@umich.edu
†e-mail:mjskay@umich.edu

Tukey emphasized decades ago that taking exploratory findings as
confirmatory is “destructively foolish” [28].

The recent replication crisis has been precipitated by empiri-
cal evidence that theoretical issues predicted by the forking paths
problem have actually appeared in the literature. For example, the
Open Science Collaboration conducted 100 replications of different
psychology studies; the effect sizes in the replications showed “sub-
stantial decline” from the original studies—i.e., publication bias [25].
Well-known results in psychology have failed to be independently
replicated—e.g., a meta-analysis of 32 independent, pre-registered
replications of ego depletion found an effect size that is close to or
equal to 0.1 The once-theoretical warning that blurring the lines
between exploratory and confirmatory analyses results in incorrect
conclusions has become a practical reality.

We believe that the practice of wandering the garden of forking
paths is typically neither malicious2 nor even the analysts’ fault:
to our knowledge, data analysis tools rarely make any distinction
between exploratory or confirmatory phases of analysis, nor any
distinction between the reliability of conclusions drawn from either
phase of analysis. It is necessary—as builders of visual analytics
tools—that we confront how existing tool design has contributed to
the development of the replication crisis and how better tool design
may help to mitigate the crisis.

Indeed, the forking paths problem is not only present in visual
analytics tools, it may even be made worse by them. Systems such as
TimeSearcher [12] encourage users to rapidly explore different paths
in the garden, slicing the dataset into possibly hundreds of different
queries—representing different possible estimates or hypotheses—
in a matter of seconds. Reda et al. [26], in a think-aloud study of
an expert analyst’s workflow with an interactive visualization tool,
documented how the expert continually generated and tested hy-
potheses while exploring a real-world dataset. An analyst’s freedom
to explore can lead to high rates of false discoveries, as Zgraggen
et al. showed with participants on synthetic data [33]. From a user-
centered design perspective, it is not enough to simply build tools
and hope that the user will handle those tools correctly. We must
explicitly design visual analytics tools and workflows to support
reliable inferences by mitigating the forking paths problem.

As the main contribution of this paper, we lay out a design space
for solutions to the forking paths problem in visual analytics. The
goal of our design space is to enable visual analytics tools to be con-
structed such that they produce more reliable findings. This design
space encompasses existing approaches to addressing the forking
paths problem—e.g., multiple comparison correction [33, 34]. To
expand the design space, we draw a parallel between visual analytics
and statistical modeling and machine learning and call attention
to solutions that have not been explored, such as regularization
or the incorporation of prior knowledge. We also draw a parallel

1http://curatescience.org/collections/ego-depletion.html
2There is likely some small proportion of bad actors, but we do not

believe they are the majority—this is why, like Gelman and Loken [9], we
prefer not to use the term p-hacking.
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to perceptual bias correction in visualization to suggest that such
techniques may be useful in correcting biases induced in analysts’
understanding of their data due to the forking paths problem. While
we primarily focus on describing the design space, to help designers
of visual analytics tools explicitly account for the forking paths prob-
lem, we also outline how it can be cast as a threat to validity within
Munzner’s Nested Model of visualization design [21], yielding sug-
gestions for approaches to evaluating the extent of the problem in a
new design. Finally, we suggest paper review guidelines to encour-
age reviewers to consider the forking paths problem when evaluating
future designs of visual analytics tools.

2 BACKGROUND

2.1 Making inferences and predictions in data explo-
ration

Depending on their goal, an analyst might wish to perform two kinds
of tasks in visual analytics systems: non-generalization tasks and
generalization tasks.

Non-generalization tasks are those for which an analyst may wish
to retrieve information from a dataset without generalizing findings
to a population; a common example is performing a search. For
example, a system like HomeFinder [31] helps the user find the ideal
home in a given city. The system helps the user filter housing results
based on their preferences. The user is unlikely to use it to make
inferences about the broader “population” of houses—they simply
want to find particular houses that match their preferences. Zhao et
al. [34] viewed such visualizations as being designed for descriptive
statistics.

Generalization tasks are those in which the analyst may want
to make statistical generalizations from their data: for example,
making inferences about a population or predictions about future
results. This may include myriad systems that allow analysts to slice
data by different variables to look for interesting patterns, particu-
larly if the eventual goal is to fit a model to explain the data or to
make predictions from it. Zhao, Zgraggen, and Kraska [33, 34] have
framed such tasks in terms of Null Hypothesis Significance Testing
(NHST), where the goal of a generalization task is to formulate and
test hypotheses about a population. We attempt to adopt a wider
view: that generalization tasks are any tasks in which the analyst
wishes to develop or evaluate generalizable hypotheses, estimates,
predictions, or understanding about a dataset, in any statistical frame-
work (frequentist, Bayesian, or otherwise). This includes goals like
making estimates about population parameters (instead of statistical
tests), or making predictions about future data. All of these tasks are
potentially vulnerable to the forking paths problem.

2.2 The forking paths problem in visual analytics
Based on the view that visual exploration of a dataset involves a
continual process of formulating and testing hypotheses, the visual-
ization community voiced concerns about the multiple comparisons
problem in visual analytics systems [30, 33, 34]. From this perspec-
tive, to address the multiple comparisons problem is to correctly
control false discovery rates. Zgraggen et al. [33] substantiated con-
cerns about multiple comparisons in a study that allowed participants
to explore synthetic datasets and generate insights without statistical
testing, correction, or validation. Those exploratory insights, com-
pared to the ground truth labels, had a low accuracy of 0.375±0.297
and a high false discovery rate of 0.738±0.296. It was only with
confirmatory hypothesis testing and validation on a test set that the
performance metrics improved. To obtain a roughly nominal FDR,
Zgraggen et al. suggested to use the visual comparisons users made
to correct generated insights after the exploration phase.

Hullman and Heer [14], in critiquing that work, suggested mul-
tiple alternative framings to the multiple comparisons problem, in-
cluding a process of an analyst familiarizing themselves with the
data, looking at the problem from a Bayesian perspective (allowing

the incorporation of prior knowledge into the analysis process), or
even a process where the analyst may just make observations to get
familiarized with the data.

We define the forking paths problem as unaddressed flexibility
in data analysis that leads to unreliable conclusions. This flexi-
bility can any number of things, for example analyst decisions made
contingent on data, unrestrained freedom to tune parameters in a
model, or even the use of a flexible model prone to overfitting (e.g.,
ordinary least squares linear regression with the same number of pa-
rameters as observations [27]). In the NHST framework, the forking
paths problem often manifests as a multiple comparison problem:
the flexibility to conduct many statistical tests without accounting
for the higher false discovery rate.

Our definition of the forking paths problem subsumes the multiple
comparisons problem, accommodating more than just the frequentist
NHST framework. For example, if an analyst were working in an
estimation framework (such as Cumming’s New Statistics [6] or
Bayesian estimation [17]), the forking paths problem might manifest
as an overfit model that leads to high out-of-sample RMSE. Such
an analyst may care more about RMSE than FDR; indeed, using
multiple comparison corrections would be inappropriate for this
analyst’s needs as multiple comparison corrections will not improve
out-of-sample RMSE. Instead, regularization could be used (see
Section 3.1.3).

In some ways, the forking paths problem then becomes a ques-
tion of how analysts update their mental model of the data as they
explore it using a visualization tool; we liken this to the process of
statistical model building and refinement in Figure 1.3. As one way
to explain why analysts might be susceptible to the forking paths
problem in visual analytics, we look to Wall et al.’s [30] metrics
for measuring cognitive biases in visual analytics. These biases
provide one reason that might cause analysts to be susceptible to the
forking paths problem. For instance, the oversensitivity to consis-
tency bias manifests as an analyst focusing only on data that seem
to support their all-encompassing hypothesis and ignoring data that
does not corroborate their hypothesis (even if present). With such
biased exploration, the analyst is likely to overfit to their sliced data
and generate exploratory conclusions that are unlikely to generalize.
From this perspective, an analyst engaged in data exploration is
building an explanation of the data (possibly hypotheses, or more
generally some kind of mental model of the data), and cognitive
biases may lead them to explore only subsets of the data, leading to
biased inferences. In the end, the analyst considers only their final
mental model of the data and the path that got them there, not other
possible paths or models they might have considered along the way.

3 A FORKING PATHS-AWARE DESIGN SPACE

We consider two aspects of how to design visual analytics systems to
mitigate the forking paths problem: (1) how to assess and/or correct
for the forking paths problem statistically, and (2) how to integrate
such assessments or corrections into the visualization. These two
aspects are drawn as the two dimensions in the design space shown
in Figure 2. By explicating the approaches that previous research
has used, we highlight areas of the design space that are currently
underexplored, such as the use of regularization, or the incorporation
of corrections directly into the visual presentation of the data.

3.1 Assessment/correction type

The vertical axis in Figure 2 shows the assessment/correction type
dimension. This dimension is categorical, so the direction of it
does not carry meaning. The vast majority of existing visualization
systems have no correction for the forking paths problem. Recently,
a small literature has developed around the multiple comparisons
approach to addressing the problem. In this design dimension, we
also want to propose the use of regularization (or relatedly, Bayesian
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Figure 1: An illustration of how exploratory visual analytics might fit into a statistical modelling process, and how it might be improved via the
incorporation of techniques to mitigate the forking paths problem by treating it as a statistical modelling process.

approaches) as alternatives that may be more applicable to some
analysts’ tasks.

3.1.1 No assessment or correction

If a visual analytics system does nothing to assess or correct for the
forking paths problem, it falls into the no assessment/correction cat-
egory. The vast majority of existing visual analytics systems fall into
this category. An exemplary of this literature, TimeSearcher [12]
allows an analyst to rapidly explore many different views of a set of
time series without any statistical corrections from the system. This
system is explicitly designed for generalization tasks—for exam-
ple, helping stock brokers make predictions—thus it is vulnerable
to the forking paths problem. Indeed, in the video describing the
system (https://youtu.be/VWx1TMcrb74), the authors demon-
strate rapid testing of many possible associations in an iterative,
interactive exploration of the data—without any consideration of
the forking paths problem—as an example of the use of the system.
This is emblematic of the lack of consideration typically paid to this
problem in the literature.

3.1.2 Multiple comparison corrections

One way of conceptualizing the garden of forking paths is as a mul-
tiple comparison problem. This is particularly appropriate if the
goal of the analysis is ultimately hypothesis testing. From the Null
Hypothesis Significance Testing (NHST) perspective, one goal in
statistical analysis is to control the false discovery rate (the propor-
tion of null hypotheses incorrectly rejected). By treating interactive
visualization as a process of iterative hypothesis testing, Zgraggen,
Zhao, and Kraska [33,34] account for the forking path problem using
multiple comparison corrections. Zgraggen et al. [33] showed that a
“mixing of exploratory and confirmatory testing” could achieve a sim-
ilar false discovery rate (FDR) as validating on a test set. They treated
the analyst’s “implicit insights” during exploration as hypothesis
testing and used the Benjamini and Hochberg multiple comparison
correction procedure. Alternatively, Zhao et al. [34] use an approach
based on α-investing, which keeps a budget to restrain the analyst’s
exploration and controls the marginal FDR (Figure 4-left).

https://youtu.be/VWx1TMcrb74
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Figure 2: A design space for addressing the forking paths problem in exploratory visual analytics. The assessment/correction type axis is
categorical, giving different ways of assessing or correcting for problems induced by the garden of forking paths. The visual integration axis
indicates the level of salience of corrections within the visualization, or even (at the extreme) the presence of data transformations directly
modifying raw data.

3.1.3 Regularization

Multiple comparison correction is appropriate if the analyst is work-
ing within a frequentist hypothesis testing framework, but may not
match the analysts’ goals if they are not interested in hypothesis
testing. Analysts interested in estimation or prediction, for example,
may be more interested in keeping estimation or prediction error low.
Depending on the task or statistical framework, prediction errors
can be measured using out-of-sample root-mean squared error or
out-of-sample KL-divergence between the population distribution
and the posterior predictive distribution [32], among others. An
approach commonly adopted in statistics and machine learning for
addressing the forking paths problem and reducing overfitting (and
therefore improving out-of-sample error) is regularization. This use
of regularization in visual analytics has not, to our knowledge, been
explored.

Conceptually, one consequence of the forking paths problem is
overfitting, meaning that the model or the analyst learns too much
about incidental, irregular features of the sample at hand instead of
learning about regular features that generalize to the population [18].
Thus, to regularize is to control the complexity of the model (or
perhaps, the analysts’ understanding of the data) in ways such that
the model (the analysts’ understanding) generalizes better.

In this design dimension, we first review different regularization
techniques in machine learning and statistics, and then we discuss
how visual analytics can adopt regularization.

In Bayesian statistics, regularization can take the form of regu-
larizing priors, also called skeptical or weakly informed priors [18].

Such priors are typically centered on some conservative (a priori) pa-
rameter value, e.g. 0 in the case of coefficients in a linear regression.
Such a prior will shrink coefficients towards 0. The less data there
is, the more coefficients are shrunk towards 0; in this way, irregular
features that have little evidence for their presence are discounted in
the model.

In a similar vein, Gelman et al. looked at the multiple comparison
problem in terms of a hierarchical Bayesian model (also known as
a random effects model), suggesting that from this perspective, we
“usually don’t have to worry about multiple comparisons” [8]. The
partial pooling in hierarchical models is a form of regularization,
shrinking estimates of different group means towards the global
mean (see Figure 3). When the analysis task is estimation and not
hypothesis testing, this approach is likely more applicable.

Regularization is also commonly used in machine learning to
reduce overfitting. For instance, by adding a penalty term that
depends on the characteristics of the parameters, regularization im-
poses model simplicity [23]. It is common in machine learning to
discuss the resulting bias-variance tradeoff [11]: unbiased, unregu-
larized estimates (such as those produced by ordinary least squares
regression) will have higher out-of-sample error than regularized
estimates (such as those produced by ridge regression [13]), which
trade a little increase in bias for a greater decrease in variance, re-
sulting in lower overall error [23].

Figure 1 shows the parallel we imagine between statis-
tics/machine learning and an analyst’s workflow during exploratory
visualization, and how we imagine exploratory visualization fitting
into a larger statistical workflow. We liken exploratory visual an-
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Figure 3: Some possible combinations of different corrections for the forking paths problem with different annotation or data transformation
approaches from our design space. Because only two groups are shown for space reasons, the effects of multiple comparison correction and
regularization appear exaggerated in this example (the effect of those corrections applied to only two groups would be small).

alytics to exploratory data analysis, where rather than updating a
statistical model the analyst is updating their mental model of the
data. From this perspective, it is possible to imagine how statistical
techniques—like regularization, multiple comparison correction, or
validation—can fit into the visual analytics pipeline.

3.1.4 Eliciting priors

The Bayesian perspective offers a way to control regularization based
on an analyst’s prior knowledge. This is complementary to Hullman
and Heer’s call to solicit prior knowledge from analysts to help
address the multiple comparison problem in visual analytics [14]
(recast here as the forking paths problem). There is an extensive
body of literature on expert prior elicitation [24]; recently-developed
graphical approaches for eliciting priors from laypeople [10] might
be particularly appropriate for integration into a visualization system.

3.1.5 Cognitive bias

Wall et al. [30] (Table 1 in that paper) outline several cognitive biases
that analysts may be susceptible to when using visual analytics sys-
tems: the vividness criterion (e.g., relying more on specific/personal
information than abstract information), absence of evidence (e.g.,
ignoring significant information that may be filtered from the current
view), oversensitivity to consistency (e.g., ignoring data that does not
support a broader model), coping with evidence of uncertain accu-
racy (e.g., fully accepting or rejecting evidence without considering
for uncertainty), persistence of impressions based on discredited
evidence (e.g., continuing to believe a hypothesis even after finding
evidence against it).

Many of these biases dovetail with the forking paths problem:
the vividness criterion, for example, might lead an analyst to pay
undue attention to certain data, building a mental model that overfits
to the particulars of a sample but generalizes poorly. Analysts may
also be subject to problems of persistence of impressions based on
discredited evidence if during some portion of exploratory analysis
they come up with an interest—but incorrect—model or hypothesis,
they may be slow to abandon it in the face of additional evidence
later in exploration. Or worse, they may resist abandoning a model
that was discovered during exploratory analysis but refuted during
confirmatory analysis.

Wall et al. [30] describe a system that tracks how much an analyst
interacts with different parts of a dataset and attempts to assess
whether the analyst may be falling victim to some of the above
biases. For example, they surface data point coverage and data point
distribution metrics, which indicate if the analyst has interacted
with an appropriately sized subset of the data (given how many
interactions they have performed) and whether the distribution of
those interactions are spread uniformly across the dataset (they also
apply metrics of coverage and distribution to other aspects of a
dataset, such as its attributes—i.e., variables). These metrics may
help identify that an analyst has disproportionately explored one
subset of the data, making them potentially subject to cognitive
biases like the vividness criterion (if they place greater weight on
data seen in more detail) or the absence of evidence bias (if they
filter to a particular subset of the data and ignore the rest). Their
system design surfaces biases to the user as linked views indicating
the magnitude of each bias metric (data point coverage, data point
distribution, etc), leaving what to do about it up to the analyst (Figure
4-right).

3.1.6 Validation

While approaches like regularization and multiple comparison cor-
rection are attempts to adjust models or estimates to correct for the
forking paths problem, validation is one way to assess the extent
to which it is a problem. Validation measures how well a statistical
model generalizes—for example, by assessing how well the model
is expected to perform on new data using metrics relevant to the
analysts’ estimation or prediction tasks (e.g., accuracy, precision,
recall, root-mean-squared error, etc). Simply assessing model perfor-
mance on a training set will lead to biased estimates of performance,
because the model will have fit to some regular and irregular fea-
tures of the sample at hand, but cannot distinguish between them.
Depending on whether the model runs on a separate test set or not,
the validation is considered either internal or external validation [15].
Internal validation, considered “a good first step” [15], can include
cross-validation and bootstrap sampling. Using hold-out sets is a
common way to do external validation.

In visual analytics, Zgraggen et al. [33] used a synthetic test set
to validate insights that the participants discovered from exploration.
For real-world data, a hold-out test set may not be easy to obtain.
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Figure 4: Two examples of separate views in visual integration of
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from the data view in each system. Left: the risk gauge simplified from
Zhao et al. [34] that shows the analyst’s α-investing budget and all
hypotheses tested so far. Right: Wall et al.’s bar visualization shows
assessment of possible biases in a user’s interaction patterns that
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dataset [30].

Hence, one limitation to external validation is that this method
“wastes” data that could have been used for model training.

One could imagine more explicitly incorporating the validation
of an analyst’s mental model of the data into the exploratory visual
analytics process. For example, Hullman and Heer [14] propose
that incorporating explicit user interfaces to elicit predictions from
an analyst to help them refine and update their mental model of
the data; Kim et al. [16] have found approaches like this to im-
prove comprehension and recall of data. Perhaps such an approach
could be adopted with hold-out sets and integrated directly into the
exploratory analysis process.

3.2 Visual integration
In our design space in Figure 2, the x-axis indicates how integrated
the assessment or correction of forking paths problems are into the
visualization itself. This visual integration dimension is ordered by
the saliency or extent of integration of the correction; from the least
salient/integrated on the left to the most salient/integrated on the
right:

1. None: The system does not display any information about
forking path problems.

2. Correction/assessment after the fact: The system follows
the analyst’s interaction, assessing the problem during inter-
action without providing any online feedback. Any correc-
tion is done only after the end of exploration, e.g., in a later
model-fitting phase. For instance, one could imagine adapting
an approach like that in Zgraggen et al.’s [33] study into a
real analytics system by tracking users’ interactions during
exploratory analysis and then deriving a multiple comparison
correction to be applied to models the users fit in a subsequent
model-fitting phase.

3. Separate view: The interface displays correction information
separate from the data visualization, e.g. as a view shown
simultaneously (but not annotated directly on the visualiza-
tion containing the data). Examples include Zhao et al.’s risk

gauge [34] and Wall et al.’s [30] the bias metrics bar visualiza-
tion. Figure 4 shows Zhao et al. and Wall et al.’s interfaces.

4. Annotation: The visualization of the data includes annotations
that incorporate corrections for the forking paths problem. For
example, for multiple comparisons corrections, confidence
intervals become wider. For regularization, estimates may
shrink closer to the global mean. (Figure 3.1, 3.2)

5. Data transformation: The data in the visualization is trans-
formed to reflect the correction. Either in addition to or instead
of using annotation to correct for forking paths problems, one
could modify the data in the visualization such that an un-
corrected inference on the visualized data is equivalent to a
corrected inference on the original data. For example, one
could shift sample data to have the same mean as a regularized
estimate, or increase the variance of the data to have the same
standard error implied by a multiple comparison-corrected
estimate (Figure 3.3, 3.4). To our knowledge, such an ap-
proach has not been studied for application to the forking paths
problem in visual analytics.

3.2.1 Transparency of annotation and data transformation
The annotation and data transformation categories may also vary
in whether or not the correction is transparent to the user. With an
opaque visual correction, the correction is applied but not clearly
annotated as having been applied—e.g., a multiple comparison cor-
rection might be applied opaquely simply by widening the corre-
sponding interval, and a data transformation by showing only the
transformed data (Figure 3.2, 3.4). By contrast, a transparent vi-
sual correction would call attention to the fact that it has been
applied—e.g., by showing both the small (uncorrected) and large
(corrected) interval, or by showing the effect of a data transformation
(Figure 3.1, 3.3).

3.2.2 Motivation for annotation and data visualization
We have several motivations for advocating for the use of annota-
tion and/or data transformation to address the forking path problem.
First, the use of direct annotation follows from well-established
principles of effective visualization design, such as Eyes Beat Mem-
ory [22]: relying on users coordinating with views outside of the data
(as in separate view designs) makes it less likely that they will take
advantage of the provided assessments or corrections. Corrections
should be visually salient and in close proximity to the relevant data
in order to expect that they will be used.

Second, our proposal to explore data transformation approaches,
while perhaps somewhat extreme and potentially controversial,
draws inspiration from approaches used to correct perceptual bi-
ases. As Correll and Gleicher argue, since people have perceptual
bias, the “correct” visualization may not always lead to “correct”
knowledge or decisions [4]. To address perceptual biases, many
techniques have been developed, from adjusting the area of sym-
bols [7] to suppressing color range to reflect uncertainty [5]. Forking
path annotation and data transformation corrections can act in a
similar vein, modifying annotations and/or data to correct inference
that may result from the exploration of the garden of forking paths.

Third, by putting these corrections front-and-center during the
exploratory data analysis phase, we aim to prevent erroneous infer-
ences before they are made: an analyst might make better decisions
because the corrected visualizations stop them from discovering
interesting (yet false) findings in the first place.

3.2.3 Feasibility of online annotation and data transformation
We believe that, in principle, a system can perform annotation and
transformation online. For example, a system might track interac-
tions in real time, and attempt to infer what aspects of the data the
analyst is interested in (perhaps using Markov models, as in [30]).
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Figure 5: Illustration of how The forking paths problem suggests threats to validity and possible evaluations at the second and third levels of
Munzner’s Nested Model of Visualization Design [21].

Since an existing design [34] already conducts corrections under the
hood as the analyst interacts with data, we suggest the system reflect
those corrections directly with annotation and transformation in real
time.

We do anticipate that modifying annotations and transforming
data can cause problems. These modifications could confuse the an-
alyst or undermine the analyst’s trust in the system. Suppose that the
analyst filters to a subset of the data and performs a visual compari-
son. If the analytics system pools the data and annotation without
explanation, the bewildered analyst might not know their analysis
is being regularized. Even worse, without care in the design, an
analyst might find that estimates change when they revisit them later
if they have conducted more exploration in the interim—this might
be avoided through approaches like α-investing [34], or through
similar progressive approaches to correction like that outlined in our
regularization example below. Some visualization approaches, such
as transparent annotation (3.1, 3.3), might also lead to less confusion
or mistrust than others. This is a complex problem that requires
more work to develop clear guidance.

3.2.4 A hypothetical system with online correction and regu-
larization

As one example of how a system might employ online correction and
data transformation without changing data out from under the user,
consider a hypothetical system employing data transformation along-
side regularization. Such a system might only change data attributes
the user has not previously seen—for example, the first time a user
encounters a view with a given variable, it could be incorporated
into a regularized model that corrects conditional means related to
that variable that the user has not already seen. As the user explores
more and more variables, each successive variable would be more
and more regularized, while the first variables they looked at would
be much less so. If the user is a domain expert, they might explore
relationships they think are most fruitful a priori first; relationships
they think less likely to be interesting—explored later—would be
smoothed out more. This would implicitly help users combine expert
knowledge (as expressed in how they interact with a system) with
statistical corrections for data exploration. Meanwhile, the more and
more the user explores paths that are contingent on the data (and not
something they might have predicted a priori), the more and more
the new data they look at is shrunken into uninteresting patterns.

4 EVALUATING THE FORKING PATHS PROBLEM IN VISUAL
ANALYTICS SYSTEMS

4.1 Forking paths problem as a threat to validity in the
Nested Model

In visualization design and validation, we can view the forking
paths problem as a threat to validity in Munzner’s nested model [21]
at two levels: the data/operation abstraction design level and the
encoding/interaction technique design level. Figure 5 illustrates our
use of the model.

At the data/operation abstraction design level, operations can refer
to generic tasks such as “exposing uncertainty” and “concretizing
relationships” [1, 21]. These generic tasks should yield reliable
findings. If the domain tasks identified at the first level of the nested
model involve some form of generalization, then the forking paths
problem is a potential threat to validity. This can be assessed by
asking if one of the abstract tasks the analyst wishes to do is related
to generalization (example tasks might include hypothesis formation
or testing, statistical estimation, model building, or prediction). If
generalization tasks are involved in the users’ workflow, a system
design that allows the analyst to explore and to overfit to the data
easily will not lead to reliable inferences for that task. Thus, there is
a threat to the validity at the data/operation abstraction level. In other
words, a system design at this level is valid only if it addresses the
analyst’s freedom to explore. This threat may be evaluated through
observations of analyst behavior and workflow to document their
exploration behavior and understand how it fits into the broader
context of their analysis pipelines.

At the encoding/interaction technique design level, a typical threat
is that a “chosen design is not effective at communicating the desired
abstraction to the person using the system” [21]. In the case of the
forking paths problem, this may occur if the visualization system
does not effectively encode potential biases or uncertainty in data or
estimates caused by the forking paths problem. This is particularly
a problem if the workflow and abstract tasks of the user have no
way of correcting for forking paths problems (such as overfitting or
multiple comparisons) at a later stage of their analysis pipeline. In
this case, designs that do not encode assessments or corrections for
forking paths problems (e.g., through separate views, annotations, or
data transformations) are ineffective at communicating the reliability
of inferences derived from the data. This threat may be evaluated
through lab studies that measure the impact of different designs on
out-of-sample error relevant to the users’ abstract tasks (e.g., FDR,



root-mean-squared error, etc).

4.2 Review criteria
Stepping back, we need to assess how complicit we are in contribut-
ing to problematic results produced by visual analytics systems. A
significant portion of the visualization field is concerned with the
development of tools to help analysts make robust inferences from
their data. If we publish—and endorse—interactive visualizations
that are (1) intended to be used to make statistical generalizations
(e.g., inferences, estimates, or predictions) and (2) do not account for
the forking paths problem, we are effectively endorsing p-hacking
machines.3

We would not expect statistics or machine learning journals to
publish a new modeling technique if a straightforward application
of it to the datasets it is designed for clearly leads to overfitting.
Similarly, we should not expect the visualization community to
publish visualization systems that, when combined with a user, task,
and dataset it is designed for, also produces overfitted estimates.
That is, swapping a model for a visualization + a user should not
change how we evaluate the severity of the forking paths problem in
an analysis pipeline.

In light of this, we suggest that assessment of the forking paths
problem should become commonplace in the review of visualization
tools, and should be reasonable grounds for revision (or even rejec-
tion) of a manuscript. The following questions may be helpful for a
reviewer to ask:

1. Have the authors clearly articulated if any of the intended use
cases for this system are generalization, inference, or predic-
tion? If the system is not intended for any sort of statistical
generalization, the forking paths problem is likely not relevant.
For example, many search tasks would meet this criterion: a
user searching for the ideal house [31] does not care to infer
anything about the population of possible houses, they simply
want to find a specific house that suits their needs.

2. If the system is intended for generalization, is it susceptible
to the forking paths problem in its typical workflow? If it is,
we believe the system should not be published. As we have
described in this paper, there are many ways to potentially ad-
dress this problem. One way the problem might be addressed is
if the user and task analysis demonstrate that the tool is used in
a workflow where the distinction between exploratory and con-
firmatory analysis is already clearly made (we expect this to be
very rare). Another—possibly the best—approach to meet this
criterion is for authors to integrate some method of addressing
the forking paths problem into their design. If that is not done,
we believe reviewers have just cause to reject a paper (per our
explanation above). Another approach (acknowledging that
until and unless such a criterion becomes a norm in the field,
authors might be surprised to be judged based on it) could be
to ask authors to include prominent warnings in their paper
(e.g. in abstract and introduction) that the technique should
not be deployed on generalization tasks unless first modified
to account for the forking paths problem.

We should note that we do not consider criterion #2 to be met
simply by asserting (without evidence) that analysts know the dis-
tinction between exploratory and confirmatory analysis and would
account for this in their workflow. Given widespread problems with
forking paths analysis in many fields, this assertion is dubious with-
out evidence to the contrary from any particular field. Therefore, the
more conservative approach is to directly guard against the forking
paths problem in the design of any visual analytics tool designed for
statistical generalization tasks.

3In the introductory footnote we said we did not like the term p-hacking.
That ban was temporarily suspended here for effect.

5 DISCUSSION

5.1 Designing to avoiding analysts’ premature commit-
ment

We highlight visual integration in our design space because we
believe it may be crucial to effectively address the forking paths
problem. As Wall et al. [30] note, people are vulnerable to the
persistence of impressions based on discredited evidence: it may not
be enough to track analysts’ behavior and attempt to make statistical
corrections for it after the fact; it would be better to reduce the likeli-
hood that they draw erroneous conclusions in the first place. This
motivates designs that track and correct for forking paths problems
in real time through annotation or data transformation. The analyst
that made an erroneous discovery during data exploration must later
be convinced to forget it. The analyst that did not, already has.

5.2 Education
It behooves us to examine the implications of forking paths problems
on how we teach visualization design. To our knowledge, when it
comes to teaching principles for the construction of exploratory visu-
alization tools, undergraduate and graduate level courses in informa-
tion visualization tend to focus on technical implementation details
and interactive visualization design patterns—both fundamentally
important concepts; however, in our experience, concepts in statistics
that are highly relevant to exploratory visualization (such as multiple
comparison correction, regularization, Bayesian reasoning, or model
validation) tend to be taught in other classes, and the implications
and applications of these concepts to visualization are not made clear.
We must consider how to integrate material on these concepts—and
how they apply to reliable exploratory visualization—into existing
information visualization curricula. Without that integration, we
are relying on designers making those connections themselves, an
ineffective strategy thus far.

6 LIMITATIONS AND FUTURE WORK

As we have discussed in Section 3, a natural next step for addressing
the forking paths problem is to fill in the gaps in our design space.
Since some design options such as data transformation may be
intrusive or confusing, evaluation of new designs should consider
analysts subjective opinions in addition to performance metrics.

One limitation of our design space is that the assess-
ment/correction type and the visual integration dimensions are not
guaranteed to be exhaustive. As we bring awareness to the forking
paths problem, we hope that the visualization community can help
expand this design space.

7 CONCLUSION

This work was motivated by a reflection on how information visual-
ization may have—in some small way, at least—helped precipitate
the replication crisis, and how information visualization might help
address the crisis. We believe that it is necessary to continue ex-
ploring the design space of possible solutions to the forking paths
problem in visual analytics. We suggest that more statistical tools,
such as regularization and validation, be brought to bear on the
problem. These tools can be chosen in a principled way, depend-
ing on analysts’ tasks (e.g., multiple comparison correction if tasks
involve hypothesis testing and regularization if they involve estima-
tion or prediction). By integrating these statistical tools and visual
corrections into the analyst’s system, we believe it is possible to
prevent the forking paths problem from propagating further down
an analysis pipeline. Finally, we urge the community to reconsider
how we review exploratory visual analytics tools that are intended
for generalization tasks: just as we would reject a visualization that
leads to erroneous conclusions due to a poor encoding choice (3D
pie charts!), so too should we reject a visualization that leads to
erroneous conclusions due to a failure to consider the garden of
forking paths.
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