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Fig. 1. We present two experiments (E1 and E2) evaluating four different uncertainty visualizations (from left to right): bar graphs with
error bars, bar hypothetical outcome plots (HOPs), static line ensembles, and line HOPs.

Abstract—Animated representations of outcomes drawn from distributions (hypothetical outcome plots, or HOPs) are used in the
media and other public venues to communicate uncertainty. HOPs greatly improve multivariate probability estimation over conven-
tional static uncertainty visualizations and leverage the ability of the visual system to quickly, accurately, and automatically process
the summary statistical properties of ensembles. However, it is unclear how well HOPs support applied tasks resembling real world
judgments posed in uncertainty communication. We identify and motivate an appropriate task to investigate realistic judgments of un-
certainty in the public domain through a qualitative analysis of uncertainty visualizations in the news. We contribute two crowdsourced
experiments comparing the effectiveness of HOPs, error bars, and line ensembles for supporting perceptual decision-making from
visualized uncertainty. Participants infer which of two possible underlying trends is more likely to have produced a sample of time
series data by referencing uncertainty visualizations which depict the two trends with variability due to sampling error. By modeling
each participant’s accuracy as a function of the level of evidence presented over many repeated judgments, we find that observers
are able to correctly infer the underlying trend in samples conveying a lower level of evidence when using HOPs rather than static
aggregate uncertainty visualizations as a decision aid. Modeling approaches like ours contribute theoretically grounded and richly
descriptive accounts of user perceptions to visualization evaluation.

Index Terms—uncertainty visualization, hypothetical outcome plots, psychometric functions

1 INTRODUCTION

Effective communication of uncertainty, probability, and random sam-
pling is necessary for scientific literacy among the public and for the
practice of reproducible science. For example, confusing presenta-
tions of uncertainty in weather forecasts may lead people to discount
uncertainty in the forecast, inducing a false sense of security about
predicted outcomes. This kind of misunderstanding erodes public
trust in science [7, 39]. Among scientists, misunderstandings of sam-
pling error and the likelihood of replicating experimental results con-
tribute to rampant use of underpowered studies and the “replication
crisis” [37, 62]. A core challenge in communicating uncertainty infor-
mation is how to help audiences recognize that estimates are subject
to variability in the process which produces them [21, 54, 60]. This is
especially difficult when audiences are unfamiliar with the statistical
abstractions commonly used to express these concepts.
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Data visualizations communicate complex information by offload-
ing cognitive work as to automatic perceptual processing [43]. Visual
metaphors could help audiences make sense of otherwise inaccessible
uncertainty information. However, commonly used uncertainty visu-
alizations often lead to misinterpretations. For example, error bars
encoding confidence intervals or standard errors are easily misunder-
stood [6, 31] perhaps because such frequentist statistics are misinter-
preted as indicating the probability of an estimate rather than the vari-
ability in the process which produced that estimate. Similarly, the
nuances of statistical abstractions make it hard for many people to in-
terpret probability density plots like gradient plots and violin plots.

Recently, Hullman et al. [36] defined a form of animated uncer-
tainty visualization called Hypothetical Outcome Plots (HOPs). HOPs
present uncertainty as a set of animated frames, each depicting a sam-
ple from a distribution of possible outcomes. Hullman et al. [36] found
that HOPs facilitate comparable and much better estimation of uni-
variate and multivariate distributional information, respectively, than
error bars and violin plots. Importantly, HOPs express shared vari-
ation among multiple variables via the correlation of samples across
animated frames, whereas static visualizations are not generally ex-
pressive of this shared variability. HOPs are especially flexible across
applications since they do not introduce additional graphical marks
(e.g., error bars) or encodings (e.g., color, transparency) to encode the
variability of a distribution.

However, it remains unknown whether HOPs also have advantages
for more applied tasks resembling real world judgments about data.
For a realistic investigation of comprehension, we must go beyond the
ability to read probabilities from a visualization and look at judgment
tasks where people must choose between alternative interpretations of
uncertain data (i.e., models that generated the data) in order to act. We



present two experiments that address gaps in knowledge about the im-
pacts of HOPs by modelling perceptual decision-making in a realistic
uncertainty communication task.

We first motivate our selection of an experimental task through a
qualitative analysis of how visualizations are used to communicate un-
certainty in 22 examples of uncertainty visualization in the news. Our
results provide an overview of the visual and cognitive demands as-
sociated with judgments of uncertainty visualizations that the public
encounter in news contexts.

Our primary contributions are two controlled experiments on the
impact of HOPS versus static alternatives on user performance in an
uncertainty communication task. Based on our qualitative analysis,
we adapt an example of HOPs from the New York Times (NYT) [38]
to examine the impact of different uncertainty encodings on the per-
ceptual decision-making of Amazon Mechanical Turk (MTurk) work-
ers. Participants infer which of two possible underlying trends is more
likely to have produced a sample of time series data by referencing
uncertainty visualizations which depict the two trends with variability
due to sampling error (Fig. 3). Each participant makes many judg-
ments about the more likely trend despite noise due to sampling error,
using one of multiple uncertainty visualizations (Fig. 1) to aid in the
task. For each participant’s responses, we fit behavioral models called
psychometric functions (PFs) [27, 42] which estimate accuracy on the
task as a function of the strength of evidence in the samples judged.
PFs enable us to measure the sensitivity of each observer to evidence
in the task under different visualization conditions. Our results suggest
that users of HOPs make correct judgments at lower levels of evidence
than users of error bars and line ensembles.

2 RELATED WORK

2.1 Uncertainty Visualization

Static visualizations, such as error bars, ensembles, and probability
density functions (PDFs), are currently the predominant visual encod-
ing for communicating uncertainty. These visualizations express dis-
tributions in a single view by encoding summary statistics or showing
the whole distribution. Static visualizations align with a design goal
of cognitive efficiency [11, 34, 43, 61]. In contrast, animations are
thought to be less efficient because they require the integration of in-
formation across frames and pose challenges related to memory and
attention [64]. However, outside of a few early studies of animated
uncertainty visualizations in cartography [16, 17, 26], little empirical
work has attempted to evaluate the potential for animation to provide
an effective visual metaphor for probabilistic information.

Static uncertainty visualizations often assume that the audience has
some baseline of statistical knowledge [6] and a propensity to connect
such abstract concepts to graphical representations [15]. Error bars in
particular can be difficult to interpret due to inconsistency of conven-
tions governing what constructs (i.e., confidence intervals, standard
errors, etc.) they represent [14, 31]. For graphs with enclosed shapes,
within-the-bar bias can impact estimates of likelihood such that values
within the shape tend to be judged as more likely than values out-
side [14, 50]. Uncertainty visualizations which use separate marks to
encode expected value and uncertainty can elicit a heuristic bias of
attention toward expected value and away from uncertainty [36], in
keeping with a well-documented tendency for people to underweight
or ignore uncertainty in decision-making [63]. In general, static visu-
alizations which only express summary statistics fail to fully convey
the underlying distribution since dissimilar datasets can have similar
summary statistics [12]. Although variants of PDFs (i.e, violin plots,
gradient plots) are, in theory, fully expressive of the underlying distri-
bution, they still rely heavily on the statistical literacy of the observer.

In contrast, HOPs are designed to promote the integration of uncer-
tainty information through experience rather than description. While
viewers of static visualizations must exert cognitive effort to map
graphical encodings to statistical concepts which may be unfamil-
iar [15, 66], viewers of HOPs can directly extract frequency infor-
mation [30]. Observers who are allocating attention to a frequency
encoding extract frequency information automatically, even when

they are not aware of doing so [29]. Research on statistical rea-
soning suggests that frequency-oriented framing of probability can
lead to more accurate statistical reasoning in many judgment con-
texts [18, 24, 32, 35, 40] and to more accurate elicitation of subjective
probability distributions among lay observers [25]. Prior work estab-
lishes that HOPs enable more accurate inferences about joint probabil-
ities than static uncertainty visualizations and that HOPs are compara-
ble to static representations for estimating distributional properties of
univariate distributions [36]. Users of error bars and violin plots only
outperformed users of HOPs when estimating the central tendency of
distributions with high variance.

Researchers and practitioners have applied animated and static
sampling-oriented approaches to uncertainty visualization. Re-
searchers have used animated sampling-oriented visualizations in
medical volume rendering [48] and estimates of geospatial sur-
faces [16, 17, 26]. Static sampling-oriented quantile dotplots have
been used to aid decision-making about bus arrival times [18, 41] and
to help users to make graphically elicited predictions about experi-
mental data [35]. A recent study investigated HOPs of hurricane lo-
cations [47], suggesting a role for sampling-oriented presentations of
uncertainty in weather forecasts. In recent years, there have been im-
plementations of HOPs, interactive simulations, and static sampling-
oriented ensembles in the media which aim to communicate uncer-
tainty in the job market [38] and in political elections [1, 9, 55], sug-
gesting there is potential for HOPs to be used to communicate uncer-
tainty information to the public in informal contexts.

2.2 Vision Science in Information Visualization

Vision science research on perception of ensembles, groups of visual
objects spread over space and time, is directly applicable to data visu-
alizations. Accumulating evidence suggests that the visual system is
capable of quickly, automatically, and accurately extracting rich men-
tal representations of ensembles from visual scenes [3, 4, 33, 44] even
when the observer has no explicit memory of some ensemble mem-
bers. The precise limitations of this mode of perception are a topic
of ongoing inquiry. Observers are similarly accurate in perceptual av-
eraging tasks whether stimuli are dynamically changing or arranged
on a static spatial plane [4, 44]. However, in the case of dynamically
changing stimuli, limitations on the duration and temporal frequencies
for which this perceptual averaging is effective are not yet known. Ob-
servers can accurately report the average size of dynamic stimuli [2],
the average expression of a dynamically changing face stimulus [28],
and even more abstract features such as the average lifelikeness of a
set of objects [44]. Sampling-oriented visualizations of uncertainty
like HOPs seem particularly well matched to the visual system’s abil-
ity to form gist representations from experience.

Psychophysics, a methodology in vision science, enables re-
searchers to model the relationship between the presentation format
of information and the perceptual decision-making of observers. In
visualization research, psychophysics is most often used to estimate
just-noticeable differences (JNDs) for a visual encoding, the change in
some quantified property of that encoding which would be discernible
to a subject 75% of the time. JNDs have been applied in the cre-
ation of perceptually-uniform color palettes (i.e., CIELAB [20]) and
perceptually-driven color palette selection tools [45, 59]. The inferen-
tial models which researchers use to estimate JNDs are called psycho-
metric functions (PFs). PFs estimate an observer’s accuracy in judging
a stimulus as function of the strength of evidence presented. PFs are
based on signal detection theory (SDT) [27] (Fig. 2), a model of how
we make decisions by weighing evidence in favor of two alternative
interpretations. SDT posits that for any judgment between two alter-
natives internal receivers in the brain register the evidence for each
possible alternative. Since the response of these receivers to a pre-
sented stimulus is subject to noise, and observers are inconsistent in
the criteria they use to decide between alternatives, judgments of a
stimulus err systematically. PFs model this systematic error by esti-
mating both the amount of bias and random noise introduced in the
process of perceiving the strength of evidence about the decision.

Our experiments incorporate PF analysis and SDT into the context



Fig. 2. We illustrate how to use signal detection theory to estimate
the accuracy of an observer on a two-alternative forced choice task for
two different stimuli (left and right columns). Signal detection theory
posits internal receivers for two alternative interpretations of a stimulus,
choices A and B. The response of these receivers to a stimulus is prob-
abilistic and represents the perceived strength of evidence in favor of
each choice. The two stimuli shown in the left and right column each
convey levels of evidence equal to the difference between the black and
gray vertical lines on the x-axes. The middle row depicts the difference
between the responses of the receivers for choices A and B, shown in
the top row. The estimated accuracy of the observer for each stimulus
is equal to the integral of the difference distributions in the middle row.
Estimated accuracy of stimulus interpretation for each level of evidence
is equal to the height of the psychometric function.

of a realistic data interpretation task. Although other studies in the in-
formation visualization literature use PFs to investigate JNDs in low-
level visual encodings such as color (i.e., [59]), the application of psy-
chophysics in abstract conceptual domains, such as the interpretation
of visualized uncertainty, is uncommon in information visualization
research. PFs are an ideal way to measure the effectiveness of uncer-
tainty visualizations for supporting alternative interpretations of data
because they enable nuanced comparisons of user sensitivity to evi-
dence under different display conditions.

3 IDENTIFYING UNCERTAINTY JUDGMENTS IN THE NEWS

Readers of the news often encounter uncertainty information which
they interpret in order to make decisions. For example, a person might
read a piece of data journalism from the New York Times (NYT) about
expected changes under the 2017 GOP tax plan [10]1 and decide to
take the standard deduction instead of itemizing their taxes. Since the
news is perhaps the most common venue in which people encounter
uncertain data in everyday life, we conducted a formative content anal-
ysis investigating the use of uncertainty visualizations in the news and
how people might interpret visualized uncertainty in this context. We
use this analysis to inform our experimental task.

3.1 Selection of Articles
We gathered a convenience sample of 22 articles from mainstream
news in the US and UK. We started with recent visualizations from
publishers like the NYT, and supplemented this set by conducting

1https://www.nytimes.com/interactive/2017/11/28/upshot/what-the-tax-
bill-would-look-like-for-25000-middle-class-families.html

Google News searches containing terms like ‘uncertainty’ or ‘proba-
bility’ and ‘visualization’ or ‘chart’ (see Supplemental Materials). Ar-
ticles were included in our analysis (1) if they are primarily concerned
with communicating uncertainty information and (2) if they contain at
least one visualization which conveys that there are a distribution of
possible values which an observation or prediction might take.

While we started with 32 articles which met our first inclusion cri-
terion, we had to exclude ten of these articles because they failed to
meet our second criterion. In these cases, the visualizations only en-
coded single values of each estimate (e.g., a central tendency), and
visualized distributions were contextualized as separate events plot-
ted together by geographic location or time (e.g., an estimate for each
of multiple countries). That the media use distributions of outcomes
for separate events to illustrate uncertainty speaks to a disconnect be-
tween public concerns about uncertainty and the notion of uncertainty
employed in information visualization research, in which uncertainty
is most often defined as an expression of error in an estimate [54, 60].
The sample of articles considered reflects the time frame of the study
and should be considered representative of uncertainty visualizations
published in the popular press from 2014 to early 2018.

3.2 Qualitative Coding
Our goal was to identify a set of distinctions that could help visualiza-
tion researchers understand the types of tasks implied by uncertainty
visualizations in the news. We used a bottom-up iterative coding pro-
cess in order to see what distinctions emerged from close analysis of
the examples in our corpus. Two authors separately coded each article
initially, listing for each a set of concrete questions about the visual-
ized data that the article poses to the audience. We identified these
questions by considering how the uncertainty visualizations support
the narrative in the text of each article. Through several additional
passes on the corpus, the two authors iteratively reviewed and refined
the codes. We arrived at a set of yes-or-no distinctions used to label
and characterize each question posed by the articles.

3.3 Results and Discussion
3.3.1 Conceptual Distinctions
The first three labels we coded characterize the low-level visual tasks
implied by the text and the visual encodings. These codes answer the
question: Is the relevant information from the uncertainty visualization
obtainable through (1) direct reading of encoded values, (2) automatic
visual ensemble processing, or (3) shape perception [19]? While di-
rect reading is highly deliberate, ensemble processing is an automatic
visual computation about sets of graphical encodings. Shape percep-
tion occurs when the contours of graphical elements (e.g., tops of bars,
trend lines) are recognized as patterns which have a specific meaning
to the observer. Visualizations can often be read in more than one way.

The second set of labels describe what information is needed to an-
swer each question. Does the task primarily require the audience to
consider (1) central tendency or (2) variance of a distribution of val-
ues? These labels are not mutually exclusive. However, to differenti-
ate tasks that emphasize uncertainty from those that emphasize central
tendency, we only assign a question with both codes if it is not possible
to identify which aspect of the data dominates the task.

The final pair of labels concern the high-level cognitive operations
which the observer performs with visually extracted information in
order to address each question posed by the article. Do the concrete
task and visual encoding require observers to make (1) comparisons or
(2) inferences? The reader must compare values or distributions when
the question posed by the article requires a relative judgment (e.g.,
differences of value or conditional likelihood). Inference occurs when
an observer is asked to reason about an aspect of the data that is not
directly encoded (e.g., the central tendency of a set of points).

3.3.2 Frequency of Codes
We identified a total of 87 questions that were implied in the 22 ar-
ticles we analyzed. The information the reader needed to glean from
the visualizations in order to answer these 87 questions could be read
directly from the visualization in 60 (69.0%) cases, could be acquired



through ensemble processing in 56 (64.4%) cases, and could be read
through shape perception in 60 (69.0%) cases. This shows that design-
ers often encode relevant information in multiple different ways (e.g.,
providing a trend line as well as individual data points).

We observed 19 (21.8%) questions that were primarily about cen-
tral tendency and 34 (39.1%) questions that were primarily about un-
certainty. Only 33 of the questions (37.9%) were concerned with both
central tendency and uncertainty without one clearly dominating the
task. This suggests that judgments about uncertainty in news contexts
are often framed as separate tasks from judgments of central tendency.
Empirical evidence in uncertainty visualization [36, 47, 52, 53] and
cognitive science [39, 63] suggests that effective uncertainty visual-
ization should promote the integration of both central tendency and
uncertainty information because otherwise people tend to substitute
biased heuristics for more nuanced judgments of uncertainty.

Of the 87 questions examined, 64 (73.6%) involved comparisons
between individual data points and/or distributions, and 72 (82.8%)
involved inferences about information not directly encoded in the vi-
sualizations. Both comparison and inference seem to be common cog-
nitive operations required to interpret uncertainty visualizations in the
news. This suggests that when designing and evaluating uncertainty
visualizations for a broad audience, it is not sufficient to simply mea-
sure ability of observers to extract directly encoded individual values.

3.3.3 Selecting a Representative Uncertainty Judgment Task

We wanted a task for our experiments that required more sophisticated
forms of judgment than simply reading directly encoded values. We
also wanted to choose a task that required considering both uncertainty
and central tendency. We used the results of our coding to identify a
concrete question from a visualization and article originally presented
by the NYT: “How not to be Misled by the Jobs Report” [55]2. In our
adaptation of this task (Fig. 3), participants decide which of two under-
lying trends, growth or no growth in the job market, is more likely to
have produced an observed sample of job growth numbers. The choice
between trends requires the participant to consider how variance due
to sampling error impacts samples of hypothetical jobs numbers. The
participant must visually extract the trend in a hypothetical sample
of jobs numbers through either ensemble processing or shape percep-
tion. Then, considering the central tendency and variance of the two
possible trends based on uncertainty visualizations, participants make
inferences about the likelihood of a given sample under each trend.
Thus, our task entails reasoning spanning all of our distinctions except
for the direct reading of individually encoded values.

The task we selected is representative not only of how uncertainty
visualization is used in the news but of tasks that are implicated in sta-
tistical literacy. By asking participants to make inferences from sam-
ples of noisy data, our task engages core statistical competencies. In
order to understand applications of statistics in science, people must
recognize that samples may not always resemble the model or pop-
ulation from which they are produced [21, 23]. In our task and in
public-facing presentations of statistics (e.g., election models), there
are components of variance in sampling which are accounted for by
underlying trends (signal) and components of variance which are due
to sampling error and other random processes (noise). The ability to
recognize and parse these sources of variance is implicated in our task
and is important to the comprehension of statistics [21, 23].

4 EXPERIMENT 1

Experiment 1 mirrors the visualization design and data-interpretation
context of the NYT article “How not to be Misled by the Jobs Re-
port” [38]. We evaluate how well HOPs facilitate accurate percep-
tual decision-making compared to a more conventional encoding of
uncertainty— error bars. We choose error bars as the control visual-
ization for this task because (1) they are a common static encoding of
uncertainty and (2) they can be used to add uncertainty information to

2https://www.nytimes.com/2014/05/02/upshot/how-not-to-be-misled-by-
the-jobs-report.html

Fig. 3. A depiction of the task interface used in our studies (stimuli for
Experiment 1 are shown). The chart that participants judge on the cur-
rent trial is on the left side of the display. The reference uncertainty
visualizations for the “no growth” and “growth” trends are on the right
side of the display. Underneath the uncertainty visualizations, the par-
ticipant uses radio buttons to indicate which trend is more likely and the
slider to rate their confidence.

the bar encoding used in the NYT, enabling a controlled comparison
that remains faithful to the original presentation.

In a crowdsourced experiment on MTurk, we ask participants to
discriminate which of two possible underlying trends is more likely
to have produced hypothetical samples of jobs added to the economy
each month of a simulated year (Fig. 3). Thus, we embed the visu-
alizations from the NYT [38] into a traditional two-alternative forced
choice (2AFC) psychophysics experiment.

4.1 Methods

4.1.1 Procedure

Upon accepting the Human Intelligence Task (HIT), participants were
redirected to a web page containing instructions on the task. Partici-
pants were told they would play the role of a newspaper editor who is
presented with a bar chart of jobs added to the economy each month
of a simulated year and asked decide on a headline about the growth
trend in the job market for that year (Fig. 3). On each trial, the par-
ticipant made a 2AFC judgment (“growth” or “no growth”) about one
bar chart and provided a rating of their confidence in this judgment on
a scale of 50 (random guess) to 100 (absolutely certain). Each par-
ticipant completed a block of 60 trials using error bars as a decision
aid and another block of 60 trials with HOPs as a decision aid, where
the order of the visualization conditions was counterbalanced across
observers. At the end of 120 trials, each participant completed a brief
demographic survey, including questions about familiarity with statis-
tics and with the specific visualizations shown in the task. The HIT
carried a reward of $8 ($29.32 per hour on average).

4.1.2 Measures and Hypotheses

Our dependent measures are parameter estimates derived from psy-
chometric functions (PFs, Fig. 5) and a related approach to modeling
confidence data. These are inferential models of perceptual decision-
making based on signal detection theory (SDT, Fig. 2).

Psychometric Functions (PFs): For each participant’s 2AFC re-
sponses under each visualization condition, we fit a PF [42] estimating
two parameters: (1) the JND, which is the level of evidence at which
the participant is expected to perform with mean accuracy on the task;
and (2) the spread of the PF, which describes the noise in the partic-
ipant’s perception of evidence in the task (Fig. 5). We predicted that
when uncertainty due to sampling error was visualized using HOPs, as
compared to error bars, subjects would have smaller estimated JNDs
on average, indicating that observers require less evidence to distin-
guish the trend underlying a sample from noisy data. We also pre-
dicted that users would have smaller estimated PF spreads, indicating
that they find stimuli ambiguous across a narrower range of evidence.

Confidence Fitness: Existing approaches to confidence analysis in
uncertainty visualization evaluation tend to either assume that more
confidence is better (e.g., [8]) or analyze the correlation between con-
fidence and accuracy over a set of judgments (e.g., [14]). However,



Fig. 4. Example stimuli judged by participants in our task. Scan across
the figure to get a concrete sense of how our units of evidence translate
into the appearance of a stimulus. Units of evidence are the log ratio
of the probability that each stimulus was produced by the growth vs no
growth trends, given shared variability due to sampling error. We take
the absolute value of the log likelihood ratio so that units of evidence
have the same sign regardless of which trend produced the stimulus.

both approaches may be inadequate to deal with the complexity of con-
fidence as a construct; for example, research in judgment and decision-
making describes how confidence reporting is often noisy and may not
adhere to the laws of probability (i.e., [51]). To overcome these limita-
tions, we adapt an approach from psychophysics [56] which explicitly
models the noise in an observer’s confidence reporting process.

Confidence fitness can be interpreted as an estimate of the degree to
which confidence ratings are coherent with a probabilistic interpreta-
tion. The model is based on SDT and assumes that confidence ratings
from the ideal observer should reflect the accuracy of their judgments
at the given level of evidence [56]. To estimate a ground truth for
confidence, we simulated many trials for each observer based on their
PF. We estimate the ideal confidence of an observer as the accuracy of
these simulated noisy judgments at each level of evidence. Confidence
fitness is a latent parameter of the model ranging from 0 to 1 which es-
timates the degree to which actual confidence reporting is random or
ideal. We had no strong a priori predictions about confidence fitness.

4.1.3 Stimuli and Trial Generation
Stimuli, Units of Evidence, and Task Difficulty: The PF fitting process
requires a single measure of stimulus intensity which approximates the
difficulty of the judgment task for each stimulus. Stimulus intensity
is used as a ground truth to determine whether or not judgments are
correct. In our task, the intensity measure should quantify the strength
of the evidence in favor of a growth or no growth interpretation of a
given sample of jobs numbers. We calculate the intensity based the
probability of each possible trend having produced the sample of jobs
numbers. For any given stimulus (set of hypothetical job numbers),
strength of evidence is the log likelihood ratio describing the relative
likelihood that the stimulus was produced by the no growth or growth
trend in the job market (Fig. 4). This produces a log-linear intensity
scale where positive values represent evidence in favor of no growth
(e.g., bottom row of Fig. 4), negative values represent evidence in favor
of growth (e.g., top row of Fig. 4), and zero is the point of maximum
uncertainty. Because our measure of intensity should be consistent
whether the evidence more strongly favors the growth or the no-growth
trend, we take the absolute value of this log likelihood ratio.

evidence =| log10(Pr(sample|noGrowth)/Pr(sample|growth)) |

Here, sample is a given set of job growth numbers, noGrowth is a trend
in which the jobs added each month are normally distributed about
150k with a standard deviation (SD) of 95k, and growth is a trend
in which there is a linear increase of 15k jobs per month from 150k
in January to 350k in December, with a SD of 95k jobs each month
(Fig. 3, right side). For both trends, we matched the mean job growth
for each month to the NYT article [38]. However, we differed from
the NYT article by using a SD of 95k jobs instead of 55k. We chose
this SD to guarantee that there were many visually distinct stimuli to
sample for which the underlying trend was ambiguous.

Staircase Sampling Procedure: A major challenge in obtaining
valid PF fits is making sure that the observer completes enough trials
at stimulus intensities which are ambiguous. Choosing stimuli which

the participant can judge correctly, but which are not easy, reduces the
uncertainty in the fitting process [57]. However, the researcher must
not present too many trials, otherwise issues of participant attrition
and fatigue arise. Adaptive sampling procedures are the best solution
to this problem. These algorithms sample stimuli at levels of evidence
which are ambiguous but not uninformative based on the participant’s
past performance. We used a three-down, one-up staircase (suggested
in [22]) in which the level of evidence was incremented (i.e., made
easier) by 3 absolute log likelihood ratio units each time the partici-
pant guessed wrong, and the level of evidence was decremented (i.e.,
made harder) every third time the participant was correct. In order to
avoid autocorrelation in performance resulting from participants notic-
ing the sampling procedure, we randomly interleaved 25 trials each
from two different staircases (suggested in [13]) as well as 10 gold
standard trials at an absolute log likelihood ratio of 9 (very easy). The
two staircases differed only in their decrementing step sizes of 2.22
and 1.65 absolute log likelihood ratio units, respectively. Step sizes
were chosen based on pilot data and recommendations from simula-
tion studies on how to create staircases with stable convergence [22]
and how to sample in order to minimize uncertainty in the parameter
estimates from PFs [57]. These staircases promoted meaningful PF
fits in a minimal number of trials.

Uncertainty Visualizations: In our task, participants use different
uncertainty visualizations as a decision aid showing the no growth and
growth trends (Fig. 3, right side). HOPs were generated by repeat-
edly sampling 12-month sets of jobs added to the economy from each
underlying trend, plotting these numbers in bar charts, and animating
transitions between frames. Animated transitions between bar values
were 500 ms in duration with a 10 ms delay between each bar and a
frame rate of 45 hz. Each sample was displayed for 1500 ms in be-
tween the animated transitions. Animation parameters followed those
used by the NYT. We used a cubic easing function for animated tran-
sitions, which was consistent with the NYT visualization.

4.1.4 Participants

We recruited 62 MTurk Masters workers, each located in the United
States and with a HIT approval greater than 95%, to participate in
the study. A power analysis on pilot data suggested our target sample
size should be 50 within-subjects comparisons of HOPs and error bars,
where each participant completes a block of 60 trials for each visual-
ization condition and the condition order is counterbalanced across
participants. To achieve this, we iteratively sampled small batches
of participants (n < 10), alternating the starting visualization condi-
tion, and applying a set of a priori exclusion criteria to the data col-
lected. This was procedure was repeated until we had 50 participants
in our sample after exclusions, and condition order was counterbal-
anced across participants. During the iterative sampling procedure
(see Preregistration3), one participant was excluded due to exception-
ally poor performance, and five participants were excluded from anal-
ysis due to poorly converging psychometric function fits. We acciden-
tally collected six participants more than intended, so six participants
were chosen at random and excluded from analysis thereafter.

4.1.5 Analysis Approach

Psychometric Function Estimation: We used a maximum likelihood
optimization algorithm to fit a cumulative Gaussian distribution to
model accuracy as a function of the level of evidence presented in
each stimulus (Fig. 5). Recall that evidence is the degree to which the
data in a stimulus informs the forced choice between the two possible
underlying trends of growth and no growth. The lower asymptote of
this cumulative Gaussian was set to a guess rate of 0.5 (Fig. 5, lower
left), which would be achieved in theory if the participant guessed on
each trial. The upper asymptote of the cumulative Gaussian was set
to one minus some lapse rate (Fig. 5, upper right), the base rate of
stimulus-independent errors due to lapses of attention. Following rec-
ommendations from a simulation study on PF fitting [65], we estimate

3https://osf.io/975us/register/5771ca429ad5a1020de2872e



Fig. 5. An illustration of the psychometric function with relevant param-
eters.

lapse rate as a constrained free parameter between 0 and 0.06 in or-
der to reduce bias in other parameter estimates. The level of evidence
corresponding to the mean of the fitted cumulative Gaussian is the
JND (Fig. 5, lower right). The standard deviation of the cumulative
Gaussian is the spread parameter of the PF (Fig. 5, middle right). Per
SDT (Fig. 2), the spread parameter represents noise in perception of
the level of evidence, where PFs with greater spreads indicate that the
trend in the jobs report is ambiguous across a larger range of evidence.

Confidence Fitness Estimation: We used maximum likelihood es-
timation to find an optimal value of confidence fitness for each PF.
This algorithm was transcribed from Sanders et al. [56]. We provide a
detailed description of the confidence fitness algorithm and our imple-
mentation in Supplemental Materials.

Statistical Inference: We used mixed-effects linear models in lme4
for R to estimate each response variable (i.e., JND, PF spread, and
confidence fitness) as a function of fixed effects of visualization con-
dition and condition order and a random intercept effect of participant.
Further, we believed that an interaction between visualization condi-
tion and condition order would explain variance in parameter estimates
due to practice or learning. Following the procedure in our preregis-
tered analysis plan4, for each measure we used ANOVA to compare
model residuals with and without the interaction between visualization
condition and condition order, and we chose the most parsimonious
mixed-effects model which still minimized the variance of residuals.
We provide analysis scripts and data in a project repository5.

4.2 Results and Discussion
4.2.1 Just-Noticeable Differences (JNDs)

We modeled fixed effects for visualization condition and condition or-
der and a random intercept term to account for individual differences,
as described above. We did not include the interaction between visual-
ization and starting condition in our model of JNDs because including
the interaction did not reduce residual variance.

We found that JNDs were lower in the HOPs condition (Fig. 6, left)
than in the error bars condition (Est = -0.68; 95% CI: -1.19 to -0.14; t
= -2.49; p = 0.02). The second column of Figure 4 illustrates an effect
of roughly this size. This effect suggested that on average when par-
ticipants used HOPs rather than error bars they required less evidence
about the underlying trend in a noisy time series to achieve mean ac-
curacy (around 75%). Put differently, participants could successfully
discriminate the underlying trend in the job market for more ambigu-
ous stimuli when using HOPs as a decision aid.

4.2.2 Psychometric Function Spreads

We modeled visualization condition, condition order, and their interac-
tion as fixed effects and a random intercept for individual differences.

4https://osf.io/975us/register/5771ca429ad5a1020de2872e
5https://github.com/kalealex/jobs-report-hops

We found no reliable differences in PF spread estimates between vi-
sualization conditions (Fig. 6, middle). However, PF spread estimates
were lower among participants who started in the HOPs condition (Est
= -1.00; 95% CI: -1.91 to -0.09; t = -2.12; p = 0.04) compared to par-
ticipants who started with error bars. Recall that narrower PF spreads
indicate less noise in the perception of evidence. We speculate that
participants may have developed mental representations for the the two
possible growth trends during the first block of trials and relied on the
uncertainty visualizations less in later trials. There was also an inter-
action between visualization condition and starting condition (Est =
1.46; 95% CI: 0.34 to 2.58; t = 2.54; p = 0.01), indicating a learning or
practice effect. Regardless of the visualization condition under which
data was collected, PF spread estimates tended to be larger in the first
block of trials than in the second block. We speculate that participants
became more sensitive to evidence in the task with practice.

Although we intentionally avoided the use of practice trials or feed-
back in order to test the behavior of untrained observers, it seems
that practice or learning introduced differences across blocks which
were not necessarily related to visualization condition. While the ef-
fect of starting condition on users’ sensitivity to evidence could mean
that HOPs facilitate superior learning about sampling error, this effect
could also be explained as an artifact of testing visualizations within-
subjects and keeping the task consistent across blocks. The ambigu-
ity of this result points to considerations about experimental design
in visualization evaluation. If the goal of the experiment is to mea-
sure learning, a longitudinal experiment which employs practice trials
to control for practice effects is ideal. In studies like ours where the
goal is to measure visualization effectiveness, future experiments in
this paradigm should employ a between-subjects design, as we do in
experiment 2, in order to mitigate ambiguity about which visualization
condition is informing a user’s mental representation of the task.

4.2.3 Confidence Fitness

We modeled fixed effects of visualization and condition order and a
random intercept for individual differences. We did not model the
interaction of visualization and starting condition. Although confi-
dence fitness within individuals was seldom consistent across blocks
(see Supplemental Materials), we found no reliable effect of visualiza-
tion or condition order on confidence fitness (Fig. 6, right).

Since the results of the confidence fitness analysis were inconclu-
sive and difficult to interpret, we conducted a more conventional ex-
ploratory analysis on confidence reporting. We used a mixed-effects
linear model on trial-level data to estimate reported confidence based
on fixed effects of visualization, starting condition, and their interac-
tion as well as fixed effects of the level of evidence conveyed in each
stimulus, whether or not a participant’s answer was correct, and their
interaction. We also included a random intercept effect of participant.

This model (Fig. 7) showed a small effect of visualization condi-
tion (Est = 1.62; 95% CI: 0.80 to 2.43; t = 3.90; p < 0.001) such that
users report slightly higher confidence on average when using HOPs.
There was also an interaction between visualization and condition or-
der (Est = -1.33; 95% CI: -2.48 to -0.18; t = -2.28; p = 0.02). Simple
effects showed that users were more confident on average when they
used HOPs in the second block than in any other combination of visu-
alization or block order. More than practice or learning, visualization
condition seemed to play a role in confidence reporting, although these
effects are of doubtful practical significance. Looking at trial-level
predictors, we found that users were slightly more confident on aver-
age when they answered correctly (Est = 1.93; 95% CI: 0.33 to 3.52;
t = 2.37; p = 0.02). We also found an interaction between correctness
and the level of evidence presented in a stimulus (Est = 1.73; 95%
CI: 1.36 to 2.09; t = 9.25; p < 0.001). Confidence increased with in-
creasing evidence for trials where the user was correct, but confidence
decreased with increasing evidence for trials where the user was in-
correct. Sanders et al. [56] found that this interaction was predicted
by the estimates of expected confidence produced by their confidence
modeling. However, we failed to replicate this finding. The expected
confidence ratings produced by our model of confidence fitness failed
to predict reported confidence very well (see Supplemental Materials).



Fig. 6. Estimated regression coefficients for mixed-effects linear models of each psychophysical response variable in Experiment 1 (intercept
coefficient omitted for space). Dots represent estimated effects, and lines represent 95% CIs.

Fig. 7. Estimated regression coefficients for our exploratory mixed-
effects linear model of confidence reports in Experiment 1 (intercept
coefficient omitted for space). Dots represent estimated effects, and
lines represent 95% CIs.

5 EXPERIMENT 2
In experiment 1 we find that participants are more sensitive to the trend
underlying samples from a noisy time series when using HOPs rather
than error bars for a decision aid. However, in light of prior work
demonstrating that people struggle to interpret error bars [6, 14, 31]
and that bar encodings induce biased judgments of probability [50],
this result is not entirely surprising. How might these results differ if
we compare HOPs to a more effective static visualization than error
bars and remove the influence of the within-the-bar bias from our vi-
sual encodings? Also, the differences between HOPs and error bars in-
ferred from the results of experiment 1 conflate the effect of animated
vs static encodings with the effect of discrete sampling vs summary
statistical representations of probability. In experiment 2, our primary
aim is to use the evaluation framework we developed to isolate the
effect of animated vs static encodings of uncertainty. Thus, we use
a similar study design to compare HOPs composed of lines (instead
of bars) to static line ensembles (Fig. 1, middle right). We choose
line ensembles as our control condition because they use a frequency
representation of uncertainty which is superior to error bars, and they
aggregate the discrete samples shown in HOPs into one static view.

5.1 Methods
With the exception of the following changes, the methods used in our
second experiment were identical to the methods used in the first.

5.1.1 Uncertainty Visualizations

We tested three uncertainty visualization conditions in our second ex-
periment. Two of these were HOPs with lines instead of bars (Fig. 1,
right). We test two HOPs conditions to examine whether the benefits
of HOPs persist at very high frame rates where the participant cannot
cognize individual samples. The fast HOPs condition displayed each
sample for only 100 ms in order to test the limits of visual ensemble

processing. The regular HOPs condition displayed each sample for
400 ms, matching the presentation rate chosen by Hullman et al. [36].
Recall that HOPs in experiment 1 displayed each frame for 1500 ms,
following the visualization design of the NYT. In contrast, the faster
frame rate of the regular HOPs condition in experiment 2 reflects our
a priori estimate of optimal animation parameters.

The static visualization condition in our second experiment was a
line ensemble (Fig. 1, middle right). The line ensemble visualizations
displayed the same samples as HOPs using the same line encoding,
but lines were aggregated into one static view. We chose to use 50
lines per ensemble with representative sampling from each month in
order to maintain the perception of a discrete representation of uncer-
tainty. We did not match the lines per ensemble to the lines shown
across all frames of the HOPs because we cannot know which lines
users attended to in the HOPs condition. By comparing HOPs to line
ensembles we investigate the impact of animating vs aggregating dis-
crete sampling-oriented representations of uncertainty.

5.1.2 Experimental Design

We tested visualization conditions between-subjects, whereas visual-
ization condition was a within-subjects comparison in Experiment 1.
We changed to a between-subjects comparison in order to avoid ambi-
guity about which visualization condition was informing participants’
mental representation of the two possible underlying trends. Just like
the first experiment, each participant completed two blocks of 60 trials
under the same sampling procedure as before. However, in Experi-
ment 2 both blocks of trials were completed under one visualization
condition. Thus, we sampled twice the number of trials per PF fit in
the second experiment as we did in the first. We chose to sample 120
trials per PF in order to improve the quality of our JND and PF spread
estimates and reduce the role of sampling error in our results.

5.1.3 Analysis Approach

We used the same maximum likelihood estimation procedures as in
Experiment 1. For statistical inferences on JNDs, PF spreads, and con-
fidence fitness, we used a linear model with visualization condition as
a predictor. For Experiment 2, we preregistered6 a secondary analysis
of confidence reporting on each trial, similar to the exploratory anal-
ysis in our first experiment. We used a mixed-effects linear model of
reported confidence with fixed effects of visualization condition, level
of evidence in the stimulus, whether or not the participant answered
correctly, and the interaction between evidence and correctness. We
also included a random effect for individual differences.

5.2 Results and Discussion

5.2.1 Just-Noticeable Differences (JNDs)

We found that JNDs were lower in the regular HOPs condition (Fig. 8,
left) than in the line ensembles condition (Est = -1.22; 95% CI: -2.18
to -0.26; t = -2.52; p = 0.01). This suggested that animating hypotheti-
cal outcomes across frames instead of aggregating them into one static
view facilitated correct judgments of the underlying trend in samples

6https://osf.io/gw4cj/register/5771ca429ad5a1020de2872e



Fig. 8. Estimated regression coefficients for mixed-effects linear models of each psychophysical response variable in Experiment 2 (intercept
coefficient omitted for space). Dots represent estimated effects, and lines represent 95% CIs.

Fig. 9. Estimated regression coefficients for our mixed-effects linear
model of confidence reports in Experiment 2 (intercept coefficient omit-
ted for space). Dots represent estimated effects, and lines represent
95% CIs.

conveying a lower level of evidence. JNDs were also lower for partici-
pants who used fast HOPs rather than line ensembles as a decision aid
(Est = -0.74; 95% CI: -1.69 to 0.22; t = -1.52; p = 0.13). However, this
effect was small and unreliable. When the frame rate of HOPs was
faster, gains in performance were attenuated. Most individual JND es-
timates were in approximately the same range regardless of visualiza-
tion condition. The effects we found were largely driven by a subset
of individuals, mostly in the line ensembles condition, who showed
little sensitivity on the task (JNDs > 9 absolute log likelihood units).
It seems that animating hypothetical outcomes at a particular frame
rate leads to more consistent levels of sensitivity across observers in
judging samples from a noisy time series.

5.2.2 Psychometric Function Spreads

In line with the results from our first experiment, we found that visu-
alization condition did not seem to impact PF spreads. On average,
spread estimates were not reliably different for participants in the reg-
ular HOPs, fast HOPs, and line ensemble conditions (Fig. 8, middle).

5.2.3 Confidence Fitness

Confidence fitness was not reliably different across visualization con-
ditions (Fig. 9, right). We speculate that animation of hypothetical
outcomes, compared to a static depiction of the same outcomes, may
have little distorting effect on the efficacy of confidence monitoring.

We ran a mixed-effects linear model on confidence reporting data
(Fig. 9) similar to the exploratory analysis in Experiment 1. On aver-
age participants reported lower confidence in the fast HOPs condition
than in the line ensembles condition (Est = -2.94; 95% CI: -5.70 to
-0.17; t = -2.07; p = 0.04). Participants in the regular HOPs condition
also reported lower confidence on average (Est = -2.34; 95% CI: -5.09
to 0.44; t = -1.64; p = 0.10), although this effect was not reliable. These
results were in contrast with those of Experiment 1, in which partici-
pants reported slightly higher confidence on average when using HOPs
rather than error bars as a decision aid. This apparent reversal of effect

may have occurred because line ensembles establish a higher baseline
for confidence than error bars, but it could also be noise.

Our findings regarding trial-level predictors were consistent with
those of the first experiment. We found that participants were more
confident on trials where they were correct (Est = 1.96; 95% CI: 1.04
to 2.88; t = 4.18; p < 0.001) and that there was an interaction between
correctness and the level of evidence presented (Est = 1.34; 95% CI:
1.15 to 1.53; t = 13.77; p < 0.001). We also found a minuscule ef-
fect of the level of evidence in a stimulus on confidence (Est = 0.19;
95% CI: 0.01 to 0.37; t = 2.04; p = 0.04). Similar to our first experi-
ment, our raw confidence data followed the predictions of Sanders et
al. [56], who created the confidence fitness algorithm. Their model
predicted that the relationship between confidence reporting and the
level of evidence presented in a stimulus is modulated by correctness
of participant responses. However, our implementation did not pro-
duce this predictive behavior (see Supplemental Materials).

6 DISCUSSION AND FUTURE WORK

6.1 Findings and Interpretation

In experiment 1, we find that users are more sensitive to the underlying
trend in samples from a noisy time series when using HOPs rather than
error bars as a decision aid. This suggests that sampling-oriented pre-
sentations of uncertainty lead to better comprehension of uncertainty
for the purpose of perceptual decision-making than summary statisti-
cal representations of uncertainty. This finding is consistent with the
literature on frequency presentations of probability [30, 24, 25, 32],
sampling-oriented uncertainty visualizations [18, 36, 35, 40, 47], and
the ensemble processing abilities of the human visual system [3, 4, 29,
33, 44]. Our first experiment extends this line of inquiry by (1) apply-
ing vision science methodology to uncertainty visualization evaluation
and (2) addressing the question of whether HOPs can improve sensi-
tivity to uncertainty information in the public domain.

In our second experiment, we isolate the effect of animation on user
perceptions of probability. We compare HOPs, at two different frame
rates, showing hypothetical sets of 12 outcomes as lines to static line
ensembles, which show the same samples using the same line encod-
ing but aggregated into one static display. We find that participants in
the regular HOPs condition (400 ms per sample) are more consistently
sensitive to the underlying trend in samples from a noisy time series
than participants in the line ensembles condition. However, this effect
is attenuated for fast HOPs (100 ms per sample). Perhaps, the ability of
the visual system to automatically process ensembles breaks down be-
yond a certain frequency. Future work in information visualization and
vision science should systematically test ensemble processing abilities
across a more granular set of frame rates to try to pinpoint the limita-
tions of the visual system in processing this kind of display.

Our analyses of confidence fitness in both experiments suggest that
the efficacy of participants’ confidence monitoring was not systemat-
ically impacted by visualization conditions. Confidence fitness is a
unitless latent parameter of a model describing the degree to which re-
ported confidence matches predictions from a Monte Carlo simulation
based on signal detection theory. As such, it is difficult to interpret the
practical significance of these null results.



6.2 Limitations

6.2.1 Confidence Fitness

Confidence as a construct is difficult to interpret. Confidence fitness
contextualizes confidence reporting data in comparison to a theoreti-
cal ground truth, quantifying the degree to which confidence reporting
fits a particular statistical definition. In principle, this tells us whether
reported levels of confidence are warranted based on the presented ev-
idence and the perceptual sensitivity of the user. However, we find
that the algorithm does not consistently predict reported confidence,
and this suggests that there may be wrong assumptions in the model
(see Supplemental Materials). Future work should search for better-
fitting models to establish a ground truth for confidence. Alternatively,
perhaps a normative account of confidence, which assumes that con-
fidence means the same thing to participants and researchers, is not
appropriate considering the intersubjectivity of confidence reporting.

6.2.2 Psychometric Functions

A typical approach when using psychometric functions (PFs, Fig. 5) to
model perceptual decision-making is to estimate JNDs and use statis-
tical inference to detect shifts in the sensitivity of participants’ percep-
tions under different conditions, quantified as differences in JNDs. In
doing this, we fit a richly descriptive model but throw out all informa-
tion other than a point estimate in the process of statistical inference.

However, we can leverage other aspects of the PF for inference. We
did this by examining often ignored PF spreads, which represent noise
in the perception of evidence. Judging by the null effects of visual-
ization on PF spreads in this study, one might think they are an insen-
sitive measure of visualization effectiveness. However, the change in
PF spreads over time within an individual measures of how quickly
people learn a task on a given interface. Since our experiments were
not designed to measure such a learning effect, this remains a promis-
ing direction for future work. We also demonstrated how estimates
of the PF spread can be leveraged, along with signal detection theory
(Fig. 2), to bootstrap estimates of expected confidence reporting [56].

The core problem with the traditional use of JNDs is that PF fitting
and statistical inference are relegated to separate computational mod-
els. In future work, we intend to rethink perceptual modeling using
PFs and incorporate the entire procedure into a hierarchical Bayesian
modeling approach [49].

6.3 Design Guidelines

Our findings imply that uncertainty visualizations in public-facing
venues such as the news have a measurable impact on perceptions of
uncertainty. Designers of uncertainty visualizations for public audi-
ences have a responsibility to use uncertainty representations which
promote accurate perceptions of probability.

HOPs and other sampling-oriented displays like line ensembles are
particularly helpful when understanding the process that produced data
is critical. In such cases, summary statistical encodings like error bars
conceal important information about variability behind opaque statis-
tical constructs like standard error [6, 14, 15, 31]. In contrast, showing
discrete outcomes from the process which produced the data offers a
more interpretable rendering of uncertainty [18, 24, 25, 32, 36, 35, 40],
especially when viewers are unlikely to have statistical training.

The trade-off between static sampling-oriented visualizations and
HOPs is mostly a question of how these techniques interact with the af-
fordances of the visual system. In the case of static sampling-oriented
visualizations, designers should consider whether displaying too many
outcomes in one view will disrupt the perception of discrete outcomes,
resulting in a density encoding rather than the intended frequency en-
coding. Density encodings for uncertainty are interpreted less consis-
tently than frequency encodings because they describe probability in
the abstract rather than showing users an experiential representation of
uncertainty [36, 35, 40]. Displaying too many outcomes in one view
also might lead to the problem of crowding, the inability of the visual
system to generate accurate percepts of cluttered scenes [4]. In the
case of HOPs, designers should consider whether the audience will

allocate the necessary attention to integrate outcomes over time. Ad-
ditionally, the designer should choose a frame rate for HOPs which is
not so fast that the viewer cannot cognize individual observations and
not so slow that the viewer becomes impatient. Interestingly, we and
colleagues in our lab independently chose a similar frame rate to the
one tested in prior work on HOPs [36], 400 ms per sample. Future
work should examine a range of possible parameters and empirically
establish the optimal design for HOPs.

Although communicating uncertainty is recommended in order to
emphasize that outcomes may not always resemble their expected
value [21, 23], in some cases uncertainty visualizations may not be
well-matched to the intended task. If uncertainty is unlikely to aid in-
terpretation (e.g., when reading a point estimate), a direct encoding of
central tendency might be preferred. Prior work shows that HOPs are
inferior to point estimates with error bars or violin plots if the task is
to estimate central tendency of highly variable outcomes [36]. In some
scenarios involving decision-making, communicating the uncertainty
in the process which produced the data might introduce confusion,
anxiety, or indecision [46]. However, failing to show uncertainty may
lead to a false sense of security in visualized outcomes [5, 58]. De-
signers should consider the needs and background of their audience in
order to determine how and whether or not to visualize uncertainty.

7 CONCLUSION

In our study, we demonstrate that animated sampling-oriented uncer-
tainty visualizations can support perceptual decision-making in a re-
alistic context. Since our task requires users to integrate information
about the central tendency and variance of distributions and leverage
this information to make inferences about the likelihood of samples,
performance on this task is a proxy for the kind of reasoning which
is necessary to understand the use of statistics in science [21, 23].
The degree to which different uncertainty visualizations support per-
formance on this task should be considered an indication of their effi-
cacy for facilitating nuanced statistical reasoning. Whether or not the
gains in performance associated with HOPs on this task can translate
into long-term improvements in statistical literacy is an open question.
Future research should examine, in a longitudinal study, whether inci-
dental exposure to various visual representations of uncertainty can fa-
cilitate learning of statistical reasoning. If it turns out that the benefits
of HOPs for complex tasks like ours extend to lasting improvements
in statistical reasoning, this would suggest that the incorporation of
certain uncertainty visualizations into informal contexts like the news
promotes a more statistically literate society.
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