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ABSTRACT

Bayesian statistical analysis has gained attention in recent
years, including in HCI. The Bayesian approach has several
advantages over traditional statistics, including producing
results with more intuitive interpretations. Despite growing
interest, few papers in CHI use Bayesian analysis. Existing
tools to learn Bayesian statistics require significant time in-
vestment, making it difficult to casually explore Bayesian
methods. Here, we present a tool that lowers the barrier to
exploration: a set of R code templates that guide Bayesian
novices through their first analysis. The templates are tai-
lored to CHI, supporting analyses found to be most common
in recent CHI papers. In a user study, we found that the tem-
plates were easy to understand and use. However, we found
that participants without a statistical background were not
confident in their use. Together our contributions provide a
concise analysis tool and empirical results for understanding
and addressing barriers to using Bayesian analysis in HCL
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1 INTRODUCTION

The Bayesian approach to statistical analysis has been the
focus of increasing interest in recent years as an alterna-
tive to the traditional statistical approach, called alternately
frequentist statistics or null hypothesis significance testing
(NHST). Partly, this interest is driven by its increased accessi-
bility: computationally expensive fitting procedures used in
Bayesian statistics can now be run on many personal comput-
ers [6, 27]. Because of its ability to integrate prior knowledge
to reduce the chance of overfitting to extreme observations,
Bayesian analysis has also been proposed as a way to address
some of the issues raised by the replication crisis occurring
in scientific research. A number of high-profile replication
failures have called attention to weaknesses in the dominant
approach to analyzing and reporting statistical results.

Bayesian analysis is particularly well-suited for the needs
of researchers who publish at CHI. For one, through the use
of priors, the Bayesian approach provides a formal way to
build on evidence. Small-n studies are common in HCI re-
search, a product of the field’s focus on early evaluations of
novel systems. The frequentist approach provides no way
to build on this knowledge other than running more studies
with larger samples sizes, a requirement that is often imprac-
tical in HCI research [27]. In an ideal Bayesian analysis, each
successive study builds on the knowledge gained in previous
work, affording more precise estimates of effect sizes.

In addition, Bayesian analysis produces results that are
more intuitively interpretable by people with a range of sta-
tistical knowledge. (This claim is discussed in more detail
in Section 2, Background.) NHST relies on some measures
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that are frequently misinterpreted, even by experienced re-
searchers. Studies have shown that two of the most important
statistics in NHST—the confidence interval and the p-value—
are commonly misunderstood. For CHI, which prioritizes
making the results of research accessible to a wide audience,
it is particularly important that statistical results are reported
in a way that can be understood intuitively.

Interest in Bayesian methods is visible in CHI through
sessions and papers that argue for increased adoption of
Bayesian methods in CHI research (e.g. [7, 25, 27]). However,
very few CHI papers have utilized Bayesian analysis in in-
terpreting the results of their research. Barriers to adoption
exist, not least that individuals must bear switching costs to
make the change, investing significant time and effort into
learning an entirely new approach to statistics in order to
complete the analysis. Online tutorials and courses exist to
ease the transition (e.g. [33, 35]), but are still require sub-
stantial investment of effort before one can independently
complete a Bayesian analysis of their own data.

In this paper, we present a set of user-friendly R Mark-
down templates written specifically for a CHI audience that
guide users step-by-step through a Bayesian analysis. ! The
analyses in the templates are Bayesian analogues for some
of the statistical tests we identified as most common in CHI,
such as one- and two-way ANOVA and t-tests. The tem-
plates walk the user through analysis in straightforward
prose that explains each chunk of code, while also minimiz-
ing the amount of new code a user has to write in order to
successfully complete an analysis. The format allows the user
to explore Bayesian analysis with more ease and confidence
than code written from scratch or adapted from tutorials.
The templates are intended for users who have some experi-
ence with NHST statistics, but requires minimal experience
with R and no experience with Bayesian statistics.

We present a user study that demonstrates the templates
can be used even by people who have no familiarity with
Bayesian analysis. The user study also provides evidence to
better understand the barriers to adopting Bayesian methods.
Some users, especially those without a background in statis-
tics, tended to lack confidence in the analyses they produced.
The user study presents preliminary evidence for strategies
to increase user confidence and analysis accuracy.

2 BACKGROUND
What is Bayesian statistics?

The core idea of Bayesian analysis is that Bayesian inference
is a "reallocation of credibility across possibilities," where
the "possibilities" are parameters in a statistical model [33].
In other words, Bayesian inference is a formalized way of
making a best guess of what one expects to see in the data,

1Code templates at www.github.com/cdphelan/bayesian-template.

and then using new data to adjust the expectations of that
best guess. A Bayesian model has three components [33, 35]:

(1) A likelihood function: Determined by the statistical
model. It is a function of the parameters in the model,
and computes the probability of some observation oc-
curring, given some set of parameter values.

(2) Parameters: As in frequentist models, these are the
variables in the model. Parameter values are unknown
and are estimated from the data.

(3) Priors: The probability distributions for each of the pa-
rameters in the model. These are the "best guesses” of
what one expects to see in the data, before examining
the data. Priors are used to constrain parameter values
to reasonable ranges. Bayesian priors come in a variety
of forms. A strongly informed prior might be one drawn
from the results of similar past observations, allowing
one to combine previous results directly with new data.
Strongly informed priors are not always available, and
may be harder to defend; more commonly, weakly in-
formed priors are used. These priors may be informed
by prior literature or prior experience of a domain, but
are chosen to only minimally restrict the posterior to
a range of plausible values. Priors that do not restrict
the parameter values are called flat priors.

Using these three components—the likelihood function,
the parameters, and the priors—together with a set of ob-
served data points, the Bayesian estimation process updates
the prior distribution to produce a posterior distribution. The
posterior is a probability distribution describing the likely
values of the parameters, given the prior, the model, and
the observed data. Put another way, this process combines
observed data from the current study with prior knowledge,
reallocating credibility across the parameters, and produces
anew best guess for the relative credibility of each parameter
value. This new best guess is the posterior distribution.

Priors are the most distinctive component of Bayesian
analysis, and for many the most difficult to understand. Prior-
setting is an inherently subjective process; Bayesian text-
books often describe "correct” priors with descriptions such
as: "The prior must pass muster with the audience of the
analysis, such as skeptical scientists" [33]. Bayesian propo-
nents have argued that priors are not any more inherently
subjective than other model assumptions in NHST [2, 35].
The Bayesian prior forces one to make assumptions about
prior knowledge explicit, which in turn makes it easier to ex-
amine and question those assumptions. This often involves
experimenting with different priors (for example, when there
is no strong prior available), and evaluating how sensitive
an analysis is to different prior beliefs.
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Why use Bayesian statistics?

The debate between proponents of Bayesian and frequentist
statistics is not settled. In this section, we provide a brief
overview of some of the advantages of choosing Bayesian
statistics; the sources in this section address the debate in
more detail (particularly [2, 6, 32]).

One of the great strengths of Bayesian analysis is the use
of priors, which serves as a formal method for building on
knowledge across studies. This knowledge accrual affords a
more precise estimation of true effect sizes, a statistic that
single studies often estimate poorly [22]. This is a particu-
larly important feature in HCI, as other formal methods of
knowledge accrual (i.e. meta-analyses) are rarely used [27].

Bayesian analysis can also produce results that are more
intuitive to understand than frequentist results, which are
frequently misunderstood even by experts. For example, a
frequentist 95% confidence interval, is often interpreted as
meaning that the true parameter value lies somewhere within
the interval [18]. In fact, it means that if the experiment
was repeated many times, 95% of those intervals (but not
necessarily for the experiment at hand) would contain the
true parameter value. However, for the Bayesian analogue,
the credible interval, the intuitive interpretation is the correct
one: there is a 95% probability that the true parameter value
lies within the credible interval, conditional on the prior.

Bayesian analysis avoids using p-values, instead relying on
credible intervals and effect sizes. P-values, like confidence
intervals, are prone to misinterpretation: a survey of 70 ex-
perienced researchers found that only two understood the
meaning of statistical significance captured by p-values [40].
For example, p-values do not indicate if the size of an effect
is important, only that an effect probably exists [25, 43].

Because of these weaknesses, a number of authors have
argued for discarding p-values entirely in favor of effect
sizes [9, 25, 32, 43]. Frequentist statistics can produce effect
sizes, but often under-emphasize them [27]. Bayesian analy-
sis brings effect sizes to the foreground and provides extra
tools to increase the accuracy of effect size estimates.

This emphasis on effect sizes is one of the reasons Bayesian
analysis has been raised as a way to address the replication
crisis occurring in many scientific fields [1], where a number
of highly cited studies have failed to replicate (e.g. behavioral
priming in psychology [8]). Evidence suggests that many
published studies are in fact false positives [22].

Small-n studies, which are common in HCI, are particu-
larly susceptible to false positives [22]. Bayesian analysis can
be used to correct this by setting skeptical priors (i.e. strong
priors) that shrink overestimated effect sizes that small-n
studies tend to produce [27]. Additionally, Bayesian methods
are especially useful for small-n studies because they do not
rely on asymptotic properties of the sampling distribution, a

foundational assumption of frequentist methods that small
sample studies often fail [36]. For these reasons and more,
authors have argued that Bayesian methods are well-suited
for research in HCI (e.g. [25, 27]) and other fields (e.g. [6, 32]).

Existing tools for learning Bayesian methods

A number of tutorials and textbooks exist that teach Bayesian
statistics. One popular textbook is Statistical Rethinking by
Richard McElreath, which includes an R package for Bayesian
analysis, rethinking, that was custom-built for the text [35].

Another popular textbook is Doing Bayesian Data Analysis
by John K. Kruschke [33]. A particular advantage of this text-
book is that it includes a table of Bayesian analogues of many
NHST analyses, such as t-tests and logistic regression. There
are also many code examples, available as a downloadable
zip file, that work through many different types of analyses.

Both textbooks prioritize laying down a solid conceptual
grounding of Bayesian statistics, but the tradeoff is that they
require a significant investment of time and effort before
one can actually complete a Bayesian analysis with one’s
own data. In McElreath, for example, the text provides few
shortcuts for anyone who wishes to easily "translate” a given
frequentist test to Bayesian terms. Kruschke provides more
guidance for "translations" through extensive code examples;
however, the example code is complex and difficult to parse
without referencing the textbook heavily.

Though both of these textbooks are strong examples of
how to teach Bayesian concepts, both have significant "start
up costs" before a user can perform an independent Bayesian
analysis. For casual explorers, there are few options.

Active learning and statistics pedagogy

Instead of asking users to invest large amounts of time and
effort up front to establish a knowledge base in Bayesian
concepts, the templates presented here drop users directly
into a Bayesian analysis and break apart the process, so users
can work backward in their understanding.

This strategy is drawn from active learning, a philosophy
of teaching that prioritizes students becoming actively in-
volved in the learning process [3, 10]. Active learning encom-
passes a wide variety of approaches, including interactive
demonstrations [42] and replacing lectures with workbooks
or tutorials [13]. In traditional classroom settings, active
learning strategies have been repeatedly demonstrated to
improve student performance [4, 13, 16, 31]. This has been
found to be true across academic fields, including statistics.
For example, Carlson and Winquist found that students out-
performed a control group when a "workbook" class struc-
ture was employed: instead of lectures, students read very
short introductory text and then worked through example
problems on an online homework portal [4]. Similar findings
exist for the use of active learning in MOOCs. Koedinger et al.



found that students learn more with "learn by doing" activity
modules, over simply reading or watching videos [31].

Experts in statistics pedagogy have argued that focusing
on theory and rule memorization fails to engage students
meaningfully. Instead, they argue for alternate strategies
such as having students work through analyses that use real
data, and automating computations and visualization gen-
eration as much as possible in order to avoid complications
that interfere unnecessarily with student learning [5, 37].
We employ these strategies in our templates, and present a
usability study to assess whether people appear to benefit
from being “dropped in” to Bayesian analysis.

3 TEMPLATE DESIGN
Motivation

Despite the advantages of Bayesian statistics, very few papers
published in CHI use Bayesian statistics in the analysis of
their results. Searching papers in the last five years of CHI,
we found only seven [11, 23, 26, 28, 34, 38, 44].

This is at least partly because of switching costs: learn-
ing a new approach to statistics can be time-consuming and
difficult. To address this barrier, we propose a set of R code
templates where each template guides the user through a
different Bayesian analysis, allowing them to explore simple
Bayesian analyses with no advance preparation outside of
reading through the template. Researchers can use their own
datasets, so that they can explore the analysis using data that
is meaningful to them. The templates also support more ad-
vanced users who wish to produce analyses for publication.

We had three main design goals for the templates:

(DG1) Allow users to easily complete a Bayesian analysis,
even with no prior knowledge of Bayesian statistics.

(DG2) Communicate statistical results in a way that matches
people’s intuitive interpretations of uncertainty. This
is particularly important for a CHI audience, which
comprises people with a range of expertise in statistics.

(DG3) Prioritize the particular needs of CHI researchers. The
templates should support the analyses that are most
relevant to CHI researchers.

In the following section, we describe the design of each
component of the template, and how each component sup-
ports these design goals.

Set variables

Installations
Read in data

Set priors

Check priors

Design

Template format & structure. The code templates are R Mark-
down files, a type of notebook interface that combines nar-
rative text and chunks of code into a single document. This
choice was informed primarily by the first design goal (DG1):
the template walks through every step in plain words, ex-
plaining the code chunks that are interspersed throughout
the text. This structure makes it easy to follow along with
the analysis without having to interpret large blocks of code.
In addition, the narrative text is written in a style that is
intended to be clear and encouraging, with minimal jargon;
it assumes little knowledge of R or technical statistical terms.

To further simplify understanding (DG1), we created the
templates with the goal of minimizing the need to write new
code, or even to parse the existing code. Where changes
to the code are necessary, the code chunk is preceded by a
numbered list of items and descriptions of what need to be
changed. The workflow of the template is diagrammed in
Fig. 1. As shown in the figure, only four steps require user
input, under the headings "Set up" and "Set model."

Finally, all the templates are pre-filled with an example
analysis, using a concrete example to make it easier to follow
along (DG1). In keeping with DG3, prioritizing the needs of
CHI researchers, the example analyses were all done with
data from a 2016 CHI paper with Bayesian analysis by Moser
et al. about choice overload in an e-commerce context [38].

Supported analyses. The first step in Bayesian analysis is
to create a model. To simplify this process, we created a
set of templates where the model is already created; users
then simply select from the available options and customize
the model to their data. These are the steps under the "Set
model" heading in Fig. 1. To support casual exploration of
Bayesian analysis, the models we selected for the templates
all have the same assumptions as their frequentist analogues,
so that a user can make a post-hoc shift from a frequentist
to Bayesian model without threatening the model’s validity.

When choosing which models to support in the templates,
the most important implication of DG3 was to ensure that
the templates were compatible with the most common sim-
ple statistical tests present in CHI research papers. Using
the Digital ACM database, we searched through papers from
recent years of CHI to get an estimate of which analyses

Visualizing results ]
Model summary Static posterior plot

HOPs posterior plot
HOPs prior plot

Figure 1: Workflow of the code templates. Sections that require user input are bolded.



Table 1: Analyses supported by the code templates.

One independent variable

Interaction of two independent variables

# Sample plot ~ Variable Compatible with: | # Sample plot Variables Compatible with:
1 I-I Categorical ,([)_rtlfeisvay ANOVA 4 Ili g::zggggi two-way ANOVA
2 ”\/ Ordinal ’:)_;Zisvay ANOVA 5 g?:;ﬁzlr fcal two-way ANOVA
3 / Continuous linear regressions | 6 gzg;r;?;zls 1;::; Er:teegrfcstsii()or?s

were most popular in recent CHI research. We first skimmed
a sample of CHI 2018 papers to obtain a broad sample of
statistical tests present at CHI. Using the identified search
terms, we searched 2014-2018 CHI proceedings to get a rough
estimate of prevalence. The test in the most papers by far
was ANOVA (781 total; 133 one-way; 58 two-way; 298 re-
peated measures; 292 unspecified). About half of those were
followed up by post-hoc tests, most of which were t-tests:
t-tests appeared in 540 papers, 240 of which also had an
ANOVA. Less common but also notable were regressions
(338 total, 52% linear). Other tests we searched for included
correlations (256 papers) and Wilcoxon tests (296).

It would be difficult to give a single, generic model that
works across many repeated measures designs without cus-
tomization. For example, random effects models—commonly
used for repeated measures—may include varying slopes or
intercepts, and the correct model depends on the experimen-
tal design and/or assumptions about the data generating
process. A template for a random effects model would re-
quire heavy customization and thus introduces a higher risk
of errors. Therefore, in order to support the goal of creating
an easy-to-use template for a Bayesian novice (DG1), we
excluded analyses that involved repeated measures.

We also excluded all regressions except linear regression,
in order to define a small set of simple models that neverthe-
less cover a large number of use cases in CHI (approximately
55% of analyses published since 2014). Once that was done,
we were left with six types of analyses to support with the
code templates. The templates are summarized in Table 1.

Though the code for each analysis is fairly similar, in order
to support DG1, we split each analysis into separate tem-
plate documents; we were then able to explain each analysis
precisely and avoid complicated conditional statements in
the code that would make the code harder to follow.

To confirm that these analyses were compatible with DG3,
we used six datasets drawn from recent CHI papers to run

11 analyses through the templates. This ensured that the
templates were flexible to different datasets. Where the full
datasets were not publicly available, we simulated data using
descriptive statistics from the paper.

Bayesian analyses. Bayesian analyses are performed using
the R package rstanarm. This package uses syntax that is
similar to standard regression functions in R such as Im()
and glm(), making the code easier to follow for those users
who are already familiar with regressions in R (DG1). A
model summary is produced at the "Run model" step (Fig. 1).

Setting priors. Setting priors (under the "Set model" heading
in Fig. 1) is the most conceptually difficult part of completing
a Bayesian analysis with our template. Thus, in order to stay
consistent with DG1, we simplified certain aspects of setting
priors. For one, we limited all priors to a normal distribution.
As a result, the templates may not be compatible with anal-
yses that have parameters with non-normal distributions,
but in exchange the conceptual and technical difficulty of
setting priors is much reduced. In addition, we limited users
to setting two priors: the "control condition” prior, and the
"effect size" prior. This follows from our evidence for com-
mon CHI analyses (DG3), which found that the majority of
studies test for differences between experimental conditions.
For example, in an experiment testing a novel interaction
method (treatment) against current best practice (control),
the effect size would be the expected difference in perfor-
mance between control and treatment. This means that users
cannot set different effect sizes for different treatment con-
ditions, but again significantly reduces the conceptual and
technical difficulty of setting priors.

To further support users in exploring their choices of pri-
ors, a section called "Check priors" was included in the tem-
plate (under the "Set model" heading in Fig. 1). This section
generates a set of graphs that visualize a number of draws
from the priors. See Fig. 2 for an example output of this



section. This encourages users to test priors, checking that
their choices generate reasonable values for parameters and
examining them critically to see if the assumptions are valid.

Visualizing results. DG2, supporting intuitive interpretation
of results, came into play most in the last section of the
template, "Visualizing results" (Fig. 1). To facilitate reasoning
about distributions in the Bayesian analysis process, our
templates use hypothetical outcome plots (HOPs) [21, 24].
HOPs are visualizations of uncertainty created by randomly
sampling draws from a distribution and presenting each
sample as a separate frame in an animation (Fig. 3). Rather
than requiring users to reason about statistical constructs
like confidence intervals to infer probabilities, HOPs encode
probability via frequency [21].

Simply framing probabilities as frequencies (3 out of 10 vs.
30%) has been shown to improve performance on classical
Bayesian reasoning problems [14, 19], and recent research in
uncertainty visualization shows benefits of frequency fram-
ings for static plots [12, 20, 26]. More importantly, when
probability is encoded as frequency, a viewer needs only
watch the visualization to extract the frequency informa-
tion automatically [17]. HOPs have been demonstrated to
be more effective in communicating uncertainty when com-
pared to standard static representations such as error bars or
violin plots [21]. Studies have shown that compared to static
plots, HOPs improve multivariate probability estimates [21],
increase sensitivity to underlying trends in data [24], and
improve Bayesian reasoning [30].

One of the strengths of HOPs is that they afford more
accurate interpretations even among people who have no
background in statistics and have received little training on
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Figure 2: An example of the output of the "Checking priors"
section of the template, which plots five sample draws from
the priors set by the user. These plots are used to check the
priors’ plausibility. This example uses priors from an exam-
ple analysis modeled after Moser et al. [38].

bar HOPs

example frames

:

Figure 3: Example of bar and line HOPs using dummy data.
In this static example, individual frames are made transpar-
ent and combined into a single figure. In the animated ver-
sion, each individual frame appears sequentially. This af-
fords more accurate interpretations of uncertainty.

line HOPs

example frames

how to use the plots [21, 24]. This makes HOPs an especially
powerful tool for communicating results of CHI research to
an audience with a range of statistical backgrounds.

The templates also produce a static graph with credible
interval bars (see Fig. 4 for an example). This was done to
stay consistent with standard practice in CHI, but with a
Bayesian twist: the bars represent the 95% credible interval,
which are more intuitive and easier to understand (DG2)
than frequentist plots with error bars [18].

The plots in the template are generated using the ggplot?2
package, which most R users are familiar with; consistent
with DG1, this makes the code more readable and supports
easily customization of the plot aesthetics. HOPs animations
are generated using the gganimate package.

4 USER STUDY

We conducted a user study to evaluate if the templates were
able to guide participants through their first Bayesian analy-
sis. We were most interested in if the template was consid-
ered easy to use, and if the minimal conceptual background
provided in the template was sufficient for users to complete
the analysis confidently. We also wanted to learn more about
what barriers remained to adopting Bayesian analysis.

Method

We recruited 13 participants to complete two Bayesian anal-
yses with our templates, using datasets we provided. We
expect that most of the users of the template will be CHI
researchers who want to explore a Bayesian analysis us-
ing a dataset they have already analyzed using frequentist
methods. We therefore designed the user study to parallel
this expected use case as closely as possible, and recruited
primarily information researchers as participants.
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Figure 4: An example static output of the template with cred-
ible interval bars. This example plots a result from Moser et
al. [38] showing that one group from the study (maximizers)
tend to be slightly less satisfied than the second group (sat-
isficers), but with considerable overlap in the credible bars.

Participants. User study participants had two eligibility re-
quirements: they had never performed a Bayesian analysis
before, and they could use R at least well enough to do simple
statistical analyses and plotting. Participants were recruited
from a convenience sample of graduate students and faculty.
We paid participants $50 to attempt the task. Participants
were not required to successfully complete the template, but
were asked to try for at least two hours.

Protocol. The user study was conducted across three rounds
of testing (R1, R2, R3). Between the rounds, feedback from
the previous round of user testing was used to iterate on the
template design. Some minor changes (e.g. text or formatting
changes) were also pushed out during the rounds.

The protocol of the user study changed slightly after R1: R2
and R3 used different datasets with slightly different analyses.
Once results from R1 indicated that participants could com-
plete the analyses much faster than expected, we switched
one of the datasets to more precisely fit the templates. Oth-
erwise, the protocol in the two rounds was very similar.

In both rounds, qualifying participants were given a writ-
ten protocol and told to complete the tasks at their conve-
nience. They were told to email study members with any
questions or issues. They were also asked to rate their knowl-
edge of R on a 5-point Likert scale.

In the protocol, participants were given a link to a github
repository with all the template files and instructed to down-
load the repository as a zip file. A README for the repo
acted as a table of contents for the templates, describing
which template did which analysis.

In addition to the link to the code repository, participants
were given the datasets they would use to complete the
analysis. All datasets were derived from papers published in

CHI 2018; participants were also given the corresponding
published paper. One dataset, used in both rounds of user
testing, was a subset of data from Nordhoff et al., published
publicly on the researchers’ website [39]. The other datasets
used the user study were simulated from results published in
two other CHI 2018 papers with honorable mention awards.
These datasets were selected because the original analyses
were high-quality and used variables that did not require
extensive background knowledge to understand.

In R1, two datasets were used; participants were given one
of the two. Then, they were told they would be reproducing
two versions of a particular figure from the published paper.
This task was modeled to match the behavior of what we
assume to be the most common use case: researchers who
have already performed a frequentist analysis on their data
and are interested in comparing the plotted results. One set
of participants was asked to complete a one-variable analysis
first, then a two-variable analysis. To control for ordering
effects, the analysis order was reversed for the other set of
participants. Participants were randomly assigned to one
of the two orders. This afforded testing of two templates
(Templates 1 and 4) with two levels of difficulty.

When R1 showed that participants completed the analyses
faster than expected, the study protocol was changed for R2
and R3 so that each participant did two analyses with two
different datasets, instead of two analyses with the same
dataset. As in R1, all participants completed both a one- and
two-variable analysis, this time testing Templates 1 and 5.

To keep the task close to natural use, the protocol did not
specify whether participants should use weakly informative
priors or strong priors drawn from previous studies. Because
setting weak priors is a simpler process, it was expected that
most participants would use weakly informative priors.

After completing (or attempting to complete) the two tasks,
participants were asked to knit the template, an R Markdown
document, and return the HTML output file. In addition,
they answered two free-response questions. One question
asked to compare the results of the Bayesian and frequentist
analysis; the purpose of this question was to assess their
understanding of Bayesian methods. In the second question,
they were asked to report on what they perceived to be the
pros and cons of the template.

Results

User testing was conducted in three rounds. In most cases,
we report results aggregated over all three rounds of testing.
The exception is the prior-setting section of the template.
As that section required multiple iterations, we report the
results of different iterations separately.

Rounds of testing. Testing rounds were characterized by ma-
jor changes in the template or study protocol. After R1, the



datasets used in the testing protocol were changed, and ed-
its were made in the template to the installation and prior-
setting instructions. After R2, additional changes were made
to the prior-setting section. Changes to the prior-setting
section are discussed in more detail in the "Setting priors"
section of these results.

Participants. Over three rounds of user testing, 13 people
participated (6 women). The first round had 5 participants;
the second and third each had 4. All participants had at
least some knowledge of R code and frequentist statistics.
Twelve were graduate students or faculty; of those, ten were
information researchers. Seven rated themselves "slightly
knowledgeable" in R (a rating of 2 out of 5), and the remain-
ing participants rated themselves as "moderately” or "very"
knowledgeable (3 and 4 out of 5, respectively). None had
performed a Bayesian analysis before. Participants varied
in their experience of frequentist statistics, ranging from
relative beginners who had only done analyses in statistics
classes, to more advanced users who had extensive publica-
tion records of statistical analyses.

Ease of use. All participants were able to complete at least
one of the two assigned analyses; all but one participant was
able to complete both analyses. 2 All participants selected the
correct templates for their analyses from the six available.

After completing the installation process, most partici-
pants were able to complete the analyses faster than we
expected. Most participants were able to complete two anal-
yses in about one hour, with several people completing both
tasks in about 30 minutes.

Overall, participants said they found the template easy to
use. Many participants commented on how easy it was to
use, like B-1 3: "The template was super easy to use when you
figured it out and knew what parts to change and what types
of information it was looking for" D-1 had a similar comment:
"The template is pretty self-explanatory especially after going
through it once." L-3 was even more positive: "This is fun!"

Specifically, some of the most common positive feedback
related to the structure of the template. F-2 said one of their
favorite parts of the template was "the encouraging narrative
style," while C-1 said, "I liked how it read from beginning to
end like a narrative."

Several said the template structure contributed to their
ease of understanding. F-2 said the "not-too-long [code] chunks"
helped him understand what part of the analysis was being
conducted in each chunk. Similarly, E-1 said, "the notes about
what to change and what each chunk is meant to do were
excellent & helpful!”, sentiment echoed by several others.

%In R2, several users completed the two-variable analysis but were unable to
produce a knitted document because of a compatibility error with a package
used in the template. The issue has since been addressed.

3The numeral in participant IDs corresponds to their testing round.

The most difficult and time-consuming part of using the
templates for all users was installing the required R packages.
A list of troubleshooting options was added to the template
during the first round of testing. Though the installation is-
sues persisted, there were fewer reports of installation prob-
lems that the users could not resolve themselves.

Confidence of use. Though participants reported the template
easy to use, some of the participants also said they were
unsure of the accuracy of their results. As expected, the
majority of participants said that their choice of priors was
the main source of their uncertainty. G-2 said, "Although that
following your code was pretty simple and easy to complete the
task, I think I still don’t get what roles each parameter plays
out there [in the analysis]." C-1 had a similar comment: "The
only section I found a bit hazy was when I had to set the prior
parameters. 'm not completely confident that I interpreted the
prior effect size parameter correctly at first."

High levels of confidence were not expected, as the tem-
plate design prioritizes simplicity over deep understanding of
priors. However, that tradeoff had meaningful consequences
for usability, as L-3 pointed out: "It will take some degree of
trust to use this template.”

Like several participants, F-2 appeared to have a gener-
ally positive opinion of the template but wanted more in-
formation before relying on their own analysis: "If I learn
the proper usage and how to come up with priors myself, I
would definitely consider using [Bayesian analysis] in future
experiments.” These participants mentioned specific concepts
they would need to learn to bolster their understanding.

It appeared that more advanced frequentist statistical knowl-
edge helped people be confident in their priors. Participants
with a more extensive background in statistics were more
likely to set priors correctly and less likely to express a lack
of confidence in their analysis.

Of those who reported not being confident about their
choice of priors, most pointed out some aspect of the tem-
plate that aided their understanding. In addition to the clear
instructions, participants liked the "Checking priors" section
of the template, which visualized several results drawn from
the prior distribution and helped participants think about
their choices of priors. A prior-setting quizlet in R3 (see
following section) also received positive comments. How-
ever, these features did not completely resolve the lack of
confidence for all participants.

Even so, for many participants the templates seemed to
lower the barrier for future Bayesian analyses even if they
were not confident in their specific results. A number of par-
ticipants said they were more likely to use Bayesian analysis
in the future. Several participants said this was because the
templates broke apart the steps of the analysis, making it
easy to follow along. For example, E-1 said that though they



were uncertain about whether they had performed the analy-
sis correctly, "I did understand the *process* much better than
I had previously, and thus would be more likely to consider
Bayesian analysis in the future."

Setting priors. As expected, a number of participants found
it difficult to set priors for the Bayesian analysis. All set
priors that were "reasonable,” which we defined as priors
that produced results that were not meaningfully different
from the expected results. However, 6 of 13 showed some
evidence of misunderstanding how to set priors, all in R1 and
R2. Consequently, this section of the template was iterated
on more than any other section.

One common issue in R1 of user testing was misunder-
standing how to determine the standard deviations of each
parameter’s prior. To address this, we changed the template
after R1 so that the user inputs the mean and the maximum
plausible value of the parameter, instead of the mean and SD.
Then, the template calculates the correct SD using those two
numbers. After this change, every participant who was able
to set reasonable prior means also set prior SDs correctly.

In R1 and R2, a number of participants used data from their
current analysis to set priors. This is incorrect: priors should
be set using only information that would have been available
before gathering the current data. After R1 and during R2,
we made changes in the text of the template to emphasize
this principle. We also added an additional example in the
template of how to set strong priors. These changes reduced
the likelihood that participants would use their dataset to set
priors, but did not eliminate it. Participants also continued
to express a lack of confidence with their choice of priors.

As a consequence, to further aid understanding, for R3 we
created an optional six-question quizlet for users to check
their understanding of priors. The quiz included four exam-
ples of how to set both strong and weak priors, with the
intention of providing additional practice and building users’
confidence. It also emphasized the principle of not using
current data during prior-setting.

Four participants tested the template after the quizlet was
added. All four set priors correctly, and two mentioned the
quiz specifically: "I had no idea what priors were, and [the
quizlet] was really helpful” (L-3), and "the quizlet was helpful
in improving my understanding of priors" (K-3). The other two
said the information in the main template was sufficient and
they did not need to use the quiz. By chance three of the four
users in R3 had more advanced statistical knowledge than
the average usability tester, which may have helped them set
priors correctly. It is therefore not certain if the quiz would
be broadly helpful for building accuracy and confidence.

It also appeared that there was some risk of over-explaining
priors. Though some participants said they wanted more in-
formation on priors, several also said that the information

in the template caused them to expect prior-setting to be
harder than it was. One example was K-3, who said that the
quizlet was helpful but caused them to be "predisposed to
think [setting priors] was more complicated"

5 DISCUSSION

The purpose of the code templates is to support CHI re-
searchers in exploring Bayesian analysis, even as Bayesian
novices. The templates serve as a shortcut to more CHI re-
searchers producing high-quality Bayesian analyses, in ser-
vice of the overall goal of lowering the barrier to adopting
Bayesian analyses in CHI research.

To facilitate exploration, we made simplicity and ease of
use our top priority. For the templates, this meant 1) min-
imizing the amount of code-writing necessary and 2) pro-
viding the minimum amount of background information
on Bayesian concepts necessary for users to complete an
analysis. Prioritizing simplicity allows users to complete a
Bayesian analysis quickly and easily, even with no prior
Bayesian knowledge.

This strategy is consistent with the principles of active
learning. Instead of asking for a large up-front investment of
effort into learning Bayesian concepts, the templates allow
users to drop straight into the activity without any knowl-
edge and then work backward. Even in one’s first use, the
templates simplify analysis enough that users are protected
from many possible pitfalls, and will in most cases produce
reasonable results even with no prior knowledge. For exam-
ple, every user in our study produced results very similar to
the original analysis, even when they made errors in prior
setting. For users who want to investigate the conceptual
background more deeply, the templates’ step-by-step break-
down of the process better equips them to direct and focus
their learning.

Evidence from the user study indicates the templates suc-
ceeded in being simple and easy to use. Most participants
found the analyses easier to complete than they expected,
and commented positively on how the template instructions
were clear and easy to follow. Even people with no experi-
ence in R were able to complete the analyses successfully.

User study results also suggest the templates were largely
successful in helping users understand the process of Bayesian
analysis. Even those participants who were not confident in
their specific analyses often reported they were more con-
fident in their understanding of the process. They also ap-
peared to have specific and directed goals for learning more,
suggesting that the templates were able to help participants
establish concrete goals for learning.

For users of the template who are interested in taking
the next steps in learning more about Bayesian analysis, we
recommend Richard McElreath’s Statistical Rethinking [35]



and John K. Kruschke’s Doing Bayesian Analysis [33], both
excellent introductory textbooks for Bayesian analysis.

The user study also provided insight into barriers to adopt-
ing Bayesian methods. Across multiple iterations of the tem-
plate, there was persistent confusion over how to set priors.
Though we were able to address these issues in later iter-
ations of the template, some participants in late rounds of
testing still expressed some uncertainty about their choices
of priors. One particularly promising aid was the check-your-
understanding quizlet added in R3 of user testing. Though
participant response was positive, not enough users were
exposed to the quizlet in the user study to make confident
conclusions about its usefulness in this template; however,
similar quizzes deployed in the MOOC context have been
demonstrated to improve learning outcomes [31].

Importantly, even participants who set reasonable priors
often expressed some level of confusion or uncertainty over
them. This suggests that many users may need additional
guidance before they can set priors confidently. The amount
of guidance needed may depend on the user: evidence from
the user study suggests that people with a more extensive
background in frequentist statistics were better prepared to
understand priors using only the guidance from the template.

Overall, however, feedback from the user study indicates
that the templates were largely successful in guiding Bayesian
novices easily through their first analysis. It is important to
build tools that lower the barrier for adoption of Bayesian
methods at CHI. Bayesian analysis provides a formal method
of knowledge accrual that is particularly powerful for small-
n studies. For a field such as HCI, which produces many
small-n studies of novel systems but publishes few meta-
analyses [27], having such a tool is critical.

6 LIMITATIONS AND FUTURE WORK

The code templates we designed are inherently limited and
cover only a portion of the many types of analyses that can
be done using Bayesian methods. To keep analyses as simple
as possible, we excluded analyses that would be useful to the
CHI research community. As explained in "Supported anal-
yses" in template design, this was the reason for excluding
repeated-measures ANOVA, a common test in CHI papers.
Repeated measures tests often require users to make different
assumptions about how the data is generated, so choosing a
Bayesian analysis post-hoc may introduce errors.

Also for the sake of simplicity, we require that priors are
chosen from a normal distribution, which restricts the variety
of possible shapes of priors participants might wish to be able
to provide. In future work, we plan to expand the number
of templates to include more, and more complex, types of
analysis, and a wider variety of possible priors.

The choice to provide minimal conceptual background
information also had tradeoffs. Though it makes the template

simple and easy to follow, for some users, the information
provided in the template may not be sufficient for them to
confidently complete an analysis. Some users may need to
augment the template with external information in order
to complete an analysis confidently, particularly in relation
to setting priors. More research is necessary to determine
how to best guide users confidently through prior-setting.
Future research might benefit from results suggesting what
types of elicitation techniques for subjective uncertainty (see,
e.g., [41] for a review) best allow people of varying levels
of background articulate a subjective distribution, such as
graphical frequency-based and sample-oriented (i.e., HOPs-
like) representations [15, 20, 29, 30].

The user study also had limitations. The study only tested
three of the six available templates, as the three unused tem-
plates are extremely similar to the tested templates. In addi-
tion, the feedback measures in the survey were vulnerable
to demand characteristics, possibly causing overly positive
feedback. Though the questions were designed to minimize
demand characteristics, and participants were reminded to
be honest, some effect likely remained. Lastly, most partici-
pants chose weakly informative priors in the usability task.
Thus, though the templates do provide guidance on how to
set strong priors, the user study did not evaluate whether this
guidance was adequate. In future work, we will investigate
in more detail how to guide Bayesian novices through the
process of setting both weakly and strongly informed priors.

More generally, there is a need for more empirical research
to understand strategies for lowing the barrier to adopting
Bayesian statistics. Though there is much work in statistics
pedagogy (e.g. [5, 37]), most focuses on frequentist statistics;
there has been little work done to identify the best strategies
for teaching Bayesian methods.

7 CONCLUSION

Bayesian methods for statistical analysis have been gaining
attention in CHI in recent years, but adoption of Bayesian
methods has lagged behind. To address this gap between
interest and adoption, we have presented a set of code tem-
plates that walk users through simple Bayesian analyses.
The templates allow users to explore Bayesian statistics, and
break down the process of a Bayesian analysis to help in-
terested users better understand and direct their learning.
Results from a user study demonstrate the templates’ usabil-
ity; further, they provide preliminary evidence to advance
understanding of barriers to adoption of Bayesian methods.

8 SUPPLEMENTARY MATERIALS

Frozen versions of the templates are available in a zip file in
the supplementary materials. The most updated version of
the code templates, as well as documentation, are available
at www.github.com/cdphelan/bayesian-template.


www.github.com/cdphelan/bayesian-template
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