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ABSTRACT

The computer science research community and the broader pub-
lic have become increasingly aware of negative consequences of
algorithmic systems. In response, the top-tier Neural Information
Processing Systems (NeurIPS) conference for machine learning
and artificial intelligence research required that authors include
a statement of broader impact to reflect on potential positive and
negative consequences of their work. We present the results of
a qualitative thematic analysis of a sample of statements written
for the 2020 conference. The themes we identify broadly fall into
categories related to how consequences are expressed (e.g., valence,
specificity, uncertainty), areas of impacts expressed (e.g., bias, the
environment, labor, privacy), and researchers’ recommendations
for mitigating negative consequences in the future. In light of our
results, we offer perspectives on how the broader impact state-
ment can be implemented in future iterations to better align with
potential goals.
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1 INTRODUCTION

Scientists and the broader public have long grappled with the sci-
entist’s role in considering the societal consequences of their work.
According to philosopher of science Heather Douglas [16], scien-
tific thinking since the 1960s has tended to embrace the notion of a
value-free ideal, limiting the extent to which scientists engage with
non-epistemic social, ethical, or political values in the scientific
process. Yet, however well-established, this value-free ideal has
failed to address the many ways in which such values invariably
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infiltrate the scientific enterprise, including how a scientist might
make changes to their research agenda based on potential societal
consequences.

While the idea of values in design and technology is hardly
new (e.g., [18, 43]), the broader computer science community has
recently begun to make more concerted attempts to challenge the
value-free ideal. In particular, computer scientists have called for
researchers to consider the downstream consequences of their work
as part of the peer-review process [26], formally integrating the act
of reflecting on both positive and negative societal consequences
into the scientific enterprise. Suggestions like this one are timely, as
the computer science research community—as well as the broader
public—is becoming increasingly aware of the ways in which de-
ployed technologies have disproportionate negative impacts on
marginalized communities [7, 17, 32] and pose significant costs to
the environment [6, 39, 41]), and is demanding scrutiny to account
for negative consequences [15].

In 2020, the Conference on Neural Information Processing Sys-
tems (NeurIPS), a top-tier conference for machine learning (ML)
research, required that authors submit a broader impact statement
as part of each paper submission. As per official guidance, the state-
ment was meant to include both positive and negative potential
societal consequences. NeurIPS’s broader impact requirement mir-
rored the call put forth by Hecht et al. [26], and as a result of some
ambiguity in its messaging has been termed by Hullman [27] and
others as an “experiment,” ostensibly in facilitating more active and
intentional engagement within computer science around societal
consequences of research and technology.

One way to conceive of the act of writing the broader impact
statement is as an “ethical tool,” as defined by Moula and Sandin
[31]; that is, “a practical method and/or conceptual framework with
the main purpose of helping the user(s) improve their ethical de-
liberations in order to reach an ethically informed judgement or
decision.” Similarly, the broader impact statement is relevant to
the ongoing conversation around Algorithmic Impact Assessments
(AIAs) [30], which refer to methods of increasing accountability
around algorithmic systems. More broadly, such impact statements
may contribute to frameworks of Responsible Research and Inno-
vation (RRI) [33, 38] which help govern the R&D process in ways
that are responsive to ethical and societal concerns.

While the intended outcomes of the broader impact statement, as
envisioned by the NeurIPS conference organizers, are ambiguous,
the Hecht et al. [26] proposal suggests goals such as increased
transparency of impacts for the community, and encouragement
of reflection and research on ways to mitigate negative impacts.
In this paper we examine the content of NeurIPS broader impact
statements in light of these goals. Do broader impact statements
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capture a wide array of positive and negative consequences? Is there
evidence that authors are considering ways to mitigate negative
impacts? We present a qualitative thematic analysis of hundreds
of NeurIPS 2020 broader impact statements, characterizing the
impacts—both positive and negative—and recommendations for
mitigating negative consequences that researchers discussed in
their statements. Our underlying goal is to gain insight into what
and how researchers elaborated in their broader impact statements,
with an eye toward how our results may inform similar future
initiatives.

2 BACKGROUND

The broader impact statements we study operate as a governance
tool within the peer review process. Thus, we first briefly situate
our work within ideas of responsible research before connecting to
literature on values in science and technology.

2.1 Responsible Research

RRI can be understood as a process in which stakeholders “become
mutually responsible to each other and anticipate research and
innovation outcomes" [38]. This in turn relates to models of antici-
patory governance in which emerging technologies are steered in
order to be adapted to societal needs and ethical considerations [23].
In general, there are a range of approaches to RRI and anticipatory
governance including scenario-based methods which can help sys-
tematically explore potential outcomes, and participatory methods
which encourage the inclusion of societal stakeholders and feed-
back into the research process [12]. In this work we focus on impact
assessments as a mode of anticipatory governance that allows for
evaluation and engagement with the ethical implications of a given
technology. For example, Wright [44] introduces a framework for
ethical impact assessments which includes five guiding ethical prin-
ciples/dimensions (e.g., Respect for Autonomy, Nonmaleficence,
etc., which relate to earlier work by Beauchamp and Childress [5])
as well as an accompanying set of ethical tools and procedures to
consider a technology as it relates to the guiding dimensions.

AlAs, as previously mentioned, are impact assessments specifi-
cally within an algorithmic context. Moss et al. [30] outline several
remaining questions about the details of how AIAs work in prac-
tice. It is possible to imagine broader impact statements functioning
as an ethical tool within a larger AIA framework. However, it is
also important to note that the broader impact statement alone, as
defined by NeurlIPS, does not explicitly require wider engagement
with the public or communities that are likely to experience harms
that result from a certain technology’s deployment or use. Metcalf
et al. [29] point out that this could result in abstract discussions
of impacts that do not reflect impacts that are likely to be realized,
suggesting that the statement may work better as one potential
approach among other ethical tools used to surface relevant ethical
issues around a given technology.

2.2 Values in Technology

In addition to philosophical inquiry into the role of values in sci-
ence [13, 16], there is a substantial body of work that lays the
foundation for discussing the values embedded in technology. This
includes work such as Winner [43]’s re-envisioning of common

artifacts as political ones, work by Friedman [18] and others on
value-sensitive design, an approach to design that is closely inter-
twined with a consideration of values that may be built in to a
technology, and Barbrook and Cameron [4]’s writing on the combi-
nation of values of the New Left and the New Right into a particular
kind of “Californian Ideology” manifested in Silicon Valley’s tech-
nological innovations.

There is also a growing body of work that specifically exam-
ines values within the computer science community, including
how those values are ultimately reflected in new technologies. Ro-
gaway [36] describes values that are implicit specifically within
cryptographic work, and how these values may have shifted since
cryptography’s origins. Hanna and Park [24] question the value
of scalability in computer science, while Birhane et al. [9] provide
a study of prominent values found in the ML literature. In terms
of ethical deliberation around technology, Shen et al. [40] propose
“Value Cards,” a toolkit intended to facilitate deliberation around
technology and societal values. Within the specific domain of ar-
tificial intelligence (AI), recent attention has been given to value
alignment challenges and whether values should be embedded or
learned from data [37].

3 THE NEURIPS 2020 BROADER IMPACT
STATEMENT

In this section, we offer context on the NeurIPS 2020 broader im-
pact statement requirement as background to our study. Authors
submitting papers to NeurIPS in 2020 were required to also submit
a broader impact statement, which would not count toward the
official page limit. The official requirement from the call for papers!
is sparse, including the following instructions: “In order to provide
a balanced perspective, authors are required to include a statement
of the potential broader impact of their work, including its ethical
aspects and future societal consequences. Authors should take care to
discuss both positive and negative outcomes.”

While the Frequently Asked Questions (FAQ) page? explains that
a submission could not “be rejected solely on the basis of the Broader
Impact Statement," the call for papers states that “[sJubmissions
will also be considered on ethical grounds” and that a submission
may be rejected for ethical considerations” The conflict between
these statements invites confusion around the role of the broader
impact statement in determining acceptance status [27]. Beyond the
broader impact statements, the conference included an additional
ethical review process, through which peer reviewers could flag
papers for ethical concerns which would lead to thorough ethical
reviews of these papers by designated ethics reviewers [28]. While
official communication regarding ethics-related rejections is limited,
it is plausible to think that broader impact statements could have
played a role in the paper flagging process and subsequent ethics
review.

Official guidance for writing the broader impact statement was
limited, but included a note on writing statements on theoretical
work that the authors believe do not have foreseeable societal im-
pact. In particular, the FAQ page states that authors can write in
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their statement that “This work does not present any foreseeable so-
cietal consequence.” Additionally, the conference webpage provides
links to the call for broader impact statements to be incorporated
into the peer-review process by Hecht et al. [26], two unofficial
guides for statement writing [3, 25], and a NeurIPS paper published
in 2019 [20] which included a concluding statement very similar
to a broader impact statement. While Hecht [25]’s guide provides
high-level suggestions, such as to begin writing the broader impact
statement early, Ashurst et al. [3]’s guide provides authors with
guiding questions, an “Impact Stack” to help facilitate systematic
reflection on the layers of impact of a given technology, and mul-
tiple example statements. More broadly, Prunkl et al. [35] discuss
benefits, risks, and challenges of a NeurIPS-like broader impact
statement, and describe how the NeurIPS broader impact statement
fits within a larger context of ethics practices (e.g., IRBs).

The program chairs of 2020’s conference provide preliminary de-
tails [28] on the outcomes of the new broader impact requirement.
In particular, they write that “about 9% of the submission[s] did
not have such a section, and most submissions had a section with
about 100 words.” It is important to note that even though some
submissions omitted the broader impact section, all camera-ready
accepted papers were required to include it. Abuhamad and Rheault
[1] conducted a small preliminary survey (N = 50) of researchers,
the majority of whom submitted to NeurIPS 2020, and found that
the authors surveyed expressed “nonchalance” toward the broader
impact statement and saw it as a “burden,” although the major-
ity also spent less than two hours on composing the statement
itself. This research also found that there was confusion around
how statements would be assessed, and that authors would have
liked example statements as guidance. Additionally, Boyarskaya
et al. [10] conducted an initial analysis (N = 35) of NeurIPS 2020
broader impact statements that were available in paper pre-prints
before publication of the conference pre-proceedings. They identi-
fied potential limitations of the broader impact statements in order
to inform recommendations for future methods of anticipating
harms.

4 METHODOLOGY

In this section we describe the data and analytic approach to our
qualitative analysis of broader impact statements.

4.1 Data

We first created a dataset including the 1,899 papers in the pre-
proceedings of NeurIPS 2020. For each of these papers, we recorded
the title, author name(s), and link to the full-length PDF by parsing
https://papers.nips.cc/paper/2020. We then randomized the order of
papers and extracted broader impact statements from the PDFs as
needed for the analysis. We used regular expressions to extract all
text after the heading for “Broader Impact” and before a heading for
either “Acknowledgements” or “References”; this method typically
extracted the text for the broader impact statement of a given paper.
In cases where the automated extraction method failed (e.g., when
our parser did not account for a specific variation in heading titles),
we manually recorded the text of the corresponding broader impact

statement. These extracted texts formed the corpus® that we used
for subsequent analysis.

4.2 Analysis

We qualitatively analyzed broader impact statements using a the-
matic analysis approach [11, 19]. We began by sequentially open
coding excerpts from the randomly ranked set of collected impact
statements. We allowed themes to emerge from the data and fol-
lowed the method of constant comparison to continuously assess
the fit and organization of excerpts into stable conceptual groupings
that were triangulated across statements. To code, the first author
read statements while pulling out excerpts that fit into existing
thematic clusters of statements, or excerpts that could potentially
be the basis for new themes. Throughout the process, the first au-
thor considered whether a particular theme could be broken into
multiple themes, or whether themes could be re-organized to make
more conceptual sense. The first author also wrote memos to artic-
ulate and clarify intermediate understandings of themes as well as
relationships between themes.

We also practiced analyst triangulation [34] in which all co-
authors periodically met to discuss the conceptual organization of
themes and whether excerpts falling under particular themes fit
under said themes, updating the overall organization accordingly.
After coding 300 statements we felt themes were largely saturated
and stable with little new information by each next statement [21].
At this point, we stopped coding additional statements due to dimin-
ishing returns. We then revisited all 300 statements and tabulated
the prevalence of selected themes.

5 RESULTS

We find that authors primarily use the broader impact statement to
discuss consequences of their work and to at times offer suggestions
for how to mitigate potential negative consequences. Because these
topics naturally arise in the statements, we present our findings
as they relate to these two broad categories: Impacts and Author
Recommendations.

5.1 Impacts

In this section, we focus on features of broader impact statements
that relate to potential consequences of research. Thus, we begin by
describing how authors present potential consequences (Expression
of Impacts). Then we describe what main categories emerged in
terms of the types of impacts around which clusters formed (Types
of Impacts), and the relationship authors describe between theo-
retical work and foreseeable societal consequences (Relationship
to Theoretical Work). Finally, we present who authors say will be
impacted by their work (Who is Impacted?) and when authors sug-
gest society might see the consequences of their work (Timeframe
of Impacts). We provide counts for selected themes beginning in
Types of Impacts.

5.1.1  Expression of Impacts. Authors express impacts along multi-

ple axes. Specifically, we identify dimensions describing the valence,

3https://docs.google.com/spreadsheets/d/1S3YAsFeuc0Aex_2geA7nD-
qAm7FR8Lcu4eoMmEjUPVKk/edit?usp=sharing
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orientation, specificity, uncertainty, and composition of stated conse-
quences.

Valence. We find that statements range in the extent to which
they describe positive or negative consequences. We later describe
themes that arise around valence with respect to composition, in-
cluding patterns in how authors structure statements with regard
to positive/negative consequences (see Composition).

Orientation. We find that the areas of impact authors describe
vary in terms of their orientation toward more society-facing out-
comes (e.g., increased surveillance) versus more technically-oriented
outcomes (e.g., increased robustness of a system). Technically-
oriented consequences often have potential impacts on society
(e.g., increased robustness of a system used in the context of self-
driving cars could reduce the number of errors made, which keeps
people safe), however authors do not always explicitly note such
connections.

Specificity. Authors express consequences with a range of speci-
ficity. At the more specific end of the spectrum, authors say their
work can be used in particular ways in specific contexts such as
education (e.g., “this work will be integrated as part of the tools that
we intend to teach in Ph.D. courses” [91]T). Authors also point to
specific areas of research that their work will impact, specific ways
in which their work will contribute to a certain line of research,
or a specific type of person who will be impacted. In at least a
few cases, authors provide detailed, domain-specific case studies
describing how their work may impact society (e.g., Coston et al.
[58]" describe their work in the context of parole decisions), or give
examples of how the completed work may have already impacted
society (e.g., the environmental impacts of having trained neural
network models [73]").

In terms of very general consequences, authors sometimes name
broad impact areas (e.g., “This work primarily has applications in
the fields of psychophysics and crowdsourcing, and more generally,
in learning from human responses.” [94]) but don’t always explain
how the work will impact those areas. Finally, some authors express
the idea that societal outcomes are dependent on the use case, or
are application-specific, so societal consequences are difficult to
discuss.

Uncertainty. Authors contend with the limitations of their meth-
ods, and the uncertainty inherent in models, pointing these out
in statements in the vein of negative consequences. These conse-
quences are more technically-oriented, with gestures toward associ-
ated societal impacts. Some authors point out that if assumptions are
not met or adequately considered, the system could lead to wrong or
harmful conclusions (e.g., Moreno et al. [88], Squires et al. [103]).
Additionally, authors acknowledge uncertainty around models by
pointing out model assumptions. Hao and Orlitsky [66]" note that
“[a] potential downside is that the theoretical guarantees of the
associated algorithms rely on the assumption correctness.”

Authors are also careful to point out the lack of guarantees
provided by their algorithms, saying that “it is also important for
the buyer to beware; ...there may remain cases of interest when
our approximations fail without warning” [65]" or that “we cannot
guarantee that every constraint will hold” [90]" as well as other

TReference is part of our NeurIPS 2020 broader impact statement dataset and can be
found in the Appendix.

general limitations, such as that “density-ratio based methods are
not a panacea; it is entirely possible for the technique to introduce
new biases when correcting for existing ones” [98].

Finally, authors describe how there is a possibility of errors down-
stream in future training or deployment, and that the real-world
behavior of a given system is uncertain. For example, Kumar et al.
[75]T write that “it can be difficult for a practitioner to predict the
behavior of an algorithm when it is deployed” and Hoang et al.
[68]" write that “[w]hile applications of [their] work to real data
could result in ethical considerations, this is an indirect (and unpre-
dictable) side-effect of [their] work” Some authors describe specific
ways in which there could be downstream errors. Mate et al. [86]"
write that “if the worker makes an error when entering data ... then
the algorithm could make the wrong recommendation” and Bhatia
et al. [48]" write that if a designer chooses an inappropriate target,
it “could lead to incorrect inferences and unexpected behavior in
the real world”

Composition. The composition dimension reflects the overall
conceptual structure and mixture of material in a statement in terms
of valence, orientation, specificity, and uncertainty.

Some statements contain a mixture of valences, including both
positive and negative consequences (though not necessarily bal-
anced equally). We also find statements that lean heavily toward
positive consequences (that is, they mostly describe positive con-
sequences but mention negative consequences briefly). On one
extreme, we see that some authors only include positive conse-
quences, omitting a discussion of negative consequences entirely.
While some simply don’t make any mention of negative impacts,
others explicitly state that there are no negative consequences (e.g.,
“Our work does not have any negative societal impacts” [107]"; “no
one is put at disadvantage from this research” [61]").

In addition, we find a theme around the statement of negative
consequences where some authors write that a particular technol-
ogy could be misused by a malicious actor, leading to undesirable
societal outcomes. In this sense, authors engage with uncertainty
around how a technology could be used in the future. Scialom et al.
[100]" provide an example of potential misuse:

...malicious actors can use the same technology to
build tools detrimental to society, e.g. for creation and
propagation of misleading (fake) news ..., imperson-
ation, and deceit.

In addition, we find some statements structured such that they
predominantly reflect positive consequences, but include a brief
caveat alluding to potential negative consequences; the caveat often
appears near the end of the statement. Zhou et al. [117]" describe
the positive impacts of their work, then conclude with the following
caveat: “However, any reinforcement learning method runs the risk
of being applied to military activities. Our work is no exception.”

We also find that some statements do not contain a discussion
of societal consequences at all. The omission of consequences is
typically stated simply: “This work does not present any foresee-
able societal consequence,” mirroring the instruction provided in
the call for papers. In these cases, no reason is provided for the
omission of consequences. In other cases, authors provide reasons
around why there may be limited consequences of their work. For
example, some authors write that because their work is based on



existing work, their contributions do not significantly change what
is technologically possible. Along these lines, Biggs et al. [49]" write
about potential negative impacts of their work, but limit the extent
to which the work introduces new types of impacts:

Furthermore, our method is an improvement of exist-
ing capabilities, but does not introduce a radical new
capability in machine learning. Thus our contribution
is unlikely to facilitate misuse of technology which is
already available to anyone.

Finally, we find that authors’ statements are sometimes oriented
solely toward technical consequences, only describing their work
in the context of how it contributes to the research space. In these
cases, the stated technical contributions are usually framed as posi-
tive consequences.

5.1.2  Types of Impacts. Our analysis finds several categories of
impacts that authors tend to discuss in broader impact statements.
Attributes of statements that fall into these categories vary in terms
of the aforementioned dimensions of expression (e.g., Composition,
Valence, etc.). In particular, we point out that these categories range
in terms of their orientation (see Expression of Impacts: Orienta-
tion) toward societal versus technical consequences. For each type
of impact presented below, we note the category’s predominant
orientation as it appeared in statements.

Privacy. Impacts around privacy (19.3%, N = 58) are largely
oriented toward societal outcomes including protection of personal
data and increased surveillance. In terms of positive impacts, au-
thors describe how their work facilitates local computation (there-
fore reducing the extent to which personal data is shared) (e.g.,
“we help facilitate on-device deep learning, which could replace
traditional cloud computation and foster the protection of pri-
vacy” [52]7), contributes to methods that rely on decentralization
(e.g., “One benefit of decentralized algorithms is that it does not
need the central node to collect all users’ information and every
node only communicates with its trusted neighbors” [80]7), and
contributes to other privacy-focused research areas such as differ-
ential privacy (e.g., Chen et al. [55]7) which aim to further protect
an individual’s information.

On the other hand, authors note how their work could be detri-
mental to maintaining privacy. They write that their work could
facilitate the identification of individuals (e.g.,'potential use cases
may target users based on their activity patterns” [97]7), contribute
to surveillance methods (e.g., “some common concerns on [Deep
Neural Networks (DNNs)] such as privacy breaching and heavy
surveillance can be worsened by DNN devices that are more avail-
able economically by using our proposed techniques” [77]), or
even “may raise issues in neuroethics, especially regarding mental
privacy” [73]T.

Labor. We find that authors write about societally-oriented im-
pacts of their research in terms of influences on employment/work
(6.3%, N = 19) and impacts to productivity. For example, they ac-
knowledge that automation of manually-done processes could dis-
place jobs. Mate et al. [86]7 write the following on the jobs of
community health workers (CHWs):

...we also present results that highlight our algo-
rithm’s ability to plan among thousands of processes

at a time, far more than for which a human could
independently plan. Just making this capability avail-
able could encourage the automation of applicable
interventions via automated calls or texts, potentially
displacing CHW jobs ...

Chao et al. [52] write more generally that “unemployment may
increase due to the increased automation enabled by the deep learn-
ing” On the other hand, some authors state that while their work
contributes to automation, it is intended to increase productivity
(e.g., “These techniques are not meant to replace highly skilled hu-
man workers, but to help improve their productivity at work” [67]").
Some authors explicitly describe the tension between automation
reducing jobs versus increasing productivity:

Like many Al technologies, when used in automation,
our technology can have a positive impact (increased
productivity) and a negative impact (decreased de-
mand) on labor markets. [106]

Additionally, authors write about how their work could improve
or facilitate work processes such as collaboration, for instance “by
helping bridge the gap between the ML and the scientific comput-
ing communities through allowing them to share tools and more
easily interoperate” [89]" or by helping to bring multiple disciplines
together (e.g., by introducing concepts from one field (or subfield)
into another [110, 118]"). Authors also describe how their work
could be useful for decision-making tasks. In particular, they write
about decision-making in the contexts of medicine and policy, and
how their work could contribute to fairer decisions. Along these
lines, Hu et al. [71]7 write the following:

By adopting our method, decision makers can build
multiple decision models simultaneously just from
one historical dataset and ensure that all decision
models will be fair after the deployment ...

Environment. We find that authors describe societally-oriented
impacts to the environment (10%, N = 30). For instance, authors
describe how decreases in computational costs for a given task
that their work accomplishes could “[save] lots of energy consump-
tion" [57]" and “has the potential to reduce the carbon footprint of
building AI models" [59]. In terms of other positive consequences,
they write about how their work could be used to contribute to
climate change models:

By employing Gaussian processes for data assimila-
tion and building them into larger frameworks, this
could facilitate more accurate climate models com-
pared to current methods ... [50]"

On the other hand, authors also note that the amount of energy
necessary to implement their methods could be harmful to the
environment:

...the carbon footprint of the proposed approach re-
mains low compared to many deep approaches used
nowadays in machine learning applications ... [74]

Media. Some authors seem to be aware of the impact their work
could have on the media (6%, N = 18). They especially focus on
impacts around generating or spreading misinformation, through
synthetic media such as images or video (i.e., deepfakes) or other



means. In this way, impacts around media are quite societally-
oriented. For example, Phuoc et al. [95]" draw attention to how
their work could be used in service of fake news: “Similar to ex-
isting image editing software, this enables the creation of image
manipulations that could be used for ill-intended misinformation
(fake news)”

Not all authors discussing misinformation, however, describe
their work as aiding the spread of misinformation. At least one set
of authors describes how their work could mitigate the harmful
effects of misinformation, as it “may be used to detect harmful arti-
cles which may contain fake news, violent content, and fraudulent
materials" [54].

Bias. When it comes to impacts around bias (including fairness,
[24%, N = 72]), authors write both about impacts in ways that are
both societally and technically-oriented. We note that definitions
of bias vary across these two orientations, and even within an
orientation, sometimes take on slightly different meanings. We first
describe impacts around bias that is expressed as societally-oriented
and maps to historical forms of discrimination. We then describe
how authors sometimes refer to bias in more technically-oriented
ways—in these cases, they do not connect bias of a system to societal
discrimination.

Bias that can manifest in discriminatory algorithmic decisions
is frequently mentioned in broader impact statements. In partic-
ular, authors engage with the idea of biased datasets, which may
refer to training data populations in which some groups are un-
derrepresented (see [42]), though few authors define what they
mean by dataset bias in their statements. Some write that biased
datasets are not an issue in their work; for instance, Zhang et al.
[115]T write that they “validate [their] method on large-scale public
vision-language datasets and do not leverage biases in the data”
Others describe how biases in datasets (stemming from society at
large) may play a role in their work or the impacts of their work:

...because the majority of [genome-wide association
studies] are performed on individuals of European
ancestries, [polygenic scores] are more accurate for
individuals from those ancestry groups, potentially
exacerbating health disparities between individuals
of different ancestries ... [102]"

Additionally, authors write about discriminatory bias in the con-
text of models. For instance, Liu and Scarlett [82] write that the
signal recovery model of interest (which takes as input a separate
model) could inherit potential biases of the input model. Zhang and
Sabuncu [114]" describe the impacts of bias potentially introduced
during training:

...our finding advocates for the use of priors for the
regularization of neural networks. Despite the poten-
tially better generalization performance of trained
models, depending on the choice of priors used for
training, unwanted bias can be inevitably introduced
into the deep learning system, potentially causing
issues of fairness ...

On the other hand, authors talk about how their work could be
used to mitigate these biases in algorithmic systems or datasets. For
example, Chen et al. [56]" describe how their work helps address
dataset bias:

...our theoretical work guides efforts to mitigate dataset
bias. We demonstrate that curating a diverse pool of
unlabeled data from the true population can help com-
bating existing bias in labeled datasets. We give condi-
tions for when bias will be mitigated and when it will
be reinforced or amplified by popular algorithms ...

At times, authors write about impacts around bias in a technical
sense. For example:

First, we note that finding clusters in networks is
critical to reducing bias on measuring interventions
with network effects ... Having more flexible and
better ways of doing this clustering will improve our
ability to assess treatments on networks. [79]"

It is, however, not always clear whether authors are referring to
bias in a societal or technical sense, or whether technical forms of
bias are related to societal inequities. To illustrate this point, we
point to Xie et al. [109]’s description of how failure in their system
could lead to biases in downstream systems:

On the negative aspect, as many imaging-based re-
search tasks and computer vision applications may
be built upon the denoising algorithms, the failure
of [the paper’s framework for denoising] could po-
tentially lead to biases or failures in these tasks and
applications.

The authors do not specify the form of bias they have in mind,
which underscores an aspect of the dimension of specificity in
the impact statements. In cases such as this, terminology could be
understood in different ways and has not been precisely articulated
and disambiguated.

Efficiency. Efficiency (30%, N = 90) is a predominantly technically-
oriented attribute that appears to often be prioritized in these re-
search contexts, though justifications for it vary if given at all. How-
ever, authors do sometimes map the impact of increased/decreased
efficiency to societal outcomes. For instance, authors write about
how the increased efficiency afforded by their work (e.g., in terms
of decreased training time) could save either time, money, or other
resources. As an example, Zhou et al. [116]T write about how their
work could be applied to achieve “efficient package delivery with
swarms of drones to reduce delivery costs” In addition, authors
write about how increased efficiency demonstrated by their work
could be beneficial for the environment, in terms of reduced com-
putational costs, an idea that we see in the Environment theme as
well. Some authors connect increased efficiency to the democrati-
zation of technology (see the Democratization theme below). For
example, Larsson et al. [76]T write that “the improved efficiency
resulting from the predictor screening rules will make the [Sorted L-
One Penalized Estimation (SLOPE)] family of models ...accessible
to a broader audience, enabling researchers and other parties to
fit SLOPE models with improved efficiency” and go on to note
that their work makes it possible to analyze “data sets that were
otherwise too large to be analyzed without access to dedicated
high-performance computing clusters”

While some authors imply that efficiency is a positive outcome,
they may not explicitly draw a connection between increased effi-
ciency and a particular societal outcome of efficiency. In these cases,



efficiency as an impact functions in very much of a technically-
oriented capacity. For example, Brennan et al. [51]7 write about
improving the effectiveness of a certain method, then write that
they “hope to make [the method] more tractable, efficient, and
broadly applicable"; because they don’t make an explicit connec-
tion between efficiency itself and a particular outcome, it is difficult
to make conclusions about the reasoning behind efficiency in par-
ticular. Finally, there are cases where authors invoke the role of
efficiency in enabling other impacts such as those related to privacy
or increased surveillance (e.g., “there are various unexpected yet
feasible negative collateral consequences of increased efficiency,
e.g., in terms of privacy” [46]7).

Generalizability. Authors write about the generalizability of
their methods (15.3%, N = 46) as positive consequences of their
work, orienting generalizability technically, but sometimes connect-
ing the technical contribution to a potential societal consequence.
While it seems generally accepted that generalizability leads to
positive outcomes (or is positive in and of itself), Hu et al. [70]
highlight the tension between generalizability and potential appli-
cation to societally undesirable use cases. In particular, they write
that “[their] method has the potential to generalize the existing Al
algorithms to more applications, while it also raises serious concern
of privacy” going on to acknowledge the potential negative con-
sequences that could arise from applying their work to the online
behaviors of web users.

Authors also write about scalability as an important outcome or
limitation of their work. For example, Yang et al. [110]T note that
while they improve scalability, their improvements are not quite
enough, as it is still not possible to “scale to environments with
thousands of agents and hundreds of types where the state-action
space has thousands of dimensions.”

Democratization. A theme emerges where researchers see their
work as democratizing (5.7%, N = 17) by making some technology
available to more people or organizations (e.g., in cases where pre-
viously using the technology required significant resources). Thus,
we find that authors primarily characterize the increase in democ-
ratization of technology as a positive consequence of their work. In
particular, they write about how their work enables more people
in both research and non-research contexts to make use of various
technologies. In this way, impacts around accessibility are both
technically-oriented (e.g., improving researchers’ accessibility to
a particular technology enables further research in a given area)
and societally-oriented (e.g., increasing accessibility of a particular
technology enables wider use and participation by the wider pub-
lic). More specifically, authors write about providing researchers
with the ability to “harness volunteer computing and train models
on the scale currently available only to large corporations” [99],
while also discussing how their work can “help all the amateurs to
use machine learning without any hassle” [113]7. As more of an
exception, Hong et al. [69]" write directly about both the potential
positive and negative consequences of increasing accessibility of
technology:

Techniques like [Spatially Stochastic Networks (SSNs)]
that make content creation more accessible can help
bridge this gap in representation [of developers] ... As
any technology that promises to give easier access, it

has the potential for misuse. One could imagine cases
where generative models are used to create things
that may be harmful to society, and this can lower the
technical entry barrier to misusers of this technology.
For instance, SSNs could be applied toward harmful
DeepFakes.

Robustness and Reliability. Authors describe impacts around
robustness (e.g., against adversarial attacks) and reliability (21.3%, N =
64). In particular, they cite robustness as a positive attribute of their
work, or lack of robustness as a limitation. While impacts in this
area tend to be more technically-oriented, authors do draw con-
nections to more society-facing impacts that stem from robustness.
They note the importance of robustness in technologies that are
used in contexts where safety is of concern, such as in “self-driving
cars” [60]". Along the same lines of minimizing system errors, au-
thors also write about their contributions with respect to increased
reliability, including the ways in which their work can help people
contend with uncertainty, noting that “for real-world classification
tasks like disease diagnosis, in addition to accurate predictions, we
need reliable estimates of the level of confidence of the predictions
made” [114]T.

Accuracy. We find that the concept of accuracy (12.7%, N = 38)
arises in statements. Authors write about improvements to accu-
racy as positive consequences of their work, mainly as technically-
oriented consequences with allusions to societal consequences. For
instance, they write that their work “could have significant broader
impact by allowing users to more accurately solve practical prob-
lems” [68]" or more simply stating that their “method ... can lead to
even higher accuracies” which “is of high practical relevance” [85].

Interpretability. Authors describe impacts of their work that
relate to interpretability (10.3%, N = 31). For instance, authors
write about how their contributions to increased interpretability
of algorithms or models can contribute to understanding biases or
“promoting fairness in artificial intelligence” [112]":

Moreover our algorithms have the additional benefit
that they lead to more readily interpretable hypothe-
ses ... This could potentially help practitioners better
understand and diagnose complex machine learning
systems they are designing, and troubleshoot ways
that the algorithm might be amplifying biases in the
data. [53]"

Authors also write about how interpretability relates to the poten-
tial consequence of engendering trust in systems, which is framed
as a positive consequence:

In a positive prospect, we believe that our model con-
tributes to further the development of less opaque
machine learning models ...debugging and interpret-
ing the model’s behaviour and can help to establish
trust toward the model when employed in larger ap-
plication pipelines. [62]

In other cases, authors cite lack of interpretability as a negative
consequence (or limitation) of their work. For example, Zhou et al.
[116]" say that “[their] method ...faces the ‘black box problem’
where behaviors of the individual agents may not be rational or
interpretable from the human perspective” They go on to talk about



potential fairness issues, suggesting a connection between lack of
interpretability and potential for societally negative outcomes.

5.1.3 Relationship to Theoretical Work. We find that authors can
differ in how they frame the relationship between theoretical work
and societal implications. A theme emerges where authors indicate,
either explicitly or implicitly, that due to the theoretical nature
of their work, there are no forseeable, negative, or ethical conse-
quences (9%, N = 27). In particular, some narrow down the claim to
be that there are no direct negative impacts of the work. However,
this does not necessarily mean that they omit a discussion of other
impacts of the work (positive or technical). Sometimes authors of
theoretical work write that there are no foreseeable consequences
altogether due to the nature of their contributions:

The current paper presents theoretical work without
any foreseeable societal consequence. Therefore, the
authors believe that the broader impact discussion is
not applicable. [63]"

Note that these statements are slightly different from those that
only state there are no foreseeable consequences (see Expression
of Impacts: Composition), as they make a connection between theo-
retical work and lack of foreseeable consequences. We see another
theme where authors write about the difficulty of foreseeing soci-
etal consequences of their work (e.g., “We believe that it is difficult
to clearly foresee societal consequence of the present, purely theo-
retical, work” [83]7).

Other authors mention the theoretical nature of their work, and
write that there may be indirect consequences of their work or de-
scribe potential societal consequences (10%, N = 30). For example:

Our results, while being theoretical in nature, have
potential impacts in providing instructions for design-
ing better security tools to ensure that people’s online
activities do not create unintended leakage of private
information. [105]"

5.1.4  Who is Impacted? In more than half of the broader impacts
statements we analyzed, authors reference not only impacts, but
also who might be impacted (64.3%, N = 193). These references
vary in specificity. In a broad sense, authors often cited a domain
(e.g., healthcare) which motivates their work or could be positively
impacted by their work (e.g., Pinheiro et al. [96]T write about the
need for labeled data in medical imagery applications, and Yang
et al. [111]" write about how their work could help with “discover-
ing the reasons for the quick spread of the epidemic disease in some
areas”). At times, authors are more specific, mentioning particular
groups who could be positively impacted, such as “people with
language deficits like aphasia” [73]" or people who could benefit
from “[r]etinal prostheses” [84]F. We also find a cluster of state-
ments which mention impacts relating specifically to members of
creative industries. For example, Tancik et al. [104]T write that “this
progress may also inadvertently reduce employment opportunities
for the human artists who currently produce [photorealistic] effects
manually,” which fits into another theme of authors noting that
those whose jobs may be automated could be negatively impacted

see Types of Impacts: Labor). Xie et al. [109]" write about their
yp p

work on deep image denoising saying that “[i]ndividuals and cor-
porations related to photography may benefit from [their] work,"
offering a potential positive consequence for a creative industry.

Other times, authors focus on impacts to members of various
slices of the general public, such as those who use social media. For
example, Zhu et al. [119]" say that because “[their] work can be
used in social media companies or any other occasions where user
data can be accessed, people who are worried about their privacy
being analyzed or targeted may be put at disadvantage.” Authors
also note how their work could positively or negatively impact
people from historically disadvantaged groups, for example “by
preventing them from receiving biased decisions” [71]" or by being
used “to monitor and negatively impact individuals in protected
groups.”

Lastly, authors turn their attention to researchers and practition-
ers. They write about how their work could benefit researchers both
within computer science (e.g., “[o]ur study will ...benefit the ma-
chine learning community” [81]") and outside of computer science
(e.g., atmospheric sciences [47]). We assume that when authors
write about how their work could open up future research, they
are implying that other researchers will be impacted. Authors also
write that their work can help practitioners in their processes, such
as by assisting them in “formally [reasoning] about the trade-offs
across accuracy, robustness, and communication efficiency” [14].

5.1.5 Timeframe of Impacts. When authors write about the time-
frame of impacts, that is, when society may see the consequences
of the work at hand, they use broad terms that generally refer to
a timeframe in terms of immediate versus long-term impact, and
how their work might accelerate the realization of some outcome
(10.3%, N = 31). For instance, they refer to work as having “no
immediate practical applications” [87]" or work that “can in the
long run cause positive or negative societal impact” [106]T. The
level of detail in terms of timeframe typically does not go beyond
immediate versus non-immediate results.

5.2 Author Recommendations

While authors tend to focus more attention on impacts, we also
find that they sometimes make recommendations for how to miti-
gate potential negative consequences. We describe outcomes that
authors suggest working toward, including their proposed steps for
achieving these outcomes and their ascriptions about responsibility
for taking action.

5.2.1 Outcomes. We describe five categories of desirable future
outcomes that authors write about for the field and society to con-
sider. In several cases, these outcomes align with positive impacts
of their completed work, as described in Impacts: Types of Impacts.

Safe and Effective Use of AL Authors make suggestions for how
to ensure the safe or otherwise more effective use of their work,
or Al in general (20.7%, N = 62). In particular, they suggest that
“the practitioner verify how realistic these modeling assumptions
are for the application at hand” [46]" and note the importance of
“[understanding] the principle and limitation of an algorithm to
prevent failure” [92]F. Authors also suggest more work around
model robustness and write about the need for interpretability
of models (e.g., with regards to algorithms used in safety-critical



environments [108]"). Additionally, authors suggest human-in-the-
loop methods (e.g., to check outputs in a personalized medicine
context [72]"), the need to develop methods of detecting misuses of
technology (e.g., in the case of deepfakes [101]7), and the potential
need for regulation or policy around certain technologies (e.g., again
in the case of deepfakes [69]7).

Ensure “Fair” Outcomes. With regards to recommendations
around issues of fairness (6.3%, N = 19), authors sometimes make
general mentions of the importance of paying future attention to
“fairness and nondiscrimination” [78] or the area of algorithmic
fairness as it relates to their work [91]F. Other times, authors make
more specific suggestions, such as recommending to diversify tasks
or datasets, saying, for instance, that “it is important to wisely
choose the data on which the system is trained ... If data is bi-
ased our method is not guaranteed to provide a correct estimation;
this could harm the final users and should be carefully taken into
account” [93].

Protect Privacy. Authors make recommendations to protect pri-
vacy (5.3%, N = 16). For example, authors make recommendations
to “deploy [their] model locally” [101]" and nod toward the impor-
tance of privacy-focused research areas such as differential privacy
(e.g., Nguyen et al. [91]7) moving forward.

Additionally, authors write more generally about the need for
“privacy protections ...throughout data collection, training, and
deployment” [45]F, and broadly refer to legislative or regulatory
means as ways of protecting privacy going forward. Foster et al.
[64] write that “[they] welcome regulatory efforts to produce a
legal framework that steers the usage of machine learning ...in a
direction which ...respects ...the privacy rights of users.”

Reduce Environmental Impact. Similar to how authors bring
up increased efficiency of their work as potentially benefiting the
environment, they make recommendations for increased efficiency
as a means of reducing environmental impact in the future (1%, N =
3).

5.2.2 Who is Responsible? We find that researchers sometimes
make recommendations but do not assign responsibility (7.3%, N =
22), leaving it unclear who is ultimately responsible to take follow-
up action. However, when authors do make mention of who might
be responsible (either explicitly or implicitly) (24%, N = 72), they
sometimes refer to various stakeholders, including people involved
closer to deployment (e.g., practitioners, system designers, field
experts, companies). They also refer to researchers (sometimes au-
thors say that they are personally responsible for some action, like
being involved in policy discussions around a certain technology;
others leave their suggestions as a call to action for the broader
research community; others describe recommendations for future
computer science work implying that the research community is
responsible) and policymakers.

6 DISCUSSION AND CONCLUSION

We find salient themes that emerge in broader impact statements
from NeurIPS 2020; these findings indicate that in aggregate, au-
thors discussed a fairly wide range of consequences including men-
tioning ideas for mitigating negative consequences. These descrip-
tive findings contribute a set of dimensions and themes which could
inform guidelines to shape what and how a research community

might frame a broader impact statement requirement so as to re-
duce ambiguity of intention that might have contributed to the
wide range of themes we observed, such as by guiding expectations
around authors’ treatment of orientation, specificity, uncertainty,
range of impacts, who is impacted, timeframe of impacts, and so
on.

In closing, we elaborate a discussion based on how the statement
appears to function in light of our results. We consider our findings
through the lens of three potential goals: encouraging reflexivity,
initiating changes to future research, and minimizing negligence
and recklessness. Each offers opportunities for research commu-
nities such as NeurlIPS to further steer or even evaluate broader
impact statements.

Encouraging Reflexivity. One potential goal of the statement
might have been simply to encourage researchers to reflect on the
societal consequences of their work, or engage in moral inquiry,
which Bietti [8] argues is intrinsically valuable. More formally,
reflexivity as a political rationality found in the literature on social
responsibility is “focused on making scientists aware of their own
values and motivations, as well as making them reflect on the
possible outcomes of their scientific inquiries” [22].

Our analysis finds evidence that the exercise surfaced values of
the computer science research community, through the relatively
frequent mentions of themes like efficiency, robustness, generaliz-
ability, or privacy, but it is less clear whether researchers devoted
much effort to deliberating on their own personal values. In this
sense, our findings contribute to the recent investigation into val-
ues of ML research by Birhane et al. [9], who identify common
values present in influential ML publications such as accuracy, ef-
ficiency, and generalization. However, while they find that “overt
consideration of societal benefits or harms is extremely rare,” we
find that in aggregate, broader impact statements do address so-
cietal consequences, suggesting that the statement requirement
helps address an otherwise overlooked area. We did also observe
some statements that reference technical contributions but do not
necessarily map these contributions to potential societal impacts.
If the goal is to encourage reflection on societal impacts, it could
be useful for the official requirements/guidance around the state-
ment to further encourage taking impacts an extra step further to
consider how society could be impacted as a result of technical
contributions (see Ashurst et al. [3]’s “Impact Stack”) and to also
encourage taking into account context when considering potential
harms [10].

Initiate Changes to Future Research. Second, a potential goal
of the broader impact statement might have been to help initiate
changes in research agendas; the idea being that upon considering
societal consequences of their work, researchers may have deter-
mined the potential negative consequences to far outweigh poten-
tial positive ones, prompting a shift in future research. Because
significant time has not passed since authors wrote the statement,
it is difficult to know whether it played any role in shifting re-
search directions. It could be useful to observe whether content
of statements shifts over time, and if discussions that arise in one
year’s set of statements manifest themselves in the work done in
the following year(s). It could also be useful to conduct interviews
with researchers to understand how;, if at all, writing the statement
informed consequent research questions.



Hecht [25] suggests that writing a broader impact statement
early on in the research process leaves room to adapt a project
accordingly, which is also in line with ideas from anticipatory
governance [12]. Our analysis finds that researchers most likely
completed their broader impact statements toward the end of the
research process, namely because statements describe impacts of
the work in more of a retroactive manner. In part, this could have
been because the announcement of the broader impact requirement
came at a time when work that was ultimately submitted was al-
ready later-stage. If the goal is to allow earlier-stage and continuous
reflection, the requirements for the statement could benefit from
clarification or perhaps changes in implementation to ensure re-
searchers draft statements (or engage in ethical deliberation) early
on in their research processes.

Minimize Negligence and Recklessness. Third, we explore the
possibility that the broader impact statement may function as a
way to minimize research negligence and recklessness. According
to Douglas [16], “[r]ecklessness is proceeding in the face of un-
reasonable risk; negligence is the failure to foresee and mitigate
such risk” The broader impact statement, therefore, can be seen as
ensuring that authors engage with potential consequences, there-
fore reducing the chance of negligence. By making suggestions for
mitigating negative consequences, researchers also minimize the
risk of recklessness, in some way contributing to the mitigation
of the risks of their own work by offering potential ways forward.
While our findings already show a significant breadth of impacts,
it could nonetheless be helpful to provide authors with particularly
relevant ethical issues that relate to their general area of work, such
as by referring them to established ethics tools (e.g., [44]), so that
they may do a more complete job of assessing risks.

Finally, we note that several of the above perspectives imply that
a practice like requiring broader impacts statements can be suc-
cessful without drastic changes aimed at increasing the skills and
knowledge of computer scientists around ethics and anticipation
of societal outcomes of technology. For example, if the statement
is intended to minimize negligence and recklessness, this would
seem to imply that the community as a whole is largely capable
of identifying the potentially harmful consequences of their work.
Some have questioned, however, whether computer scientists are
prepared to make useful observations about potential ethical prob-
lems with their work, and whether the results will be closer to
“speculative fiction” [2]. Additionally, participatory ethics meth-
ods [12] suggest that community stakeholders likely to be affected
should be involved in research to ensure that researchers are aware
of possible problems they might not foresee. In the long run, it
would seem that any expected instrumental values of broader im-
pacts will depend on a clearly defined stance on the extent to which
the community is intended to seek new skills, or collaborations, in
reflecting on ethical implications.
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