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Fig. 1: Modeling causal inferences with visualizations: A© Users view and may interact with data visualizations; B© Ideally, users
reason through a series of comparisons that allow them to allocate subjective probabilities to possible data generating processes; and
C© We elicit users’ subjective probabilities as a Dirichlet distribution across possible causal explanations and compare these causal
inferences to a computed benchmark of causal support, which we derive from Bayesian inference across possible causal models.

Abstract— Analysts often make visual causal inferences about possible data-generating models. However, visual analytics (VA)
software tends to leave these models implicit in the mind of the analyst, which casts doubt on the statistical validity of informal visual
“insights”. We formally evaluate the quality of causal inferences from visualizations by adopting causal support—a Bayesian cognition
model that learns the probability of alternative causal explanations given some data—as a normative benchmark for causal inferences.
We contribute two experiments assessing how well crowdworkers can detect (1) a treatment effect and (2) a confounding relationship.
We find that chart users’ causal inferences tend to be insensitive to sample size such that they deviate from our normative benchmark.
While interactively cross-filtering data in visualizations can improve sensitivity, on average users do not perform reliably better with
common visualizations than they do with textual contingency tables. These experiments demonstrate the utility of causal support as an
evaluation framework for inferences in VA and point to opportunities to make analysts’ mental models more explicit in VA software.

Index Terms—Causal inference, visualization, contingency tables, data cognition

1 INTRODUCTION

Data analysts engaged in sensemaking [9,22,46,48] infer the compatibil-
ity of different causal explanations with their data. During exploratory
analysis or provisional statistical modeling, analysts implicitly or explic-
itly compare their data to patterns they expect as logical consequences
of hypothesized data generating processes [2, 16, 17, 25, 26]. Visualiza-
tions play a critical role in causal inference both because externalization
reduces cognitive load [12] and because human capabilities for infer-
ence rely heavily on sensory expectations (e.g., mental imagery) and
comparisons between expectations and experiences [7, 30].

Data analysts and software designers need to anticipate how human
capabilities for causal inference may be error prone. For instance,
perceptual biases such as underestimation of sample size (e.g., [33])
contribute to errors in causal inferences insofar as perceived associa-
tions seem to be the basis for causal inferences [1, 59]. Analysts also
err in their causal interpretations of data when the mapping between
a potential causal explanation and an expected pattern in the data is
unclear [4, 60]. For example, imagine an analyst trying to detect con-
founding in experiment results on the effectiveness of a treatment at
preventing disease (Fig. 1 A©). To detect that ‘gene’ is a confounding
factor, the analyst must see effects of gene on both treatment effective-
ness (i.e., a difference between the top and bottom cells in the right
column of table A©) and overall rate of disease (i.e., a difference be-
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tween the top and bottom rows of A©). Attributing these signals in the
data to confounding requires the analyst to know what they are looking
for, rather than passively detecting the appropriate patterns.

To assess how well visual analytics (VA) tools support such causal
inferences, we need to compare analysts’ inferences to a benchmark
that is roughly ‘normative’, that captures important aspects of good
causal inference. We adopt causal support, a model from mathematical
psychology [21], as a benchmark for evaluating causal inferences from
visualizations. Causal support models one’s belief in a set of possible
data generating processes as a Bayesian update. Causal support is a
good normative model for three reasons. (1) Causal support has nu-
merous proprieties of valid statistical inference in light of the analyst’s
prior knowledge. It captures the fact that belief in evidence should be
stronger as sample size increases. It accounts for unknown unknowns
about the space of possible models, such that causal support assigns
no posterior probability to models that the analyst does not explicitly
consider. (2) Prior work [21] shows through a system of experiments
that causal support accounts for otherwise hard-to-explain patterns in
human causal inferences, e.g., that subjective belief in a causal relation-
ship varies as a function of the potential to detect that relationship in a
given data set. (3) Since causal support is extensible to any generative
model (i.e., models that can assign likelihood to data), it can be applied
in a wide range of VA applications to evaluate causal inferences.

We contribute two experiments using causal inference problems
involving count and proportion data to (1) study the utility of causal
support for gaining insight into inferences from visualizations and (2)
evaluate how well visualizations common in visual analytics (VA) soft-
ware support causal inferences about possible data generating processes.
We compare three common visual encodings for count and proportion
data—bar charts, icon arrays, and text tables as a baseline—and we
investigate how the ability to interactively aggregate or cross-filter data
in bar charts impacts causal inferences. In Experiment 1, we ask par-
ticipants to differentiate whether a treatment is effective by allocating
probability across two different data generating processes. We find



that chart users’ causal inferences are far from normative with all visu-
alizations we tested, and interacting with visualizations can improve
sensitivity to signal in predictable ways. Ultimately, however, no visu-
alization reliably outperforms text tables. We also see that chart users
are more sensitive to evidence against a treatment effect than evidence
in favor of one, suggesting an unequal weighting of falsifying versus
verifying evidence. In Experiment 2, we replicate the main findings
Experiment 1 but with a confounding detection task where participants
allocate probability across four alternative data generating processes.
Experiment 2 demonstrates how casual support can be extended to study
causal inferences about more complex data generating processes.

2 RELATED WORK

2.1 Visualization for casual inference
Much of the psychology and statistics literature on visual aids for causal
reasoning focuses on contingency tables (e.g., [1,4,11,20,21,49]). Con-
tingency tables support causal inferences by using layout to encode
conditional probabilities, the same way trellis plots afford grouping by
factors during visual data analysis [5,53]. Whether or not a factor seems
to be collapsible—whether or not patterns the data seem to change de-
pending on whether the data are grouped by that factor—can be a
visual signal for reasoning about causal relationships such as confound-
ing [20]. However, empirical research on interpretation strategies for
contingency tables [4] suggests that analysts often misinterpret signals
like collapsability because they don’t ascertain the mapping between
these visual signals and hypothesized causal relationships. Tools like
Tableau enable users to explore collapsability by interactively grouping
data. We investigate whether the ability to interactively control data
aggregation improves the quality of causal inferences.

Research on visual analytics (VA) employs a broader range of rep-
resentations to support causal reasoning, including parallel coordi-
nates [55, 56], bar charts [60], “diff bar charts” showing counterfactual
outcomes under different conditions as layered bars [58], and novel
techniques using animation to show event sequences (e.g., [13, 28, 29]).

Some of these tools also incorporate directed acyclic graphs (DAGs)
as interfaces to models and visualizations (e.g., [55, 56, 58, 60]). DAGs
are devices for causal reasoning which have garnered attention in recent
years [44]. DAGs encode hypothesized relationships among variables
(e.g., Fig.1 B©), making causal relationships and the assumptions they
entail explicit and in some cases testable [3, 41–43]. We use DAGs
to present differences between alternative causal explanations for data
sets that we ask participants to judge (Figs. 2 & 9).

VA systems frequently use interaction techniques such as cross-
filtering linked views of data (e.g., [55, 56]) and click- or drag-and-
drop-based chart construction (e.g., [52,58,60]). The most similar prior
research to our study1 tests whether constructing charts by clicking on
variables versus dragging variables onto a DAG makes a difference in
analysts’ ability to differentiate between different kinds of causal rela-
tionships [60], specifically identifying mediating variables. Although
they do not find an effect of interaction method on causal inferences,
the authors provide a detailed strategy analysis extending evidence
from psychological studies [4] that analysts struggle to reason about
the exact set of visual signals they should look for to verify or falsify a
causal relationship. We extend this line of work by studying whether
the ability to (un)facet charts or cross-filter coordinated multiple views
impacts the quality of untrained analysts’ causal inferences.

Prior work in visualization [36, 38] and risk communication [15, 50]
suggests that icon arrays can improve Bayesian inferences, perhaps in
part because of cognitive benefits of framing probabilities as frequen-
cies of events [18,23,27,32]. We compare icon arrays to text tables and
bar charts since these visualizations span the design space for showing
count data and are also easy to create in VA software like Tableau.

2.2 Modeling causal reasoning
In the present study, we draw on and extend a model of causal reasoning
called causal support, first proposed by Griffiths and Tenenbaum [21].
Causal support formulates causal inferences as a Bayesian update on

1Also see https://logical-interactions.github.io/causal2020/

the log odds of a finite set of causal explanations given some observed
data. Mathematically, causal support has similar properties to a Chi-
squared test (i.e., Are the data in each cell of a contingency table
likely generated by the same process?), which prior work analogizes
to the kind of comparisons between data and model predictions that
analysts visualize in “model checks” [16, 17, 26] such as QQ-plots.
However, unlike a Chi-squared test, causal support relies on Monte
Carlo simulations to assign likelihoods under alternative causal expla-
nations, making causal support extensible to any finite set of generative
causal models. For instance, Pacer and Griffiths extend causal support
to handle continuous data [40] and event streams [39]. Similarly, in
Experiment 2, we present an extension of causal support to evaluate
inferences about more than two possible data generating models.

Previous cognitive models of causal inference explored in psychol-
ogy share more in common with parameter estimation than statistical
inference per se, a subtle but important distinction. One such model
delta p posits that that people judge differences in conditional propor-
tions of observed events when making causal inferences about count
data [1]. Another such model causal power posits that people judge the
magnitude of effect size when making causal inferences [11]. Both of
these predecessors to causal support make the assumption that causal
inferences are fundamentally a perceptual judgment, however, causal
power rescales delta p based on the potential to detect any signal whatso-
ever within the observed data. In contrast, causal support assumes that
the signal for causal inferences depends on the possible data generating
models that the analyst has in mind and represents these alternative
models explicitly. This makes causal support more flexible, with higher
predictive validity for human judgments than delta p, causal power,
and even Chi-squared [21]. Causal support reflects analysts’ natural
tendency to dichotomize, for better or worse, reasoning about whether
or not causal relationships exist rather than how strong they are.

3 EXPERIMENT 1
How well do different visualization designs that are common in visual
analytics (VA) software support causal inferences about possible data
generating processes? We evaluate visualizations of count data in-
cluding text contingency tables, icon arrays, grouped bar charts, bars
that users can interactively aggregate, and linked bars that users can
interactively cross-filter. In Experiment 1, we investigate chart users’
ability to infer whether a treatment prevents a disease. By asking chart
users about a treatment effect in count data, we build on the task and
structural equation models used by Griffiths and Tenenbaum [21] to
propose and validate causal support. Count data are also ideal for eval-
uating bar charts. The design requirements for supporting our causal
inference task with count data are that visualizations should express
both the proportion of people with disease and sample size. Based
on these requirements, we ruled out testing pie charts and heatmaps,
common ways of encoding proportions that do not encode sample size.

3.1 Method
We set out to study how well different visualizations support causal
reasoning by using causal support as a benchmark for causal inferences.

3.1.1 Task scenario & response elicitation
Participants played the role of an analyst hired by a company to interpret
samples of data on the effectiveness of experimental treatments at
preventing various diseases. We showed participants visualizations
of the number of people in each sample who did or did not receive
treatment, get a disease, and have a gene known to cause the disease.

We asked participants to judge the underlying causal relationships
in the data, rating their degree of belief that treatment protects against
disease by allocating probability across the two DAGs in Figure 2. We
chose to study causal inferences about treatments, genes, and diseases
in order to create a scenario where users would find the possible causal
explanations feasible, coherent, and memorable.
Question & elicitation. We asked participants the following question:

How much do you believe in each of the causal expla-
nations described below? Imagine you have 100 votes to
allocate across the two possible explanations. Split your

https://logical-interactions.github.io/causal2020/


Fig. 2: DAGs representing possible causal explanations participants
were asked to consider in Experiment 1.

100 votes between explanations based on your degree of
belief. For example, if you think one explanation is twice
as likely as the other, you might give 67 votes (roughly two
thirds) to that explanation and 33 votes (roughly one third)
to the other. Assume no other explanations are possible.

Participants responded with two complementary probabilities. We used
form validation to make sure their responses were both numbers be-
tween 0 and 100 that summed to 100. Following prior work on eliciting
Dirichlet distributions [10, 37] (i.e., probabilities allocated across alter-
natives), when participants gave their first response, we imputed what
the second response would need to be in order for their responses to
sum to 100. This imputed value and a corresponding prompt, “Adjust
your responses until both numbers reflect your beliefs.”, were both
highlighted with the same color to indicate this imputation. We elicited
probabilities as “votes out of 100” because frequency framing tends to
reduce bias in probability estimates [18, 23, 37]. Participants received
no feedback on their responses. We transformed these responses into
perceived causal support, which we compared to our benchmark.
Perceived causal support. The dependent variable in our study was a
measure of the perceived log odds of a target explanation over other
possible causal explanations. Specifically, in Experiment 1 we tar-
geted explanation A, which posited a treatment effect, requiring us to
transform participants’ responses into a log response ratio (lrrA),

lrrA = log
(

responseA

responseB

)
where responseA and responseB were the probabilities participants al-
located to causal explanations A and B, respectively, on each trial. We
used a log odds scale in order to make participants’ perceived causal
support comparable to our normative benchmark of causal support.
Payment. Participants received a guaranteed reward of $2 plus a bonus
of $0.25 for every trial where their estimate of the probability of causal
explanation A2 was within 5 percentage points of the ground truth.
Apparatus. We collected data using a Flask application deployed on
Heroku with a Firebase database and visualizations created with D3.3

3.1.2 Visualization conditions
Our visualizations show the number of people with and without disease
in each cell of a 2x2 contingency table faceted by treatment and gene,
with the exception of cross-filter bars which use a different layout. We
aimed to test visualizations of count data similar to what an analyst
could produce using visual analytics software like Tableau.

2Bonuses in Experiment 2 were based on the probability of explanation D.
3E.g., see Experiment 2 interface at https://bit.ly/3rDcxfn

Fig. 3: Non-interactive visualizations evaluated in our study: A© text
contingency tables; B© faceted icon arrays; and C© faceted bar charts.

Fig. 4: Aggregating bars mimic shelf construction and faceting.

Text contingency tables showed the number of people with disease as
a fraction of the total number of people in each cell of a faceted table
(Fig. 3 A©). Text tables, which have been studied in prior research on
causal support, served as a baseline comparison for other visualizations.
Icon arrays showed counts of people with and without disease as
filled and open circles, respectively (Fig. 3 B©). We set the number of
dot columns to minimize the aspect ratio on each trial, similar to how
analysts might create roughly square icon arrays in Tableau. Icon arrays
express both proportion and sample size as natural frequencies, which
prior work finds beneficial for statistical reasoning (e.g., [15, 18, 23]).
Bar charts showed counts of people with and without disease using
a length/position encoding on a common scale (Fig. 3 C©). On each
trial, we set the y-axis scale to the maximum count of the data in view,
allowing scales to change from trial to trial as they do when users load
a new data set in Tableau. Bar charts are ubiquitous for count data.
Aggregating bars (aggbars) were similar to bar charts, however, users
could interactively toggle faceting by treatment or gene by clicking on
the table headers (Fig. 4). On each trial, we set the y-axis scale to the
maximum count of the fully aggregated data. We designed aggbars
to roughly mirror Tableau’s shelf interactions, where users control
faceting by direct manipulation of table headers. Interactive faceting
may facilitate causal inferences by enabling users to explore whether
“collapsing” [20] over a factor changes patterns in the data.
Cross-filtering bars were three bar charts showing the number of
people with and without treatment, the gene, and disease, respectively
(Fig. 5). We linked these bar charts such that clicking on one bar
cross-filtered the rest of the data in view. When users applied a filter
(e.g., only show people who received treatment), the corresponding
axis label became bold and gray bars persisted in the background, so
chart users could compare filtered and unfiltered views without relying
on working memory. Users “reset filters” by clicking a button below
the charts. Filterbars emulated coordinated multiple views such as a
Tableau dashboard. Interactive cross-filtering might assist in causal
inferences because conditioning the data in view based on a specific
event is analogous to Pearl’s do operator (e.g., do(treatment = yes)), a
notation for reasoning about counterfactuals in a causal networks [44].

3.1.3 Experimental design
We manipulated both the visualizations participants used for the task
and the data sets that we showed. We randomly assigned each par-
ticipant to use one of five visualizations (see Section 3.1.2), making
comparisions of visualizations between-subjects. We showed each
participant a total of 18 trials, which included 16 data conditions (see
Section 3.1.4) presented within-subjects and two attention checks which
we used for exclusion criteria (see Section 3.1.6). We randomized trial
order for each participant, inserting attention checks on trials 7 and 13.

3.1.4 Stimulus generation
We evaluated causal inferences on realistic data sets, which spanned a
range of ground truth causal support. Generating data sets required (1)

Fig. 5: Cross-filtering bars mimic coordinated multiple views.

https://bit.ly/3rDcxfn


manipulating data attributes which signaled causal support to partici-
pants, and (2) labeling each data set with ground truth causal support.

Our goal was to generate 16 data conditions (i.e., trials in our exper-
iment) that varied delta p and sample size, two data attributes which
in turn manipulate ground truth causal support. Delta p described the
difference in the proportion of people with disease in each data set
depending on whether they received treatment. Positive values of delta
p indicated evidence that the treatment protected against disease; nega-
tive values indicated evidence against treatment effectiveness. Sample
size was the number of people in each data set we showed participants.
Data conditions. To generate our 16 data conditions, we simulated
data from structural models with one parameter per DAG arrow in
Figure 2. We manipulated both the probability that treatment pre-
vents disease (4 levels: {0,0.1,0.2,0.4}) and sample size (4 levels:
{100,500,1000,1500}). We controlled the probability of disease due
to the gene (0.5), probability of disease due to unobserved causes (0.2),
base rate of the gene (0.4), and the proportion of each sample with
treatment (0.5). We selected these parameters iteratively by sampling
data sets and labeling ground truth until half of the trials had greater
than a 50% chance of being generated by causal explanation A.

For each of the resulting 16 data conditions, we simulated many
data sets using a binomial random number generator to approximate
realistic sampling error. By simulating sampling error, we prevented the
count data from appearing contrived. This sampling error resulted in a
distribution of ground truth causal support under each data condition,
with more variability in the ground truth at smaller sample sizes. To
guarantee that each participant saw trials spanning a consistent range of
causal support, we selected 16 data sets representing 16 quantiles of the
ground truth distribution per data condition, and we counterbalanced
the quantile shown for each data condition across participants within
each visualization condition using a balanced latin square. For our
attention check trials, we selected the two simulated data sets that had
the minimum and maximum ground truth causal support.
Labeling ground truth causal support for each data set. We oper-
ationalized the ground truth for causal inferences using Griffiths and
Tenenbaum’s causal support, a Bayesian cognition model that estimates
the posterior log odds of a target data generating model over a set of
alternative data generating models, given a data set. In Experiment 1,
we targeted causal support for explanation A over explanation B:

csA = log
(

Pr(C|modelA)
Pr(C|modelB)

)
+ log

(
Pr(modelA)
Pr(modelB)

)
where C is the data set we label with ground truth, and models modelA
and modelB correspond to causal explanations A and B (Fig. 2).

The first term in the formula for csA is a log likelihood ratio rep-
resenting the relative compatibility of a given data set with causal
explanations A and B. We computed the log likelihood of each data set
given modelA and modelB using Monte Carlo simulations (Alg. 1, lines
28-30), based on structural models similar to those we used to generate
data sets. In practical scenarios, we would not know the true data
generating parameters, so we used Monte Carlo simulations of possible
parameter values under each model to calculate likelihoods without
needing to know the ground truth a priori. Under modelA we sampled
all three parameters uniformly on the interval [0,1], representing the
assumptions that there is a treatment effect and that both gene and unob-
served factors cause disease. Under modelB we sampled Pr(D |G) and
Pr(D) uniformly, but we fixed Pr(¬D |T ) at zero, representing an as-
sumption of no treatment effect (i.e., omitting the DAG arrow between
treatment and gene in Fig. 2). In each simulation, we averaged log
likelihood of a given data set over m = 10000 Monte Carlo iterations
(Alg. 1, lines 25-26), marginalizing over sampled parameter values.

The second term in the formula for csA is a log ratio of the prior
probability of explanations A versus B. Following Griffiths and Tenen-
baum [21], we assume a uniform prior to be normative, assigning 50%
probability to both explanations A and B (Alg. 1, lines 31-32). The
prior encodes a bias in belief allocation across a finite set of alternative
causal explanations. We assume a uniform prior because we want our
benchmark to reflect no a priori bias toward causal explanations.4

4Uniform priors follow a convention of psychometric models that assume

Algorithm 1 Monte Carlo simulation to calculate causal support in
Experiment 1. Algorithm for Experiment 2 is similar.

Input: (8, 1) vector of contingency table counts (no disease vs dis-
ease, no gene vs gene, no treatment vs treatment) C, Monte Carlo
iterations m, set of parameters to fix at zero θ0 (i.e., parameters
representing DAG arrows to omit from the data generating process)

Output: MONTE CARLO returns log likelihood of the given data gen-
erating process log lik; Main returns causal support for the target
explanation (Fig. 2, Explanation A) csA

1: # Monte Carlo simulation to calculate likelihood
2: function MONTE CARLO(C, m, θ0):
3: Parameters corresponding to each DAG arrow in Fig. 2:
4: θP = { # initialize parameters
5: Pr(D), # p disease due to unknown causes
6: Pr(D |G), # p disease due to gene
7: Pr(¬D |T ) # p no disease due to treatment
8: }
9: for parameter θ ∈ θP do # assign parameters

10: if θ ∈ θ0 then Fix parameter at zero: θ = Zeros(m)
11: else Uniformly sample probabilities: θ = Random(0,1,m)

12: Calculate probabilities corresponding to contingency table:
13: P = [ # p no disease vs p disease given...
14:

(
1−Pr(D)

)
, # no treat ¬T, no gene ¬G

15: Pr(D),
16:

(
1−Pr(D)

)
+Pr(D) ·Pr(¬D |T ), # T, ¬G

17: Pr(D) ·
(
1−Pr(¬D |T )

)
,

18:
(
1−Pr(D | G)

)
·
(
1−Pr(D)

)
, # ¬T, G

19: Pr(D | G)+Pr(D)−Pr(D | G) ·Pr(D),
20:

(
Pr(D | G)+Pr(D)−Pr(D | G) ·Pr(D)

)
# T, G

21: ·Pr(¬D |T )+
(
1−Pr(D | G)

)
·
(
1−Pr(D)

)
,

22:
(

Pr(D | G)+Pr(D)−Pr(D | G) ·Pr(D)
)

23: ·
(
1−Pr(¬D |T )

)
24: ]
25: return average log likelihood of data:
26: log lik = ∑i∈{1,...,m}∑

(
C · log(P)

)
− log(m)

27: # Main: causal support calculation
28: Calculate likelihood of data given causal explanations A and B:
29: log likA = MONTE CARLO(C,10000,{})
30: log likB = MONTE CARLO(C,10000,{Pr(¬D |T )})
31: return causal support for explanation A: # Bayesian update
32: csA =

(
log likA− log likB

)
+
(

log(0.5)− log(0.5)
)

3.1.5 Performance evaluation

We wanted to measure how much participants’ causal inferences devi-
ated from our normative benchmark, causal support.
The linear in log odds model & causal support. By choosing to
model perceived causal support lrrA (see Section 3.1.1) as a function of
ground truth causal support on a log odds scale, we leverage a linear in
log odds (LLO) model to extend causal support from a normative cogni-
tive model into a descriptive one. Prior work shows that the LLO model
accurately describes natural distortions in mental representations of
probability [19, 24, 51, 61]. For example, visualization researchers [31]
used the LLO model to measure perceptual distortions in probabilistic
judgments about intervention effectiveness. Our normative model of
causal support itself (see Section 3.1.4) is a sum in log odds units.
Derived measures. Using a LLO model to measure the correspon-
dence between normative and perceived causal support enables us to
estimate (1) participants’ sensitivity to changes in ground truth causal
support and (2) bias in perceived causal support. From our model, we
derive sensitivity and bias per condition as LLO slopes and intercepts,
respectively. LLO slopes describe sensitivity to ground truth causal sup-
port such that a slope of one indicates ideal sensitivity. One can think
of slopes as the weight participants assign to changes in the ground
truth log likelihood ratio of explanations A versus B. LLO intercepts de-
scribe bias in participants’ probability allocations when causal support

guessing responses are informed by the number of response alternatives [34].



Fig. 6: Sensitivity (y-axes) conditioned on two attributes of visual signal for treatment effectiveness (rows, x-axes) and visualizations (columns).

Fig. 7: Linear in log odds (LLO) slopes per visualization condition.

is zero such that an intercept of 50% indicates no bias. One can think
of intercepts as the average prior probability that participants allocate
to explanation A when there is no signal in the data.
Approach. We used the brms package [8] in R to fit Bayesian hier-
archical models on perceived causal support. We adopted a Bayesian
workflow called model expansion [14], where we started with a simple
model and iteratively added predictors to build up to more complex
models, running prior predictive checks, model diagnostics, posterior
predictive checks, and leave-one-out cross validation for each version
of the model. We centered each prior to reflect a null hypothesis of
ideal performance and no bias, and we scaled each prior to be weakly
informative while providing sufficient regularization for models to con-
verge. We provide more details about our modeling workflow in our
preregistrations5 and Supplemental Materials.6

Model specification. We used the following model (Wilkinson-
Pinheiro-Bates notation [8,45,57]) to evaluate participants’ responses:

lrrA ∼Normal(µA,σA)

µA =csA ∗delta p∗n∗ vis+
(
csA ∗delta p+ csA ∗n

∣∣worker id
)

where lrrA was perceived causal support for a treatment effect, csA was
our normative benchmark, delta p was the difference in the proportion
of people with disease given treatment versus no treatment, n was the
sample size as a factor, vis was a dummy variable for visualization
condition, and worker id was a unique identifier for each participant.

We primarily modeled effects on the mean of perceived causal sup-
port µA, but our model also learned the residual standard deviation σA.
Both σA and the random effects in the µA submodel helped account for
the empirical distribution, differentiating between response noise and
effects of interest. The term csA ∗delta p∗n∗ vis enabled our model to

5See preregistrations for Experiment 1 (https://osf.io/vzmhu) and for
Experiment 2 (https://osf.io/y46nw)

6https://github.com/kalealex/causal-support

learn how the slope on causal support varies as a function of the visual
signal on each trial (delta p and n) and visualization condition.

3.1.6 Participants & exclusions

We recruited participants on Amazon Mechanical Turk. Workers had a
HIT acceptance rate of at least 97% and were located in the US. We
aimed to recruit a total of 400 participants after exclusions using our
attention check trials, 80 per visualization condition. We determined
this target sample size using a heuristic power analysis based on pilot
data and the assumption that the width of confidence intervals would be
inversely proportional to

√
N. We recruited a total of 548 participants,

and after exclusions we used data from 408 participants in our analysis.
We slightly overshot our target sample size because we could not
anticipate perfectly how many participants would miss our attention
checks (see Section 3.1.4). Although we preregistered that we would
exclude participants who failed to allocate at least 50% subjective
probability to the most likely causal explanation on either attention
check, this criterion proved too strict and would have excluded 48% of
our sample. Instead, we opted to use only the easier of the two attention
checks for exclusions, resulting in the exclusion of 26% of our sample.
All participants were paid regardless of exclusions. We compensated
the average participant $2.50 for about 9 minutes.

3.2 Results

We evaluate chart users’ causal inferences using a linear in log odds
(LLO) model to assess sensitivity to the ground truth and bias in proba-
bility allocations when each causal explanation is equally likely.
Sensitivity. A LLO slope of one indicates one-to-one correspondence
between the ground truth and users’ probability allocations. In all visu-
alization conditions (Fig. 7), we see slopes far below one, indicating
that users are much less sensitive than ideal. The only reliable differ-
ences between visualization conditions are that filterbars users who do
not interact are less sensitive than users in other conditions.

When filterbars users do not interact with the charts, slopes are
approximately zero indicating that users are insensitive to signal. Per-
formance improves reliably when users interact with the visualization
by applying cross-filters to coordinated multiple views. This is expected
because filterbars hide visual signal for the task behind interactions.

Surprisingly, when aggbars users interact with the charts to group by
gene or treatment, this leads to lower sensitivity, though this difference
is not reliable. To make sense of this result, we analyze interaction log
data to see which variables chart users condition on. We find that agg-
bars users group the data by gene almost as often as treatment. Compare
this to filterbars users, who condition on treatment much more often
than gene (see Supplemental Material). This suggests that interacting
with visualizations only improves sensitivity to causal support when
users deliberately generate views of the data which show counterfactual
predictions that can distinguish competing causal explanations.

https://osf.io/vzmhu
https://osf.io/y46nw
https://github.com/kalealex/causal-support


Fig. 8: LLO intercepts per visualization condition.

Visual signal effects on sensitivity. We examine sensitivity in each
visualization as function of attributes of the visual signal for our task.
In Experiment 1, the signal breaks down into two data attributes, delta
p and sample size (see Section 3.1.4). Normatively, LLO slopes equal
one regardless of delta p and sample size, however, our model measures
differences in sensitivity depending on these data attributes.

Figure 6 shows that in the conditions where slopes are largest—text,
icons, bars, aggbars without interaction, and filterbars with interaction—
users are more sensitive to causal support at negative values of delta p
(e.g., Fig. 6, top inset). The average user in these conditions responds
more to evidence against treatment (i.e., falsification) than evidence in
favor of a treatment effect (i.e., verification). At positive values of delta
p (e.g., Fig. 6, top inset), LLO slopes are similar across conditions,
suggesting that differences in performance between conditions are
driven in part by differences in sensitivity to falsifying evidence.

We also see in Figure 6 that users of icons, bars, and aggbars are
more sensitive to signal when sample size is smaller. This finding is
consistent with prior work showing that chart users tend to underesti-
mate sample size when making inferences with data [33], which may
be driven by logarithmic perception [54,61]. Alternatively, we could
interpret this result as a cognitive bias where users are unwilling to be
certain even when sample size is large enough to support unambiguous
inferences, related to non-belief in the law of large numbers [6].
Bias. Intercepts in the LLO model describe bias in users’ probability
allocations when ground truth causal support indicates that explanation
A (i.e., treatment effect) is just as likely as explanation B (i.e., no treat-
ment effect). Under this condition, a normative observer would allocate
equal probability to both causal explanations. We derive expected prob-
ability allocated to explanation A based on a logistic transform of LLO
intercepts, and compare this to the normative benchmark of 50%.

With all visualizations except for filterbars, probability allocations
are far below 50% indicating substantial bias (Fig. 8). On average when
causal support is zero, users of text tables, icons, bars, and aggbars
allocate too little probability to causal explanation A. Users of filterbars,
on the other hand, allocate approximately 50% to explanation A. We
see the most extreme bias of up to 20% with icons arrays.

Unfortunately, we can only speculate about possible reasons for
these biases. We expected that LLO intercepts would indicate average
responses near 50% in the absence of signal for all conditions (i.e.,
a uniform prior), simply because this follows from the structure of
the task. Because this pattern of biases across visualizations results
from a non-preregistered exploratory comparison, we investigate in
Experiment 2 whether these biases replicate for a more complex task.

4 EXPERIMENT 2

In Experiment 2, we evaluate the same visualization designs on a
more difficult task. We asked participants to detect confounding in the
presence of a known treatment effect by allocating probability across
four possible “backdoor paths” [44] (Fig. 9). We extend causal support
to handle more than two alternative causal explanations, demonstrating
how causal support can be employed in more complex analyses.

Fig. 9: DAGs for possible causal explanations in Experiment 2.

4.1 Method
Experiment 2 was the same as Experiment 1 except for the following
changes to response elicitation, modeling, and experimental design.

4.1.1 Task scenario & response elicitation
Participants judge the influence of a gene on both disease and treatment
effectiveness by allocating probability across the four DAGs in Figure 9,
separately assessing each DAG arrow in a confounding relationship.
Question & Elicitation. We asked participants a similar question as
in Experiment 1, where participants allocated 100 votes (i.e., subjec-
tive probability) across alternative causal explanations. However, in
Experiment 2 we elicited a Dirichlet distribution with four alternatives.
Following Chalone et al. [10, 37] and extending our interface from Ex-
periment 1, each time participants allocated a number of votes between
0 and 100 to an option, the remaining votes out of 100 were uniformly
distributed across unused response options. These imputed responses
were highlighted along with a prompt to, “Adjust your responses until
all the numbers reflect your beliefs.” Participants iteratively set and
adjusted their probability allocations. We combined these responses
into perceived causal support, which we compared to our benchmark.
Perceived causal support. When estimating perceived causal support
in Experiment 2, we separately evaluated multiple target explanations.
Primarily, we targeted belief in explanation D (llrD), confounding:

lrrD = log
(

responseD

∑i={A,B,C} responsei

)
where responseA, responseB, responseC, and responseD were partic-
ipants’ probability allocations to causal explanations A through D,
respectively, on each trial. We also separately targeted belief in both of
the component DAG arrows that constitute a confounding relationship
(Fig. 9): (llrBD) the effect of gene on disease, which appears in explana-
tions B and D; and (llrCD) the effect of gene on treatment effectiveness,
which appears in explanations C and D. We define llrBD as follows,

lrrBD = log
(

∑i={B,D} responsei

∑i={A,C} responsei

)
and we define llrCD similarly. We compare log response ratios llrD,
llrBD, and llrCD to corresponding causal support csD, csBD and csCD.
Strategy. At the end of the experiment, we asked participants,

How did you use the charts to complete the task? Please
tell us what patterns you looked for in the data and what
comparisons you made.

We analyzed these qualitative responses to assess whether participants
understood how to use the charts for the confounding detection task.

4.1.2 Experimental design
We manipulated both the visualizations (between-subjects) and the data
sets we showed (within-subjects). We showed each participant 19 trials,
18 data conditions (see Section 4.1.3) and one attention check used



for exclusions (see Section 4.1.5). We randomized trial order for each
participant, inserting the attention check on trial 10.

4.1.3 Stimulus generation
We generated data sets that spanned a range of ground truth causal sup-
port for confounding. Creating these data sets required (1) manipulating
data attributes which signaled whether the gene was a confounding
factor, and (2) labeling each data set with ground truth causal support.

Our goal was to generate 18 data conditions that varied delta p
disease, delta p treatment, and sample size, data attributes which ma-
nipulate causal support for confounding. Delta p disease described
the difference in the proportion of people with disease in each data set
depending on whether they had the gene. Negative values of delta p
disease indicated evidence that the gene caused disease, whereas values
near zero indicated evidence against a gene effect on disease. Delta
p treatment described the difference in the proportion of people with
disease within the treatment group depending on whether they had the
gene. Negative values of delta p treatment indicated evidence that the
gene stopped the treatment from preventing disease, whereas values
near zero indicated evidence against a gene effect on treatment. Sample
size was the number of people in each data set we showed chart users.
Data conditions. To generate 18 data conditions, we simulated data
from structural models with one parameter per DAG arrow in Figure 9.
We manipulated the probability that gene causes disease (3 levels:
{0,0.35,0.7}), the probability that gene prevents treatment from work-
ing (3 levels: {0,0.35,0.7}), and sample size (2 levels: {100,1000}).
We controlled the probability that treatment prevents disease (0.8),
probability of disease due to unobserved causes (0.2), base rate of the
gene (0.4), and the proportion of each sample with treatment (0.5). We
selected these parameters iteratively by sampling data sets and labeling
ground truth until half of trials had greater than a 25% chance of having
been generated by causal explanation D.

As in Experiment 1, we simulated many data sets for each data con-
dition, and we counterbalanced quantiles of sampling error across par-
ticipants (see Section 3.1.4). For our attention check trial, we selected
the simulated data set that maximized causal support for confounding.
Labeling ground truth causal support. We extended Griffiths and
Tenenbaum’s model of causal support [21] to account for more than two
alternative causal explanations. We primarily targeted causal support
for causal explanation D over explanations A, B or, C,

csD = log
(

Pr(C|modelD)
∑i={A,B,C}Pr(C|modeli)

)
+ log

(
Pr(modelD)

∑i={A,B,C}Pr(modeli)

)
where C is the data set we label with ground truth, and modelA, modelB,
modelC, and modelD correspond to causal explanations A through D
(Fig. 9), respectively. Since we separately targeted belief in both of the
component DAG arrows that constitute a confounding relationship (see
Section 4.1.1, perceived causal support), we needed to calculate (csBD)
ground truth causal support for explanations B or D over A or C:

csBD = log
(

∑i={B,D}Pr(C|modeli)

∑i={A,C}Pr(C|modeli)

)
+ log

(
∑i={B,D}Pr(modeli)

∑i={A,C}Pr(modeli)

)
We similarly calculated (csCD) causal support for explanations C or D.

The first terms in the formulae for csD, csBD, and csCD are log like-
lihood ratios representing the relative compatibility of a given data set
with causal explanations A, B, C, and D. We calculated the log likeli-
hood of each data set we showed participants given modelA, modelB,
modelC, and modelD using Monte Carlo simulations similar to Algo-
rithm 1. In Experiment 2, we introduced one more parameter Pr(¬T |G)
to our structural models, representing the probability that the gene pre-
vents the treatment effect. We incorporate this parameter into our Monte
Carlo simulations (Alg. 1) by making the following substitutions:

20 : (Pr(D |G)+Pr(D)−Pr(D |G) ·Pr(D)) · (Pr(¬D |T )
21 : · (1−Pr(¬T |G))+(1−Pr(D |G)) · (1−Pr(D)),

22 : (Pr(D |G)+Pr(D)−Pr(D |G) ·Pr(D))

23 : · ((1−Pr(¬D |T ))+Pr(¬D |T ) ·Pr(¬T |G))

Under modelA we sampled Pr(D) and Pr(¬D |T ) uniformly on the
interval [0,1] and fixed Pr(D |G) and Pr(¬T |G) at zero, representing

assumptions that the gene impacts neither disease or treatment. Under
modelB we sampled Pr(D), Pr(D |G), and Pr(¬D |T ) uniformly and
fixed Pr(¬T |G) at zero, representing the assumption that the gene has
no effect on treatment. Under modelC we sampled Pr(D), Pr(¬T |G),
and Pr(¬D |T ) uniformly and fixed Pr(D |G) at zero, representing the
assumption that the gene has no effect on disease. Under modelD we
sampled all four parameters uniformly to represent confounding.

The second terms in the formulae for csD, csBD, and csCD are log
ratios of the prior probabilities of the target explanation(s) versus other
possible explanations. Again, we assumed a uniform prior to create an
unbiased benchmark for our task such that 25% was the normative prior
probability for each causal explanation A, B, C, and D, respectively.

4.1.4 Performance evaluation

Again, we used linear in log odds (LLO) models [19, 61] to describe
discrepancies between perceived and normative causal support. We
also conducted a qualitative analysis of participants’ reported strategies.
Model specification. We used three inferential models because we had
three dependent variables, representing perceived causal support for
confounding (lrrD) and for the two constituent effects of confounding
(lrrBD and lrrCD). Here, we show only the models on lrrD and lrrBD
because the models on lrrCD and lrrBD are identical in form, with csCD
and delta p t replacing csBD and delta p d as predictors:

lrrD ∼Normal(µD,σD)
µD =csD ∗delta p d ∗delta p t ∗n∗ vis

+
(
csD ∗delta p d+ csD ∗delta p t+ csD ∗n

∣∣worker id
)

lrrBD ∼Normal(µBD,σBD)

µBD =csBD ∗delta p d ∗n∗ vis+
(
csBD

∣∣worker id
)

where lrrD, lrrBD, and lrrCD were perceived causal support for a con-
founding, the gene effect on disease, and the gene effect on treatment,
respectively, csD, csBD, and csCD were our normative benchmarks cor-
responding to each log response ratio, delta p d was the difference
in the proportion of people with disease given gene versus no gene,
delta p t was the difference in the proportion of people with disease
among those in the treatment group given gene versus no gene, n was
the sample size as a factor, vis was a dummy variable for visualization
condition, and worker id was a unique identifier for each participant.

We primarily modeled effects on the mean of perceived causal sup-
port µD, µBD, and µCD, but our models also learned residual standard
deviations σD, σBD, and σCD. The residual standard deviations and
random effects in each model helped us separate patterns in responses
from noise and individual differences. In the first model, we used
the term csD ∗delta p d ∗delta p t ∗n∗ vis to learn how sensitivity to
causal support for confounding varies as a function of sample size
n and visualization vis. In the second and third models, we used the
terms csBD ∗delta p d∗n∗vis and csCD ∗delta p t∗n∗vis to learn how
sensitive users in each visualization condition were to the gene effects
on disease delta p d and treatment delta p t, respectively.
Qualitative analysis. We wondered how well participants would intuit
how to perform the confounding detection task, considering it was more
difficult than the task in Experiment 1, and we provided no training. To
address this we applied a deductive coding scheme. We coded partici-
pants’ strategy descriptions as uninformative if they didn’t describe a
strategy. Otherwise, we coded whether or not participants described
adequate strategies for judging delta p disease, delta p treatment, or
sample size (see Section 4.1.3), and we coded confusion if they stated
they were confused or described an incorrect strategy.

4.1.5 Participants & exclusions

We used a similar approach to power analysis as in Experiment 1 to
determine a target sample size of 500 participants after exclusions. We
recruited a total of 703 participants, and after exclusions we used data
from 519 participants in our analysis. Although we preregistered that
we would exclude participants who allocated less than 25% probability
to confounding on an attention check trial where confounding was
very likely (see Section 4.1.3), this criterion would have excluded 39%
of our sample. We relaxed the cutoff to less than 20% probability of



Fig. 10: Sensitivity (y-axes) conditioned on three attributes of visual signal for confounding (rows, x-axes) and visualization conditions (columns).

Fig. 11: Linear in log odds (LLO) slopes per visualization condition.

confounding to allow for additional response error, resulting in a 26%
exclusion rate. We paid participants $3.04 for 14 minutes on average.

4.2 Results
We use a linear in log odds (LLO) model to describe performance in
terms of sensitivity to ground truth causal support and bias in probability
allocations when all four causal explanations are equally likely.
Sensitivity. A LLO slope of one indicates ideal sensitivity to the log
likelihood of the data given a set of causal explanations Similar to
Experiment 1, slopes in all visualization conditions are closer to zero
than one (Fig. 11), indicating under-sensitivity to the ground truth.

Interacting with filterbars seems to improve sensitivity, while in-
teracting with aggbars seems to decrease sensitivity, although these
differences are not reliable. It is surprising to see a similar pattern
of results for interactive visualizations in both experiments, since we
expected interactive visualizations to be more helpful for detecting
confounding than for detecting a treatment effect. Detecting confound-
ing requires users to look for more complex counterfactual patterns
in order to distinguish between causal explanations, and manipulating
data aggregation and filtering should help users to query visualizations
for these patterns. When we analyze interaction logs (see Supplemental
Materials), we see that filterbars users interacted with the visualizations
more frequently and created more task-relevant views of the data than

Fig. 12: LLO intercepts per visualization condition.

aggbars users, which may help to explain why interacting with filterbars
was somewhat more helpful than interacting with aggbars.
Visual signal effects on sensitivity. We examine sensitivity in each
visualization condition to the three visual signals for confounding in
our task (delta p disease, delta p treatment, and sample size; see Section
4.1.3). Normatively, slopes are one regardless of these visual signals.

Figure 10 shows users are more sensitive to causal support at values
of delta p disease and delta p treatment near zero, with the exception of
filterbars users who don’t interact. This pattern is consistent with the
findings of Experiment 1 in that chart users respond more to evidence
against a given causal effect than evidence in favor of an effect.

In Figure 10, we also see that users of every visualization but filter-
bars are more sensitive when sample size is smaller. This pattern is
consistent with prior work [6, 33] and the results of Experiment 1.
Bias. LLO intercepts describe bias in probability allocations when the
data are equally likely under each alternative causal explanation. We
derive expected probability allocated to explanation D based on LLO
intercepts and compare this to the normative benchmark of 25%.

Figure 12 shows that, with all visualizations but text tables, users
underestimate the probability of confounding in the absence of signal.
The fact that biases for each visualization condition differ between
Experiments 1 and 2 suggests that these results are task-specific. Future
work should study reasons for these biases and what visual analytics



software can do to help calibrate analysts’ probability allocations.
Strategies. We assess users’ self-reported strategy descriptions. 235 of
519 (45%) users included in our analysis gave uninformative responses
and were excluded from further analysis. 42 of 284 (15%) remaining
users either stated they were confused or described an incorrect strategy.

However, many users intuited the important signals in the data:
“I relied more on the ‘no treatment’ cells to consider
whether the gene causes the [disease], trying to look at
ratio of ‘disease’ and ‘no disease’ within those two quad-
rants... [I] tried to consider the actual counts remembering
that small numbers mean loose estimates but this was easy
to overlook. Then I compared the two purple bars in the

‘gene no’ top-half of graph to estimate the treatment effect...
and did the same for the two lower purple bars to see if
treatment equally effective in those with the gene.”

222 of 284 (79%) described an adequate strategy for inferring the gene
effect on disease. 81 of 284 (29%) mentioned sample size information.
168 of 284 (59%) described an adequate strategy for inferring the gene
effect on treatment effectiveness. These results suggest that much of our
data represent a reasonable understanding of the task, yet participants
still appeared to struggle to use the visualizations effectively.

5 DISCUSSION

We demonstrate the utility of causal support for evaluating inferences
with visualizations, successfully measuring expected patterns in the
quality of chart users’ causal inferences. For example, filterbars users
should not have been able to perform either task without interacting
because the visual signals required to perform the tasks were hidden
behind interactions. Our method shows that filterbars users were com-
pletely insensitive to the signal in data when they did not interact.
Similarly, our models corroborate prior work suggesting that chart
users underweight sample size when making inferences [6, 33]. Find-
ings like these reassure us that causal support can help us understand
how users struggle to use visualizations to evaluate causal hypotheses.

Our findings point to unsolved design challenges for supporting
causal inferences with visual analytics (VA) tools. Contrary to what we
might expect given the emphasis of visualization research on evaluating
encodings and interaction techniques, using different encodings for
count data doesn’t appear to improve sensitivity to evidence for causal
inferences beyond text contingency tables. Similarly, common inter-
action techniques in VA tools, such as manipulating data aggregation
or cross-filtering coordinated multiple views, don’t seem to improve
causal inferences beyond what users can achieve with simpler static
visualizations. Interacting with visualizations seems to help or hurt
sensitivity depending on how deliberately signal-seeking users are and
whether interacting is necessary in order to expose the visual signal
in the data. This suggests that VA tools designed to optimize easy
exposure of data are not sufficient for supporting causal inferences.

We also find systematic biases in the way that chart users respond to
specific visual signals in charts. Chart users seem ubiquitously more
sensitive to falsifying evidence than they are to verifying evidence. This
may reflect a cognitive bias where analysts are more responsive to
discrepancies, between observed data and the counterfactual patterns
expected under a given causal explanation, than they are to similarities
between observed data and counterfactual patterns. Interestingly, this
bias may be somewhat rational to the extent that verifying an inference
is probabilistic, whereas the logic of falsification is deductive and thus
“more powerful” in that it can definitively rule out an explanation [47].

Insensitivity to sample size remains a major challenge for informal
statistical inferences, and it appears not to be sufficiently addressed by
common chart types for showing count data. Even icon arrays, which
emphasize sample size as the number of equal-sized dots, don’t seem
to mitigate this problem. Prior work [6, 33] suggests this may be due to
perceptual underestimation of sample size and cognitive bias against
claiming certainty in inferences. Additionally, our qualitative results
suggest chart users may not intuitively pay as much attention to sample
size as they do to other signals when making causal inferences.

Consistent with an aversion to believing causal relationships exist,
we find that chart users tend to underestimate the probability of a given

DAG arrow. In the absence of any signal differentiating between causal
explanations, chart users allocate more probability to explanations that
posit fewer relationships, rather than allocating probability uniformly
across alternatives. Though this tendency interacts with task and visu-
alization in ways that warrant further study, it may reflect an overall
cognitive bias toward believing in simpler causal explanations.

5.1 Limitations & future work
We set out to run a proof-of-concept study establishing causal support
as an evaluation method for VA tools, and our study raises many unan-
swered questions. A primary limitation of this work is that we recruited
participants on Mechanical Turk, who may be less sensitive to causal
support than real data analysts to the extent that they may use VA tools
less deliberately. However, our qualitative analysis suggests that many
participants understood the task and used reasonable strategies. Future
work may find causal support helpful in evaluating current practices
or novel interfaces with smaller pools of participants, insofar as real
data analysts give less noisy responses than crowdworkers. Questions
remain about whether our findings generalize for other data types (e.g.,
continuous [40] and event stream data [39]), for domains outside of
medicine, and for analysis scenarios with more complex possible data
generating models. Though we suspect our findings will persist in
some form across user populations and analysis scenarios, visualiza-
tions probably will support some other causal inference tasks better
than they support differentiating possible data generating processes.

5.2 Improving visual analytics for causal inference
A theme in visual causal inference is that analysts do not always know
what to look for in data [4, 60]. Causal inferences differentiating be-
tween possible data generating processes (DGPs) require comparisons
between patterns in observed data and counterfactual patterns under a
specific DGP [20, 44]. Users of VA software may struggle with causal
inferences insofar as they fail to imagine counterfactual predictions.

Prior work in statistics and visualization argues for model checks that
make comparisons between data and model predictions explicit [16, 17,
26]. For example, workflows in Bayesian statistics frequently employ
prior and posterior predictive checks [14].Visualizing model predictions
alongside empirical data could support causal inference by externalizing
discrepancies and similarities between observed and expected patterns.

We envision a VA workflow where analysts cycle between interac-
tively specifying models (e.g., [35]) and generating model checks to
gauge model compatibility with their data. This echos calls to make
models themselves a primary goal of visual data analysis [2]. Causal
support solves an important problem in realizing this vision, defining a
“good” model check as one which supports sensitive inferences among
a set of candidate DGPs. Though it may be difficult to come up with
an exhaustive set of DGPs in many real world applications, we think
that this approach would be fruitful even with a relatively simple set
of models that a knowledgeable analyst might provisionally entertain.
Causal support cannot guard against analysts ignoring possible models,
but it can be used to evaluate visualization and interaction designs
intended to help analysts collate and compare alternative models.

6 CONCLUSION

We contribute two crowdsourced experiments demonstrating an ap-
proach to evaluating causal inferences with visual analytics (VA) tools.
No visualization or interaction designs we tested lead to reliably better
causal inferences than text contingency tables, suggesting that common
VA tools designed for data exposure may not be sufficient for supporting
causal inferences. We point to perceptual and cognitive biases which
seem to make visual causal inferences difficult, including tendencies to
underweight both evidence verifying a causal relationship and evidence
from large samples. We discuss how formal models of causal support
can be used to evaluate VA systems that place an emphasis on helping
users reason about possible data generating processes.
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