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EVM: Incorporating Model Checking into
Exploratory Visual Analysis

Alex Kale, Ziyang Guo, Xiao Li Qiao, Jeffrey Heer, Jessica Hullman

Fig. 1: Model checks modify the typical visual analytics workflow by enabling users to assess the plausibility of interpretations of
discovered patterns. A⃝ The analyst discovers that accounting for time spent studying appears to help explain student absences. B⃝
The analyst facets this view by the highest level of education achieved by each student’s guardian. He wonders if study time is
predictive of absences after accounting for guardian education. C⃝ The analyst specifies models asserting that absences are explained
by either: guardian education alone (orange); or guardian education and study time (red). Seeing that predictions from the second
model do a better job of capturing the largest numbers of absences, he concludes that both guardian education and study time are
important explanatory variables.

Abstract— Visual analytics (VA) tools support data exploration by helping analysts quickly and iteratively generate views of data which
reveal interesting patterns. However, these tools seldom enable explicit checks of the resulting interpretations of data—e.g., whether
patterns can be accounted for by a model that implies a particular structure in the relationships between variables. We present EVM,
a data exploration tool that enables users to express and check provisional interpretations of data in the form of statistical models.
EVM integrates support for visualization-based model checks by rendering distributions of model predictions alongside user-generated
views of data. In a user study with data scientists practicing in the private and public sector, we evaluate how model checks influence
analysts’ thinking during data exploration. Our analysis characterizes how participants use model checks to scrutinize expectations
about data generating process and surfaces further opportunities to scaffold model exploration in VA tools.

Index Terms—Visualization, model checks, exploratory analysis

1 INTRODUCTION

Data analysts use exploratory visual analysis (EVA) tools such as
Tableau to check their understanding of data, discover patterns, and
seek potential explanations for those patterns. For example, imagine an
analyst, Juan, contracted to investigate what factors contribute to school
absences in a local school district. During exploration, Juan discovers
an interesting looking pattern (Fig. 1 A⃝) where absences are associated
with the number of hours students spend studying. Juan wonders what
could explain this pattern. He begins faceting by other variables in
the dataset provided by the school and notices that the highest level of
education achieved by each student’s guardian helps to explain large
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numbers of absences among students who study less (Fig. 1 B⃝). If
Juan wants to scrutinize his interpretation of this pattern further, and
he is comfortable with statistical programming, he might switch to a
programming language like R or Python to specify and compare the
predictions of models that do and do not assert this relationship. This
kind of provisional “model checking” [24] could help Juan rule out
some interpretations as less likely, or explore how variations on his
interpretation might better capture what he sees.

Given their broad appeal to non-programmers, many users of visual
analysis (VA) tools may not be comfortable shifting to statistical tools
to do preliminary model development and checking. This points to a
gap in current design approaches for EVA tools: they offer little support
for helping analysts reason more explicitly about their provisional
interpretations. Recent work [24] critiques the standard approach to
designing visual analysis tools as implying a misconception that data
exploration is “model free”, in the sense that we rely primarily on
visualizations for surfacing patterns and hypotheses early in analysis
and rely primarily on modeling for confirmatory statistical inference
late in analysis. A consequence of this “model free” account of data
exploration is siloed tools for exploratory and confirmatory analysis,
leaving EVA users under-equipped to resolve ambiguity about the
underlying data generating process.

Imagine instead that an EVA interface enabled Juan to (1) fit a series
of models asserting various plausible assumptions and structures about
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the data and (2) visualize their predictions in comparison to observed
data (Fig. 1 C⃝). Explicitly comparing models encoding different data
interpretations can afford better-calibrated confidence in claims that
Juan might make about the data generating process. Without such an
explicit representation of expectations, analysts like Juan must imagine
what it could look like if, e.g., only guardian education influences
student absences and whether the observed data are plausible under
that model, imagined counterfactuals that some recent work (e.g., [28])
suggests are difficult for many to accurately incorporate into visual
inferences. At the same time, once an EVA tool makes it easy to
generate model predictions for comparison with data, it is possible that
the added formality provides a sense of false assurance to analysts,
exacerbating risks of post-hoc inferences or overfit explanatory models,
similar to p-hacking [46] or model selection via R-squared [67].

We explore the promise and pitfalls of explicit modeling support
integrated in a visual data exploration tool via Exploratory Visual Mod-
eling (EVM), an open-source prototype EVA application. EVM enables
users to quickly specify statistical models representing plausible expla-
nations of discovered patterns in data, and compare predictions from
these models to the observed data. The key role of visualization in EVM
is showing discrepancies between patterns in data and expectations, a
design pattern dubbed “model checks” by Hullman and Gelman [24].
EVM contributes a drag-and-drop interface for chart construction (c.f.,

Polaris [47]) with model checking features including: an interactive
“model bar” that enables analysts to flexibly specify regression models,
a back-end layer that fits user-specified models and samples appropriate
predictive distributions to show in the browser, and carefully designed
defaults for model check visualizations that juxtapose user-generated
views of data with model predictions. This interface enables users to
quickly specify and check a wide variety of regression models against
data on-the-fly, just as conventional EVA tools enable quick chart
construction. Additionally, we present an evaluation of how 12 data
scientists practicing in the private and public sectors use model checks
when they are incorporated into EVA workflows. We characterize how
model checks change participants’ exploratory data analysis behavior
compared to a baseline condition where they use a simple VA tool
without model checking functionality, finding that model checks evoke
different analysis behaviors depending on the user’s previous experi-
ence with modeling. We discuss new design requirements for model
checks in EVA, highlighting cognitive pitfalls of model-based data ex-
ploration, possible roles for model recommendation, and opportunities
around new programming tools for visual modeling.

2 RELATED WORK

We present relevant literature on graphical statistical inference and
interactive model selection to contextualize our contributions.

2.1 Graphical statistical inference
Graphical statistical inference refers to visual methods for judging how
well a statistical model describes observed patterns in data, which we
refer to as “model checks” following Hullman and Gelman [24]. Tukey
motivated visualizing model residuals to inspect where a provisional
model might be wrong during exploratory data analysis [53]. Similarly,
common model diagnostic tools such as QQ-plots [34] create visual
tests that a model’s assumptions are satisfied.

The best-known visualization formulation of model checks may be
the visualization lineup protocol [6, 7, 61], in which many plots of
simulated data are generated from a “null model” (i.e., representing a
null hypothesis) and an impartial observer is asked to pick out a plot
of the real data among the set of “null plots.” The lineup procedure
has been analogized to a formal statistical test, and shown to have
equivalent power or even better power than a conventional statistical
test in some scenarios [35]. However, the strict analogy between the
lineup and a statistical test can be hard to ensure because creating null
plots is a non-trivial challenge [54, 55], and the need for impartial
observers is impractical. Others have proposed alternative analogies
for graphical inference, such as Bayesian cognition, as a means of
guiding visualization design and research [24, 30, 31, 65]. Inspired
by Bayesian workflows, where visualizations are the primary means

by which models are interrogated [15, 19], Hullman and Gelman [24]
discuss how model check visualizations can have value for helping
analysts understand for which cases a model is wrong about the data,
without evoking an analogy to a statistical test or attempting to provide
guarantees about error rates. In this approach, rejecting a model is not
considered a win so much as realizing from a visualized model check
what features of observed data remain yet to be explained.

While most interpretations of visualizations might be likened to
checking an implicit model representing the viewer’s expectations
about the data [16, 17], attempts to design graphical user interfaces for
visual analysis (‘VA tools’ hereafter) that make it easy to check provi-
sional models have been much less prevalent than design approaches
that emphasize interaction with observed data [24]. For example, while
Tableau Software supports very simple regression modeling and con-
struction of uncertainty intervals, at the time of this writing plotting
residuals requires multiple data transformation and visualization steps.
In part because of this lack of integration of model checking with VA
tools, analysts may not always scrutinize patterns discovered using such
tools to ask how exactly they might arise. Exceptions include early
research systems developed by and for statisticians [4, 56], NorthStar
created for predictive modeling [33], and recent research systems de-
veloped to study novel interfaces for eliciting analysts’ expectations
via natural language [9] and sketching [32]. In contrast to these efforts,
we developed EVM to study how model check visualizations might ben-
efit the broader populations of analysts that tools like Tableau target,
assuming neither that our users would be statisticians nor that realizing
model checking necessarily requires a new elicitation medium.

2.2 Visually-aided model selection

Descriptive accounts of exploratory visual analysis (EVA, e.g., [2])
acknowledge that it often alternates between open-ended tasks (e.g.,
flipping through filters looking for something interesting to explore a
space of theories or models, a.k.a, abduction proper [13, 40]) and more
focused exploration (e.g., trying to formulate and validate a hypothesis).
Recent work in computer science [43, 68, 70] analogizing EVA to a
multiple comparisons problem emphasizes what Tukey [50] referred to
as “rough confirmatory analysis.” In this stage, visual analysis plays
a classification role in helping an analyst distinguish between signals
that are so apparent that statistical modeling is not needed, versus
where noise and confounding are so great that confirming perceived
patterns is hopeless. EVM is designed specifically to support this rough
confirmatory stage, in which analysts rely on their eyes to make often
difficult judgments about signal versus noise ratios.

Tukey stressed multiplicity as a key issue in this intermediate stage of
analysis, which proceeds a stage of initial exploration in which probabil-
ity is not of interest, and precedes confirmatory analysis. For example,
an analyst should be wary of “How many things might have been
looked at? How many had a real chance to be looked at? How should
the multiplicity decided upon, in answer to these questions, affect the
resulting confidence sets and significance levels?” [51]. Whereas previ-
ous research [8, 9, 32] attempted to avoid risks of post-hoc inference by
forcing analysts to specify models before seeing the results of queries,
and suggested further mitigations through automated adjustment of
test statistics, we opted to focus EVM on making support for model
check visualizations as seamless as possible, without even providing
numerical model summaries like p-values for users to exploit. We built
EVM to investigate how VA users rely on unconstrained visual checking
to search a space of plausible models, rather than presupposing a hy-
pothesis testing framework where elicited models necessarily reflect
a user’s best-guess expectation. The multiple comparisons problem
has led to valuable suggestions for EVA systems like holdout sets [68],
which would be natural to support in future iterations of EVM.

Other research prototypes [21, 57, 58, 66] have been developed to
support causal inference by representing user-defined queries in terms
of directed acyclic graphs. These tools integrate data mining approaches
into VA tools with the intention of helping users explore the plausibility
that various causal structures explain their data. Although EVM has
similar goals insofar as we aim to promote scrutiny about interpretations
of data, we avoid automated modeling approaches in EVM based on the
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design philosophy that visual model checking will be most meaningful
when models originate from users’ expectations.

3 DESIGN REQUIREMENTS

We designed and implemented EVM to support model checking during
exploratory visual analysis. We describe the design rationale for EVM,
highlighting where we envision model checks adding value to visual
data exploration workflows.
Promote generative thinking. Analysts derive meaning from patterns
they discover during visual data exploration based on how these patterns
match or contradict their expectations. To evaluate possible patterns
and expectations, analysts must answer the question, “What would a
new data sample look like given my provisional model?” However,
visual data exploration tools usually do not support generation of new
hypothetical samples, leaving analysts to imagine how these might
look. A primary design hypothesis behind EVM is that integrating
model checking into visual data exploration will promote more explicit
consideration of how data might have been generated.
Pattern-seeking, not data mining. Visual data exploration tools lend
themselves to false discoveries [68] in part because they make it easy
to view data but hard to check interpretations or connect visual patterns
to expectations. Analysts may be distracted or mislead by small visual
details on charts unless they seek these details deliberately based on
questions about their data. For this reason, EVM avoids serving up
comparisons or views of data that the user has not requested.
Eliciting regression models. In order to check users’ provisional data
interpretations, we require a computational representation of the as-
sumptions and structure implied by an explanation. Part of the design
philosophy behind model check visualizations is that regression mod-
els can provide a shared abstraction for humans and machines, and
that models need not represent either a user’s best-guess of the data
generating process or a hypothesis test in order for visualized model
predictions to provide a useful reference for making sense of data [24].
For this reason, EVM enables users to specify regression models using
R syntax for model formulae [42, 44, 62] through a component called
the model bar (see Section 4.2). Given that such regression formulae
are shown to be a successful “interface” via their frequent use in the
sciences, we assume they will be suitable for users with a wide range
of backgrounds and experiences with statistics.
Model expansion workflow. One perspective in statistical theory sug-
gests that tools should promote a modeling workflow where analysts
consider and check incremental changes to models reflecting their pro-
visional beliefs about data [15]. Although there is some contention
that such forward stepwise selection of predictors could lead to biased
parameter estimates arising from multiple comparisons and overfit-
ting [22, 38], this is a risk primarily when the goal is hypothesis testing.
In contrast, EVM is intended for visually scrutinizing data interpretations
in order to explore a space of plausible models, not for hypothesis
testing. While analysts’ difficulty in clearly separating exploratory and
confirmatory analysis can contribute to overfit explanations [18], and
may also be a risk using EVM, a goal of EVM is to integrate better tools
for preliminary winnowing of bad interpretations of visual findings
that might otherwise go unchecked. To this end, a model expansion
workflow helps analysts work up to complex models in terms of simpler
models that assert a subset of the same structure. EVM facilitates this
sort of cumulative assessment of what is and isn’t helpful to model.
Decouple models from visualizations. It can be tempting to draw
analogies between statistical models and visualizations (e.g., that
Fig. 1 B⃝ necessarily implies a model assuming an interaction between
study time and guardian education), due to representational similari-
ties at the software abstraction level between models [42, 44, 62] and
visualizations [63]. However, in developing EVM we quickly realized
that a more appropriate way to describe the relationship between mod-
els and visualizations is many-to-many: a model can imply multiple
visual checks and a visualization can map to multiple model speci-
fications [48]. Hence EVM decouples model specification from chart
specification, allowing visualizations to show variables that are not
predictors in a model, and models to learn relationships which are not
directly visualized. This enables use cases like Figure 1 C⃝ where model

Fig. 2: Model check showing what the data would look like if
absences was not associated with study_time (orange) vs if it was
(red). Predictions from the two models look very similar.

check visualizations can help users reason about the higher-dimensional
patterns behind problematically low-dimensional [60] visualizations.
Graft model outputs to user-specified visualizations. Model check-
ing is inherently visual, but few principles exist for prescribing how
to show model outputs alongside observed data [60], including how
to sample from the model output and how to facilitate visual compar-
isons. We strove for smart defaults such that EVM juxtaposes model
predictions with any user-generated visualization by simply adding an
adjacent subplot for each fitted model. EVM always facets subplots of
the model predictions in a layout that preserves the ability to compare
observed and predicted outcomes on a common scale. We show model
predictions as animated hypothetical outcome plots or HOPs [25] since
this uncertainty visualization technique is helpful for showing reference
distributions [27] and can be applied to any user-generated chart. When
the analyst chooses to check a model that doesn’t make sense (e.g.,
using a model that assumes discrete outcomes on continuous data), the
resulting model check visualization sometimes becomes ill formed, sig-
naling to the analyst that something has gone wrong. After discovering
these failure modes during informal testing, we decided not to prevent
them based on their value for detecting flawed models.

4 EVM: EXPLORATORY VISUAL MODELING

We implemented EVM as a single-page web application, where users can
generate views of data and models to check, connected to an R server
that fits models and extracts predictions from them. The reader can
interact with the prototype at https://mucollective.github.io/evm/ and
find the project repository at https://github.com/MUCollective/evm/.

4.1 Usage scenario
Consider how Juan might interact with EVM to investigate factors that
affect student absences (see Section 1). Initially, Juan might use EVM’s
drag-and-drop interface (Fig. 3 A⃝) to construct a series of bar charts,
strip plots, and scatterplots examining each predictor variable in the
dataset and its relationship with the outcome of interest, absences.
This initial tour of the data would reveal interesting potential relation-
ships such as associations between student absences and variables like
weekly hours of study_time or level of guardian education (g_edu).

In order to scrutinize these relationships, Juan uses EVM’s model bar
(Fig. 3 D⃝) to express provisional interpretations to check against the
data. First, Juan evaluates the plausibility of the interpretation that
study_time helps explain absences. To do this, he specifies two
models to check against the data: one “null” model asserts no rela-
tionship between study_time and absences; the other model asserts
that study_time is predictive of absences (Fig. 2). In both models,
Juan assumes that the empirical distribution of absences can be ap-
proximated by a negative binomial distribution because absences are
an overdispersed count outcome. By comparing the data distribution to
predictions from both of these models in a model check, Juan becomes
less convinced that study_time is an important predictor.

Juan wonders if study_time might only seem predictive because
of correlation with other explanatory variables. Returning to a vi-
sual exploration workflow, he starts faceting the relationship between
absences and study_time by other factors. Juan discovers that the
pattern looks stronger, with higher numbers of absences overall, when
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Fig. 3: A screenshot of EVM, annotated to show different components described in Section 4.2: A⃝ Shelf construction; B⃝ Filters & transformations;
C⃝ Chart panel; and D⃝ Model bar. This model check assumes that the number of miles per gallon a car gets mpg is normally distributed with
mean and variance both influenced by the number of cylinders in a car’s engine cyl. Plotting horsepower hp against mpg results in a model check
of how well the trade-off between hp and mpg is explained by the variable cyl, which is not shown directly in this view.

students have guardians with higher levels of education (Fig. 1 B⃝).
Perhaps both study_time and g_edu reflect some unobserved factor
such as a family’s socioeconomic status. Juan wonders if it is still
important to consider study_time after accounting for g_edu.

To better understand correlated predictors, Juan sets up a series
of models to check against the data. He starts with a model assert-
ing that only g_edu influences absences. EVM juxtaposes predictions
from this model against Juan’s scatterplot of the relationship between
study_time and absences (Fig. 1 C⃝, left vs middle), revealing that
the pattern in the data can be roughly accounted for by a model that
asserts only an effect of g_edu. Juan tries adding another model as-
serting that both g_edu and study_time are predictive of absences
to investigate whether using study_time as a predictor improves the
model fit at all. The resulting model check shows that a model asserting
influences of both g_edu and study_time does a better job of pre-
dicting the case with the largest number of absences (Fig. 1 C⃝, left vs
middle vs right). Juan’s interpretation of this model check depends on
whether he thinks of this case as an outlier or the tail of the absences
distribution. EVM’s model checks help Juan arrive at the conclusion
that, although g_edu and study_time are correlated, these predictors
likely contain some non-overlapping information, something that he
could not ascertain from exploratory visual analysis alone.

4.2 Overview of functionality

The basic visual analytics functionality of EVM resembles that of sys-
tems like Tableau Software. We based this aspect of EVM’s design on
PoleStar [64], a research prototype developed to mimic the interaction
model of Tableau for the purpose of user testing. To generate visual-
izations in EVM, users rely on a shelf construction interface (Fig. 3 A⃝)
where they drag “pills” representing variables in a dataset onto “shelves”
representing x, y, row, and column encodings (in the sense of the gram-
mar of graphics [63]). The resulting visualizations appear in the chart
panel at the center the display (Fig. 3 C⃝). Smart defaults determine the
chart types that render in the chart panel depending on the data types
of the variables on the x and y encodings:

• Bar charts show univariate distributions for discrete variables.
• Strip plots show univariate distributions for continuous variables,

and bivariate distributions for continuous vs. discrete variables.
• Scatterplots show bivariate distributions for continuous variables.
• Heatmaps show bivariate distributions for discrete variables.

EVM facets any of these chart types into a trellis plot [3, 52], consisting
of multiple subplots arranged along the vertical and/or horizontal span
of the chart panel, when the user defines a row and/or column encoding.
In addition to chart specification, users of EVM can add filters and

Fig. 4: The model bar specifying a model check where absences are
assumed to be normally distributed with a constant mean and variance
dependent on study_time.

transformations by clicking the + icons (Fig. 3 B⃝). When adding
filters, the user selects a variable based on which they will either include
or exclude values less than (or equal to), greater than (or equal to), or
(not) equal to a criterion. When adding transforms, the user selects a
variable to which they can apply either a log odds or log transformation,
two options provided in EVM because they are used to handle bounded
distributions in logit normal and log normal models, respectively (see
below). One can remove filters and transforms by clicking the X icons
next to each filter or transform or by clicking remove all. For sim-
plicity, EVM always applies filters before transforms and applies both in
the order they are specified.

The primary innovation of EVM is to add model-checking functional-
ity to this style of visual analytics system. Users can specify models
to check against visualizations using the model bar, an interface ele-
ment not found in prior exploratory visualization tools (Fig. 3 D⃝). The
model bar employs a similar design pattern to the filter and transform
interfaces, in that users can add or remove models from the current
set of candidate models. When the user chooses to add a model to the
model bar, they select a distribution family from the following options:
normal (a.k.a. Gaussian) for unbounded continuous outcomes; log
normal for right-skewed continuous outcomes with a lower bound at
zero; logit normal for continuous outcomes bounded at zero and one;
logistic for binary outcomes; Poisson for count outcomes; and nega-
tive binomial for overdispersed count outcomes. We selected these
families to cover common distributions of outcome variables without
redundancy (see Appendix in Supplemental Materials). Based on the
model family chosen by the user, EVM elicits a model specification in
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Wilkinson-Pinheiro-Bates syntax [42,62], providing separate text boxes
for location and scale sub-models (Fig. 4) when the user selects a distri-
bution family with an explicit scale parameter. EVM parses these model
specifications into assumptions and asserted structures and displays
these as a list of natural language descriptions in the model bar.

4.3 Implementation
We implemented EVM as a Svelte application that runs in the browser
and connects to an OpenCPU [41] deployment, which fits and processes
models in R. We use Vega [45] to generate visualizations in EVM. We
also wrote a custom R package named modelcheck, which contains
functions to run a specified model in the selected family, add model
predictions to the input data frame, calculate residuals, and merge
together outputs from other operations without duplicating entries.
We rely on a combination of base R and tidyverse [59] for data
wrangling, as well as gamlss [44] models which fit quickly enough to
keep latency suitably low for an interactive system.

In addition to fitting models, modelcheck handles two critical steps
for uncertainty propagation that can pose challenges in modeling work-
flows: (1) sampling learned parameter values from the model to con-
struct a predictive distribution and (2) back-transforming these predic-
tions into the units of the data that users pass into the model bar. This
guarantees that model check visualizations compare data and model
outputs on the same scale. For example, predictions from log and
logit normal model families are back-transformed using exponential
and logistic inverse-link functions, respectively. This implementation
facilitates quick model iteration in EVM’s user interface; typically users
would need to write analysis scripts to achieve similar model checks.

5 USER STUDY

We designed EVM for visual analytics (VA) practitioners whose back-
grounds in statistics vary, from having taken an introductory statistics
course at one time to fluidity with statistical tools. In order to assess
whether incorporating model checks into an interface like EVM would
benefit at least some people currently using VA tools, we ran a user
study targeting practicing data workers who were familiar with statisti-
cal models but who, unlike statisticians, typically might not incorporate
modeling into exploratory workflows. Given the exploratory nature
of our study, we conducted think-alouds followed by open-ended con-
versational interviews with users, rather than attempting a controlled
experiment targeting anticipated benefits of model checking. To inves-
tigate how model checking changes VA workflows, we characterized
users’ analysis behaviors at baseline using a simple VA tool without
model checking functionality as well as using model checks in EVM.

5.1 Participants
We recruited practicing data analysts (n = 12) to use EVM, drawing
primarily from our professional network via Twitter and email. To be
eligible, participants needed to (1) work with data regularly, (2) be
familiar with visual analytics tools like Tableau, and (3) have some
previous experience using regression models. We reasoned that re-
cruiting real data analysts would provide greater ecological validity
to any conclusions we draw. Of our 12 participants, 2 were academic
researchers in computer science, 5 were data scientists working on
business intelligence, 2 were data analysts working in healthcare, and 3
performed data-intensive work in government agencies or non-profits.
This sample emphasized practices of non-statisticians using VA tools.

5.2 Datasets
We provided each participant with two cleaned datasets to explore using
EVM, without and with model checks enabled. Our study design required
that these datasets were realistic without requiring specialized domain
knowledge to explore, contained non-trivial structure for participants to
discover, and were roughly equal in size. We used two real datasets on
forest fires [11,14] and student absences [12,14] in Portugal, which met
the first two requirements. To limit potential confounding effects of
dataset size on analysis behavior, we matched the number of variables
available for exploration by dropping selected variables until there were
ten variables per dataset, and we matched the number of records in the

datasets by dropping rows at random from the larger dataset (student
absences) until both datasets contained 517 observations. We also used
aggregation and sampling procedures on a few variables to match the
number of variables in each dataset that were discrete versus continuous
(see Supplemental Materials).

5.3 Interview protocol

Our interview sessions were structured as a pre-post study design,
where participants used a prototype visualization system with and with-
out model check functionality, followed by a debriefing interview. Each
session spanned 90 minutes total, split into three 30-minute sections:
think-aloud baseline, think-aloud with model checks, and debrief. We
focus here on the procedure and goals of our evaluation; see Supple-
mental Materials for full details of the user study protocol.
Think-aloud baseline. In the first 5 minutes, we introduced participants
to a version of EVM where model checks were not enabled. This entailed
a demonstration of chart specification, data filtering, and transforms.
In the next 25 minutes, participants explored one dataset in a think-
aloud protocol using EVM without model checks enabled. This step
provided a baseline for characterizing data exploration behavior with a
conventional VA tool at an individual level.
Think-aloud with model checks. The interviewer enabled model check-
ing and spent 5 minutes using the cars dataset [14, 29] to demonstrate
potential model checking use cases investigating the plausibility of
assumed relationships and correlations between predictors (see Sec-
tion 4.1). For example, to show how model checks can elucidate corre-
lations between predictors, we showed the scenario in Figure 3 C⃝. This
was followed by another 25 minutes of think-aloud data exploration on
a second dataset, this time using EVM with model checks enabled. This
second round of data exploration served as an intervention condition,
assigned within-subjects to assess changes from baseline.

During think-aloud sessions, participants were instructed to spend 25
minutes exploring one of two datasets looking for potential influences
on either area burned in forest fires or student absences. We asked
participants to tell us about any observations or patterns they felt were
worth having a colleague follow up on. The interviewer spoke only to
prompt participants to say what they were thinking, to answer direct
questions, and occasionally to help participants get unstuck if they
encountered a bug or confusing edge case. Some participants, especially
those who were less familiar with implementing regression models in R,
needed clarification about model notation and underlying assumptions.
The interviewer answered these questions. When participants hesitated
or got confused about model specification, the interviewer made a note
and asked about these instances later in the interview.

In the two think-alouds, the pairing of datasets with interface con-
ditions (i.e., model checks disabled vs. enabled) was counterbalanced
across subjects, but the order of interface conditions was not. Our ratio-
nale was to control for artifacts of exploring a particular dataset while
also avoiding a complex experimental design. Counterbalancing the
order of interface conditions would have told us whether users seemed
to explore data differently in a typical VA tool after exploring data with
model checks—a learning effect that is not the focus of our evaluation.
Debrief The last 30 minutes of each interview involved a semi-
structured conversational interview with the participant about EVM. The
semi-structured interview followed an interview guide, which consisted
of the following lines of questioning:

• Utility of model checks. In what ways (if any) did you use model
checks to help you think about the dataset? What specific visual
cues on the resulting chart (if any) were interesting or helpful?

• Generative thinking. Did you find yourself thinking about the
data generating process, or the underlying relationships that might
explain the patterns you saw in the data? What kinds of assump-
tions (if any) did you make about the dataset? Did using model
checks make these assumptions more salient or concrete?

• Expressiveness and usability. Did you have any difficulty using
the model bar to express and check provisional interpretations of
data? What if anything made it hard to use? What if anything do
you think would make this kind of functionality easier to use?
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Fig. 5: Model checking motifs observed in our evaluation of EVM.

In each line of questioning, the interviewer referred back to specific
examples of situations where the participant either created or attempted
to specify a model check. The goal of this discussion was to elicit
participants’ reflections on how EVM influenced their analysis process
and identify potential challenges to adoption of model checks in VA.

5.4 Analysis
We characterized participants’ use of EVMwith and without model check
functionality through a qualitative analysis of interview recordings and
transcripts. The interviewer reviewed each transcript and video, at first
identifying episodes of interest that revealed patterns of visual data
exploration behavior, uses of model checks, and potential improvements
to EVM. The study team then analyzed these episodes of interest and
summarized what participants said in terms of topical themes and
design tensions, focusing especially on any difficulties that participants
seemed to have expressing or interpreting model checks.

5.5 Results
We report on how patterns of data exploration behavior in a prototype
VA tool differ with versus without model checking functionality. We
also summarize what visual cues participants relied on to interpret
model check visualizations and challenges that participants encountered
using EVM’s interface, with an eye toward the development of future VA
tools incorporating model checks.

5.5.1 Data analysis motifs
Our analysis revealed patterns of visual data exploration behavior that
we refer to as “motifs”, which were common sequences of operations in
EVM that often seemed to serve the purpose of making data exploration
systematic. For example, Figure 5 shows motifs specific to model
checking (described below). Our notion of motifs is similar to Battle
and Heer’s “VA subtasks” [2]. However, unlike subtasks, motifs were

not focused on answering questions specific to a given dataset, but
rather these were procedures we observed participants apply repeatedly
to surface and check relationships between different subsets of variables.
These motifs help us describe users’ analysis behavior at baseline—
when using a simple drag-and-drop VA tool without model checking
functionality—and then to describe the new behaviors that emerge
when using model checks as implemented in EVM.
Behavior without model checks. Common visual exploration motifs
we observed without model checking enabled facilitate use cases such
as anomaly detection and pattern finding. Some of these motifs are
similar to patterns of analysis behavior described in prior work. For ex-
ample, these include the univariate tour viewing univariate summaries
of each variable (7/12 participants) and the bivariate tour making
pairwise comparisons of all predictors to look for correlations (6/12
participants). These are similar to automated summaries provided by
previous systems like Voyager2 [64], which enable the user to get “a
cross tab of all the covariates” (P07). Some participants (4/12) worked
even more systematically, applying these motifs to selected “clusters
of explanatory variables” (P10) in turn.

Other motifs we observed without model checking functionality
focused on explaining the distribution of a specific outcome variable
of interest. For example, we observed hunting for main effects by
cycling through each predictor variable comparing it to the outcome
in a bivariate view (7/12 participants), which is sometimes interleaved
with a univariate tour of predictors, and hunting for interactions by
faceting bivariate plots of main effects by a sequence of third variables
to look for interaction effects (9/12 participants). Another motif used
by most participants (9/12) to account for conditional structure in the
data was filter toggling, eyeballing a pattern before and after apply-
ing variations on a particular filter, which was also described in prior
work on view sequencing in narrative visualizations [23]. All partic-
ipants referred to expectations at some point when performing these
distribution-explaining motifs, and some participants (8/12) would tell
stories about the data in order to explain discovered patterns.
Behavior with model checks. When we introduced model checks to
EVM in the second data exploration session, we noticed marked changes
in the behavior of most participants. Without model checks enabled,
all participants except P12 briefly explored patterns across a broad set
of available variables and then circled back to recheck relationships
they had investigated previously. However, with model checks enabled,
sequences of related operations became longer, and data exploration
became less circuitous, consistent with findings of prior work that
adding modeling functionality to VA tools leads to less breadth of
analysis during insight-oriented data exploration [32].

Model checking tended to structure participants’ thinking around
one or two long chains of operations geared toward gradually improv-
ing models. Some of these model improvement motifs were concerned
with finding an appropriate way to approximate the distribution of the
outcome variable. For example (Fig. 5), we observed participants (7/12)
distribution checking to hone in on a plausible distribution family and
(5/12 participants) boundary handling by iteratively applying different
distribution families, transforms, and filters in order to account for nat-
ural boundaries in the data (e.g., no counts below zero). Other model
improvement motifs were more concerned with predictor selection.
Similar to the demonstrated understand-correlated-predictors use case
(see Section 4.1), we observed some participants (6/12) explaining cor-
related predictors by checking the patterns predicted by a provisional
model against the domains of predictors not included in the model to
see whether any structure in the data remains unaccounted for.

Although many of our participants exhibited these model improve-
ment motifs, such motifs did not seem to benefit all participants equally.
A subset of participants (5/12) used model improvement motifs to fo-
cus on developing a fine-grained understanding of the data generating
process (DGP), demonstrating the kind of thinking we designed EVM’s
model checking functionality to elicit in users. For example, one partic-
ipant said both that, “When I fit a model, I was definitely thinking more
about the second moment.” (P09) and that,

“With the initial [think-aloud session], I didn’t think about
bounds as much... I don’t think it came up, but it was only
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Fig. 6: Depiction of an imagined boundary we refer to as a “density
cliff”. Many heuristics for visual analysis with scatterplots and strip
plots seem anchored to this kind of reference.

when trying to describe a model that I started putting these
theoretical bounds on what values could take.” (P09)

In addition to paying increased attention to variance relationships and
expected boundaries, these participants (5/12) mentioned that visual
model checks calibrated their sense of uncertainty around outliers,
undersampled regions of the data, and the tails of distributions. HOPs
depicting uncertainty as sampled model predictions seem to clarify the
possible structure of the data in regions where data is sparse.

However, for a smaller subset of participants, relying on the same
model improvement motifs promoted fixation on trying to understand
the underlying implementation of model checks (2/12 participants)
or on superficial matching of the shape of the predictive distribution
to the shape of the data without thought about what the relationships
meant (2/12 participants). Two participants fixated on long sequences
of model improvements and neglected to explore most of the dataset
during the think-aloud with model checks portion of the interview.

Exceptions to this trend of longer operation sequences were two
participants who always used model checks in a manner more akin to
one-off statistical tests for specific relationships. They would specify
models with versus without an effect of a particular predictor in order
to see which model’s predictive distribution seemed more in line with
the data, similar to the demonstrated evaluate-the-plausibility-of-an-
interpretation use case (see Section 4.1). We call this motif effect
checking (Fig. 5). Most participants (8/12) used model check visu-
alizations as provisional hypothesis tests at some point, interleaving
visual analysis motifs for pattern discovery such as hunting for main
effects/interactions with model checking motifs for vetting data inter-
pretations such as effect checking or explaining correlated predictors.

5.5.2 Interpretation of model check visualizations
Most participants (8/12) interpreted model check visualizations pri-
marily in terms of the match between the shape of the data and model
predictions. The most salient visual cues for shape seemed to involve
the concentration of data points in EVM’s scatterplots and strip plots,
with many participants (8/12) paying special attention to an imaginary

Fig. 7: Visual cues that participants used to interpret residuals.

boundary around high-concentration regions, which we refer to as a
“density cliff” (Fig. 6). Some participants seemed self-aware about how
points near a density cliff influenced their perception of a pattern, for
example, “I do see that again these kind of larger [fires] are occur-
ring... but that’s really cherry picking just a few high-leverage points,
though, so I’m not sure that means a whole lot.” (P01). When data
points were further away from a density cliff, some participants (3/12)
referred to them as separate modes and others (8/12) referred to them
as outliers depending on the number of points and how far they were
from the density cliff. Although prior work finds that “regression by
eye” down-weights outliers [10], our participants judged misfit using
heuristics that were more sensitive to anomalies. When the shapes did
not match between the data and model predictions, participants (4/12)
interpreted this as a sign of misfit. A subset of participants frequently
relied on residuals plots to assess model fit, with some (2/12 partici-
pants) describing asymmetry around zero as a helpful cue and others
(4/12 participants) pointing out heteroskedasticity of prediction errors
across the domain of a given predictor as a cue that the relationship
with that predictor was not adequately captured by the model (Fig. 7).

5.5.3 Challenges using model checks in EVM

Many difficulties participants faced with EVM involved distrust of eye-
balling. One participant bemoaned when struggling to visually differen-
tiate the fit quality of two models, “My lying eyes sometimes deceive me.”
(P01). This issue is certainly not unique to model checks—indeed, most
VA workflows tend to rely on such subtle visual inferences. However,
all participants described similar dilemmas and wanted to supplement
visual inferences with diagnostic metrics for models (e.g., information
criteria, R-squared, regression coefficients). We avoided providing such
diagnostics in EVM in part because we worried that participants would
over-rely on them in ways that would interfere with our design goal
of promoting generative thinking (see Section 3) and detract from our
investigation of visual model checking.

Similarly, most participants (9/12) wanted the ability to derive sum-
mary statistics such as counts, means, and quartiles on the fly and to
apply them to regions of the chart using brush interactions. For exam-
ple, two participants wanted to brush out a region of a scatterplot and
compute the number of data points in that region relative to the size of
the dataset. Many (7/12 participants) wanted the ability to change the
default visualizations of the tool by binning continuous variables or by
recasting variables as different data types. These difficulties seemed
to stem from the lack of granularity that EVM’s scatterplots and strip
plots provide for inspecting the relative density of regions on charts:

“It’s either dense, medium dense, or not very dense.” (P03). Support-
ing histograms and density plots would have addressed some of these
concerns, however, emphasizing visual aggregation may also lead to
overconfidence in visual inferences [39], so defaults must navigate this
trade-off. Seeking stronger visual signals about relative density led two
participants to rely on highly inefficient exploration strategies such as
scrolling through many faceted bar charts.

When using the model bar to express provisional models, most prob-
lems stem from the challenge of anticipating what accounts for misfit.
Although some participants (5/12) said that model checks in EVM make
it quick to try out models, and others (6/12 participants) said visual
model checks made it easy to see misfit, they seemed to struggle to
improve models using the interface. For example, all participants began
modeling with a normal distribution, even though the outcome variable
in both datasets had a lower bound at zero, making it likely that the mod-
eling assumption of Gaussian distributed residuals would be violated.
Upon seeing the resulting misfit, all participants except P11 at first
added more variables to their model specification rather than changing
their choice of distribution family. Eventually, by using distribution
checking or boundary handling motifs for iterative model checking, all
participants except P12 discovered that the choice of distribution family
accounted for misfit. Participants may have added predictors before
changing distributional assumptions because EVM’s model bar makes
it easy to dump additional predictors into subsequent model iterations,
and they did not stop to rethink distributional assumptions.

Many participants (7/12) struggled when choosing among distribu-
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tion families, which was often a contributor to misfit. This was espe-
cially common when trying to reason about the back-transformations
(see Section 4.3) in the log normal and logit normal families. Multiple
participants attributed some difficulties to lack of knowledge about the
domain of the datasets (3/12) or to being rusty at specifying regres-
sion models in R (5/12). In contrast to prior work showing that VA
users don’t follow up on model misfit [8], we find that all participants
attempted to reason about what might be wrong with misfit models.

Our results suggest the need for future work on guided model elic-
itation interfaces. Two participants suggested scaffolding a path of
model exploration between the simplest possible intercept model and
a “dredge model” including all available predictors. This is in line
with practices in a Bayesian workflow [15, 19] as well as the desire of
some participants (5/12) to avoid including multiple highly-correlated
predictors in their model specifications, exemplified by this quote:

“How do we get the most parsimonious model? How do we
remove things that are perhaps highly correlated, or even
collinear, and have the best model with the fewest features?
which is I think where I would go next, being able to prune
the model a bit, not have things that I don’t need.” (P08).

A few participants (3/12) noted situations where a single model could
not account for distinct sub-populations within the data and requested
support for partitioning the data into subsets to be modeled separately.

6 DISCUSSION

Our work building and evaluating EVM points to new design require-
ments for model checks beyond those identified in Section 3, as well as
articulatory gaps faced by users of visual analysis tools more broadly.

We find that model checking can improve understanding of data
generating process (DGP), but only when users avoid fixating on
non-conceptual aspects of analysis, such as the underlying implemen-
tation of statistical models or superficially matching model predictions
to patterns in the data. Participants who used model checks to discover
important attributes of the DGP such as boundedness or correlated
predictors tended to be experienced at interpreting the relationship be-
tween modeling assumptions and data. In contrast, the smaller subset of
participants who fixated on non-conceptual aspects of model checking
were more familiar with use cases for statistical models that prioritize
predictive accuracy over scrutinizing assumptions. This partially con-
firms our design hypothesis about the utility of model checks in visual
analytics, but it also points to the need for model checking tools to
accommodate users with fluency in different modeling approaches.

Although model checks help users identify misfit in models, users re-
quire guidance about which incremental improvements to a model
could plausibly improve fit. For example, most participants added new
predictors to a given model before considering whether they had cho-
sen an appropriate distribution family for the data. Future work might
generate modeling recommendations that nudge users to (re-)examine
specific assumptions or asserted structures. More expressive tools that
allow users to articulate specific aspects of misfit that concern them as
input to a recommender are also well motivated—e.g., if a cluster of
data points appear in the data distribution but not in model predictions.

Additionally, we present analysis “motifs” that reflect procedu-
ral abstractions for visual analytics (VA) workflows. Similar to
patterns of visualization sequencing described in prior work [2, 23]
and automated data summaries provided by previous systems such as
Voyager2 [64], we think of these motifs as a workflow-level abstraction
describing subroutines in visual analysis. In contrast, a chart-level
abstraction such as the grammar of graphics [63] focuses on specifying
analyses one visualization at a time. For our purposes, these motifs
serve to characterize common sequences of operations within VA ses-
sions. Looking to the future of VA tools, we envision interfaces that
enable users to author and reuse motifs in data exploration workflows,
extending the idea of “wildcard fields” in Voyager2 [64] such that users
could specify a sequence of diagnostic visualizations and apply them
across a series of provisional models reflecting competing data inter-
pretations. Specifying model checking workflows at the level of motifs

Fig. 8: Examples of prior vs posterior predictive checks for the same
model. This model check examines whether study time is predictive
of log absences after accounting for proxies of socioeconomic status.
Uninformative priors (left) blow up the scale of the y-axis, making
an unhelpful model check. Sampling from weakly informative priors
(middle), rather than a fitted model (right), can lead to model checks
that show a larger space of possible patterns that follow from a model’s
assumptions (e.g., homogeneity of variance), potentially increasing
visual signal for judging whether a model is mis-specified.

could further reduce the amount of effort required to rigorously check
data interpretations without loss of expressiveness.

Importantly, beyond need-finding for model checking interfaces, we
also add to a line of work [8, 9, 32] demonstrating that model checks
can integrate cleanly into exploratory visual analysis workflows,
offering support to users transitioning between open-ended exploration
tasks [2] and what Tukey [50] calls “rough confirmatory analysis.”
Participants who spend relatively little time working with program-
ming interfaces appreciated that EVM offered access to modeling and
diagnostics approaches which usually require scripting in statistical
programming languages. For them, EVM offered a quick way to re-
fine data interpretations and fight “a false sense of security about the
quality of the data” (P02) that they say sets in when using graphical
user interfaces for exploratory visual analysis. Similarly, participants
who spend relatively more time using statistical tools viewed EVM as a
way to test their preconceived notions by rapidly iterating on models.
One of these participants described how, “[Visual model checking] felt
much less p-hacky than it might have if I’d been looking at the numbers.
You know, I’m not just choosing the [model] with the best R-squared
or whatever.” (P08), echoing others for whom the ease of generating
visual checks enabled a faster pace of analysis without loss of rigor.

6.1 Ongoing & future work
Investigating how to integrate model recommendations into a tool
like EVM is a natural follow-up to our work. Recommendations should
account for what is known about the user’s understanding of the DGP
at the time of recommendation, similar to the way that tools like Ti-
sane [26] and Visual Causality Analyst [57, 58] anchor model sugges-
tions on knowledge elicited from users. If the user’s preferred model at
a given moment during analysis represents their traversal of a “model
space” they are searching, recommendations should be proximal to and
informed by the user’s current model. Rather than suggesting a single
“best” proximal model for the user to consider next, recommender sys-
tems should highlight multiplicity, where multiple alternative models
perform similarly and cannot be easily distinguished. Model recom-
mendations should also be informed by the visual model checks an
analyst creates and the specific patterns in data that they struggle to
explain. We envision interfaces where analysts can directly select a
pattern in a visualization that they wish to better explain—i.e., the kind
of superficial pattern matching that some participants fixated on—and
a recommendation engine would suggest additional models that could
capture the pattern. This could help analysts remain focused on how vi-
sual patterns relate to their conceptual understanding of DGP, providing
softer on-ramps to the kind of generative thinking that EVM facilitates.

In EVM, we implemented comparisons between observed data and
predictions from a fitted model. However, there are many possible
ways to sample predictions reflecting a given model, and the specific
approach plays a large role in determining the visual appearance of a
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model check. Specifying a model defines a parameter space, a latent
multivariate distribution that is sampled from and further transformed in
order to produce a prediction. Sampling fitted models as we did in EVM
means sampling from this distribution in ways that minimize the dis-
crepancy between the data and model predictions. However, Bayesian
prior predictive checking offers an alternative approach, which helps to
shed light on the importance of these low-level implementation choices
(Fig. 8, see Supplemental Materials). In a prior predictive check, the
choice of prior determines the scale of the predictive distribution, en-
abling this approach to show more possible structures in predictions
that are consistent with a model specification but which are ruled out
by the fitting process. Contrasting these approaches raises the ques-
tion of whether enabling users to specify priors and sample from them
would be a more direct way to assess users’ expectations through visual
checks, to the extent that elicited models represent users’ beliefs as
assumed by prior work [8, 9, 32]. However, designing for Bayesian pre-
dictive checks might increase the level of modeling complexity beyond
what some VA users are familiar with, e.g., requiring procedures for
fine tuning and justifying priors. Where concerns about model check
implementation details threaten to pull analysts’ attention away from
DGP, we suggest providing more documentation of how a tool like EVM
samples predictive distributions in order to provide transparency.

Critical to these endeavors is incorporation of diagnostic metrics for
ensuring that a seemingly well-fitting model also has predictive power,
such as cross validation on a holdout set. Using holdout sets rather than
training data for model checks would increase the visual discrepancy
between data and model predictions, providing stronger visual signals
of potential misfit. Having access to diagnostics like cross validation
metrics might help address the lack of confidence in eyeballing among
some study participants, in addition to helping users of future tools like
EVM avoid overfit explanations, overconfidence in mis-specified models,
and misleading local extrema in model search space.

Related to issues of overfitting and iterative model development, it is
crucial to develop safeguards against post-hoc statistical inference in
tools like EVM. A potential failure mode with any VA tool is that users
will make multiple comparisons before deciding what relationships
are important [68], which can inflate false positive rates similar to p-
hacking [46]. Anticipating the concern that incorporating modeling into
VA tools could exacerbate these risks, we carefully design EVM to make
it difficult to perform confirmatory hypothesis testing—e.g., by not
providing p-values, learned coefficients, or other metrics conventional
in statistical testing. Unlike previous work, which enforces a strict order
of operations where VA tools only elicit models before showing the
data [8, 9, 32], we opt for a more open-ended study of how people use
modeling in VA when left to their own discretion. In the user study, we
find that participants are relatively cautious about overtrusting models
they fit, suggesting they do not view model check visualizations as a
definitive inference method. However, we observe some participants
using effect checking motifs (Fig. 5) in ways that resemble hypothesis
testing, and this suggests opportunities for design patterns that distin-
guish between comparisons in service of model development versus
proper confirmatory testing. As proposed above and in prior work [68],
future tools like EVM should support holdout sets for model validation
and confirmatory testing, which will require careful consideration of
how to avoid leaking information when swapping training and holdout
sets. In cases where holdout sets are unavailable, we envision that users
could save models to test on future data when it becomes available.
Future work should evaluate various regimes for controlling post-hoc
inference, including algorithmic approaches (e.g., [5,49]), to determine
which are best suited to the VA setting.

Additionally, future research should develop tools for ensuring ef-
fective model check visualizations. Systems like EVM, along with prior
work [24, 36], motivate a model check grammar to facilitate greater
flexibility in traversing the design space of uncertainty visualizations
required for model checking. This would be necessary in order to en-
able motif-based authoring systems where analysts create visual checks
and apply them across a sequence of related views demarcated by, e.g.,
different variable selections, data transformations, or model iterations.
How a visual check should change when model predictions are grafted

onto it is determined by constraints that are difficult to express using
Vega [45] due to the diffuseness and viscosity of its notation [20]. As
a workaround, when implementing EVM we created a separate Vega
template for each possible layout, similar to recent work on “parame-
terized declarative templates” [37]. However, extending this approach
for model checks requires additional research and development on
abstractions for model check visualizations in particular. To support
engineering future tools, a model check grammar should include (1)
layout constraints defining how data and model predictions are treated,
(2) primitives for sampling from models in order to generate uncertainty
visualizations and model diagnostics, and (3) interaction techniques that
enable users to express which patterns reflect conceptually important
misfit. More broadly, understanding what makes a model check visual-
ization effective may not be equivalent to what makes a visualization
of observed data effective, motivating empirical work.

6.2 Limitations

Large scale and high-dimensional data are open problems in VA tools
that remain unaddressed by EVM. For the purpose of creating a proof-of-
concept tool, we focused on model checks for relatively small datasets.
However, some of our design choices need refinement to work at larger
scales. For example, using HOPs [25] for higher-dimensional views
requires careful interaction design (e.g., in node-link diagrams [69]).
Relatedly, disaggregated views [39] showing one mark per data point
become unwieldy at large sample sizes, due to limitations around visual
crowding [1] and computer memory. Aggregation is a common ap-
proach to side-stepping these issues of scale, however, aggregated data
and model outputs have fundamentally different meanings as summary
statistics than disaggregated data and model predictions. Future work
will need to resolve when such aggregation is and is not advisable.

Similarly, our choice to limit EVM to position encodings (i.e., x-
axis, y-axis, row, column) rules out visualization techniques that might
be more suitable for higher-dimensional data, where datasets have
many variables that can each take on many values. EVM only enables
viewing a subset of a high-dimensional dataset’s features at one time,
a limitation of many VA tools. Although model check visualizations
carry information about variables that are not currently in view—i.e., a
model can make predictions based on a variable that isn’t visualized—
analysts may still struggle to reason about the complex structure of
correlated variables that underlies a particular view. Future work should
more directly investigate whether using model checks to reason about
variables that are not in view can solve the high-dimensionality problem,
and the ways in which this approach might be error prone.

Some conditions of our user study design were difficult to control.
When preparing datasets for participants to explore, we dropped certain
variables and observations from the student absences dataset in order
to make it match the size of the forest fires dataset. It’s possible that
these adjustments affected participants’ ability to find patterns in the
data, however, this did not come up explicitly during our interviews.
Beyond the size of datasets, there were other factors which likely impact
our results that were not possible to control for. These include each
participant’s level of interest in or familiarity with the provided datasets.

7 CONCLUSION

We present EVM, a proof-of-concept tool enabling analysts to express
and check statistical models during visual data exploration. EVM is a
design investigation into how visual analytics (VA) tools can incor-
porate statistical modeling to facilitate more rigorous thinking about
a data generating process (DGP). This augments the typical process
of visual pattern discovery with procedures for articulating and scru-
tinizing claims about a DGP, which we argue elevates VA tools from
producing nebulous “insights” to vetting provisional data interpreta-
tions and providing a more concrete basis for further analysis. Our
work demonstrates the potential of model check visualizations to better
connect VA tools with the cognitive and statistical procedures by which
analysts develop and evaluate their conceptual understanding of data.
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