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Fig. 1: The process of developing adaptive visualization literacy assessments: A-VLAT and A-CALVI. We start with the item banks of
VLAT and CALVI and use the parameters from item analysis to construct the CAT algorithms for the adaptive assessments. We then
evaluate their validity and reliability via four online studies. The annotations in blue are the components’ corresponding sections.

Abstract—Visualization literacy is an essential skill for accurately interpreting data to inform critical decisions. Consequently, it is
vital to understand the evolution of this ability and devise targeted interventions to enhance it, requiring concise and repeatable
assessments of visualization literacy for individuals. However, current assessments, such as the Visualization Literacy Assessment
Test (VLAT), are time-consuming due to their fixed, lengthy format. To address this limitation, we develop two streamlined computerized
adaptive tests (CATs) for visualization literacy, A-VLAT and A-CALVI, which measure the same set of skills as their original versions in
half the number of questions. Specifically, we (1) employ item response theory (IRT) and non-psychometric constraints to construct
adaptive versions of the assessments, (2) finalize the configurations of adaptation through simulation, (3) refine the composition of test
items of A-CALVI via a qualitative study, and (4) demonstrate the test-retest reliability (ICC: 0.98 and 0.98) and convergent validity
(correlation: 0.81 and 0.66) of both CATs via four online studies. We discuss practical recommendations for using our CATs and
opportunities for further customization to leverage the full potential of adaptive assessments. All supplemental materials are available
at https://osf.io/a6258/.

Index Terms—Visualization literacy, computerized adaptive testing, item response theory

1 INTRODUCTION

Visualization literacy—an individual’s ability to understand and in-
terpret visualizations—can significantly impact data-driven decisions.
People may rely on data visualizations showing the spread of infec-
tious diseases to make personal health decisions, to decide between
treatment options in medical settings, to make financial decisions, or
to engage with social or political topics. Inaccurate interpretations of
such visualizations may lead to faulty reasoning and decisions, as well
as harmful outcomes.

In the study of visualization literacy, there is a persistent need for
accurate, reliable, and timely ways to assess people’s ability. For
example, visualization researchers may want to track the progress of
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this ability over time, or to empirically evaluate interventions designed
to enhance a target group’s ability to interpret visualizations. Such
efforts require concise, quantitative assessments of visualization literacy
that can be administered to individuals multiple times, allowing for the
measurement of skill development and the evaluation of intervention
efficacy through pre- and post-testing.

While researchers have devised assessments to measure both basic vi-
sualization literacy skills [4,22] and the critical thinking ability to detect
visualization misinformation [14], these tests can be time-consuming.
To address this, we apply computerized adaptive testing (CAT) to visu-
alization literacy. CAT’s core principle is to adaptively select test items
for a test taker based on their performance on previously-answered
items, and it can provide a precise estimate of the test-taker’s abilities
with fewer items. CAT has been widely applied in healthcare science
[16–18,32] and used in practice by educational agencies, such as the Ed-
ucational Testing Service (ETS) and College Board, to create large-scale
standardized tests [10, 12, 28]. However, visualization literacy assess-
ments have yet to take advantage of the benefits of adaptive testing.

In this paper, we adopt the CAT development framework [30] to
create two short, adaptive visualization literacy tests: A-VLAT and A-
CALVI, which are built upon the existing static assessments VLAT [22]
and CALVI [14]. First, we compute item parameters (how easy items
are and how well items in the bank separate test takers of different
abilities) with Item Response Theory (IRT). Using the item parameters,
we construct adaptive algorithms to select items for test-takers. We
include non-psychometric constraints in our algorithms to ensure the
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tests contain balanced content; i.e., to ensure A-VLAT covers all 12 chart
types and 8 tasks from VLAT and A-CALVI covers all 11 misleaders from
CALVI. We also conduct a qualitative study to refine the composition of
items in A-CALVI, reducing its length by a further 11 items. Ultimately,
we contribute:

1. A demonstration of the refinement of visualization literacy assess-
ments through adaptive testing, including the incorporation of
non-psychometric features of existing assessments.

2. Two valid and reliable adaptive visualization literacy tests, A-
VLAT (27 items) and A-CALVI (15 items), which are half the
length of their non-adaptive counterparts.

3. Evidence from four online studies demonstrating the test-retest
reliability (ICC: 0.98 and 0.98) and convergent validity (correla-
tion: 0.81 and 0.66) of these tests.

In addition, we discuss how cumulative results from visualization
literacy studies can better inform our understanding of the relationship
between the constructs measured by literacy assessments (e.g., what
correlations between chart types might tell us about how people under-
stand visualizations). We also provide recommendations for using and
customizing visualization literacy assessments based on test adminis-
trators’ needs. Our work just scratches the surface of the potential for
adaptive testing in visualization; we believe it offers a path to shorter,
repeatable, and more reliable assessment of visualization literacy.

2 BACKGROUND

2.1 Visualization Literacy

Within the visualization community, many researchers have studied
visualization literacy through the development of assessments [4,14,22]
and frameworks [5]. Boy et al. used Item Response Theory (IRT) to
generate a set of tests that aims to assess people’s ability to interpret line
charts, bar charts, and scatterplots [4]. Similarly, to test people’s ability
to interpret visually represented data, Lee et al. developed a Visualiza-
tion Literacy Assessment Test (VLAT) that contains 53 multiple-choice
items [22]. Later, considering the complexity of visualization literacy
as a construct, Ge et al. expanded on prior definitions to incorporate
the ability to identify and reason about visualization misinformation
and developed a Critical Thinking Assessment for Literacy in Visual-
izations (CALVI), which has a bank of 45 items [14]. We rely heavily
on both VLAT and CALVI to develop our adaptive tests, A-VLAT and
A-CALVI, so we explain VLAT and CALVI in more detail below.
VLAT The items in VLAT were generated from 12 chart types with 8
tasks such as retrieve value and make comparisons, and each test taker
is expected to take all 53 items [22]. For example, Fig. 2.A is a VLAT
item in a pie chart that asks viewers to make comparisons. Each item
in VLAT has an item difficulty and item discrimination index obtained
from Classical Test Theory (CTT) analysis [22].
CALVI The items in CALVI were generated from 11 misleaders (i.e.,
ways a chart can lead to conclusions not supported by the data) and
9 chart types [14]. CALVI consists of 15 trick items, which are items
whose visualizations contain a misleader, and 15 normal items (i.e.,
items based on well-formed visualizations)—CALVI includes normal
items because people may encounter misleading visualizations mixed
in with well-formed visualizations in their daily lives. It is worth noting
that only test takers’ performance on the trick items are used to estimate
their abilities to detect visualization misinformation. The 15 trick items
are selected to cover all 11 misleaders from CALVI’s bank of 45 total
trick items [14]. For example, Fig. 2.B is a trick item with misleader
Manipulation of Scales - Inappropriate Use of Scale Functions, where
the number labels on the y-axis do not match the spacings of the tick
marks; and Fig. 2.C is a normal item. The trick items in CALVI each
have an item easiness and an item discrimination parameter estimated
using a 2-parameter IRT model [14].

Besides the assessments above, related fields such as statistical liter-
acy also investigated graph interpretation abilities, and measurements
were developed to assess graph comprehension. Specifically, studying
how students interpreted graphical representations of distributions,

DelMas et al. developed assessment items for the ability to interpret dis-
tributions [11]. Other researchers have also developed instruments that
target younger audiences [25], and some focused more on the ability
to critically interpret graphs, which is related to statistical literacy [1].

Although existing assessments provide measurements for visualiza-
tion literacy and related abilities, we reiterate that they can be time
consuming and inflexible due to their fixed, lengthy format. Next, we
give an overview of computerized adaptive testing, which reduces the
length of tests while maintaining similar measurement precision.

2.2 Computerized Adaptive Testing (CAT)
Computerized adaptive testing (CAT) is a form of computer-based test
where the next item or the next set of items a test-taker sees depends
on their performance on the previous items. The idea is to adaptively
select items to tailor to a test-taker’s ability in order to gain more
information about them: for example, if someone performs poorly on
difficult items, they will then be presented with an easier item. CAT has
many advantages over traditional static assessments where everyone
receives the same items: it can achieve similar measurement precision
with fewer items, and it may better motivate test takers because the
items are more appropriate for their ability level [27].

CAT has been broadly adopted in healthcare research. Clinical re-
searchers have developed various CATs to measure patient character-
istics, such as quality of life [16], anxiety [18, 32], and mental health
disorders [17]. CAT has also been used to measure various forms of
literacy, such as English literacy [13], health literacy [21], and math
knowledge of university students [15].

CAT has also been widely applied to many large-scale standardized
tests in practice, such as the Graduate Record Examinations (GRE)
[12] and the Graduate Management Admission Test (GMAT) [28], and
continues to grow in popularity: the SAT, a long-established college
admissions test in the U.S., is planning to become digital and adopt
adaptive testing starting in 2023 and 2024 [10].

Despite the prevalent prior applications and potential benefits of CAT,
it has yet to be applied towards visualization literacy assessments. We
address this gap and explore the benefits of CAT in visualization literacy,
developing shorter, adaptive assessments, along with a systematic CAT
development procedure across two existing visualization literacy tests.

2.3 Procedure of CAT Development
Although existing measurement methods are not adaptive, as explained
in Sec. 2.1, they provide a valuable foundation for the development
of CAT, which requires item parameters from IRT item analysis. We
extend and adopt the framework proposed by Thompson and Weiss [30]
to develop adaptive tests. Below, we outline steps from this framework
that were instrumental to developing our test.

First, test developers need to conduct item analysis of the item bank
using test tryout data (i.e., data collected on participants answering
items before the test is deployed in practice). In this stage, IRT item
analysis is applied on test tryout data to compute the item easiness (i.e.,
how easy an item is) and item discrimination (i.e., how well an item
differentiates test takers of different levels of ability) parameters of the
items in the bank. After the test developers obtain these parameters for
the items, they can proceed to the construction of CAT algorithms. A
CAT algorithm consists of four main components:

1. Initialization: initialize an estimate of the test-taker’s ability;

2. Item selection: select the next item for the test-taker based on
their current estimated ability (score);

3. Scoring: compute the score for a test-taker after each item;

4. Termination: end the test when the termination criterion is met.
To build a CAT algorithm, test developers use the test tryout data, the
item parameters, and simulation studies to determine the configurations
of these main components and demonstrate the measurement precision
of the CAT. Although the framework thus far does not outline steps
specifically for establishing reliability and validity, in the development
of tests in general, they should be assessed [9]. Therefore, for both CATs
we also evaluate the reliability (i.e., examining the extent to which the
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Fig. 2: Example items from VLAT and CALVI: (A) is an item from VLAT; (B) is a trick item from CALVI; (C) is a normal item from CALVI.

test produces consistent and stable results) and validity (i.e., ensuring
that the test measures the ability that it is supposed to measure) [9].

3 ITEM ANALYSIS

As outlined in Sec. 2.3, the first stage of CAT development is item anal-
ysis. In this section, we describe the IRT model used for item analysis
to obtain parameters for both item easiness and discrimination. These
item parameters are necessary for constructing the CAT algorithms, to
be detailed in the following sections. Additional results from the item
parameter analysis are available in supplemental materials.

3.1 2-Parameter IRT Model
IRT mathematically describes the relationship of a test taker’s ability,
item parameters, and the probability of them answering a particular
item correctly. We use the 2-parameter IRT model to infer the item
easiness and discrimination parameters of all VLAT and CALVI items.
The item response function of the 2-parameter IRT model (Equation (1))
describes the relationship between the probability of a test taker with
ability θ answering item i correctly (left-hand side) and the easiness
bi and discrimination ai of item i (right-hand side). This function
will be used in conjunction with test tryout data to compute the item
parameters (i.e., ai and bi) for VLAT and CALVI items, and it will also
be used in Sec. 4 to define and compute other key quantities (e.g., item
information, standard error) in adaptive testing.

pi(θ) =
1

1+ exp(−ai(θ +bi))
(1)

3.2 Parameters of VLAT and CALVI Items
The developers of CALVI collected test tryout data and used the 2-
parameter Bayesian IRT model to compute the item parameters of each
item [14]. Therefore, we can directly use these item parameters to
adaptively select the next item for A-CALVI.

Because item analysis for VLAT was conducted with CTT instead of
IRT, we apply IRT analysis on VLAT items using their test tryout data.1
We use a similar 2-parameter Bayesian IRT model as the one used for
CALVI with adjustments to address the following difference between
the two tests: CALVI has two types of items: normal items and trick
items, and only the trick items are associated with test takers’ abilities
θ . Whereas in VLAT, a person’s performance on every item counts. All
other specifications are the same as the model from CALVI, provided
1This data was obtained from the authors of VLAT by personal communication.

in supplemental materials, along with the item parameters of the VLAT
and CALVI items.

4 CONSTRUCTION OF A-VLAT AND A-CALVI ALGORITHMS

To construct A-VLAT and A-CALVI, we use test tryout data, item pa-
rameters, and simulation studies to determine the configurations of
A-VLAT and A-CALVI: (1) initialization (Sec. 4.2), (2) item selection
(Sec. 4.3), (3) scoring (Sec. 4.4), and (4) termination (Sec. 4.5). In
addition, we conduct a qualitative study for A-CALVI to determine how
to balance items across the misleading / normal categories (Sec. 4.6).
Figure 3 presents these components and the flow of our CAT algorithm.

Initialization (Sec 4.2): set test taker’s ability  to 
the mean of  from test tryout data 

Test taker answers item

Scoring (Sec 4.4): update  based on their answer

Item Selection (Sec 4.3): select item with highest 
item information under the non-psychometric 
constraints (A-VLAT: 12 chart types + 8 tasks;
A-CALVI: 11 misleaders)

End test

 fail 
termination
criteria 
(Sec 4.5)

pass termination criteria  (Sec 4.5)

Fig. 3: The components and flow of our CAT algorithm: the algorithm
begins by initializing ability θ for a test taker, which is then used to
select the next item. The test taker then answers the item, and their
θ gets updated based on the answer. If the termination criterion is
satisfied, then the test ends; if not, the updated θ is used to select the
next item and this process repeats.



4.1 Key Quantities in IRT-based CAT
The idea of CAT is to iteratively give a test taker an item that is best
suited to their ability and iteratively update their estimated ability. In
IRT-based CAT, an item that is best suited to a test taker with ability θ

is the item that provides the most information about that test taker; this
quantity is called item information. Equation (2) provides the mathe-
matical definition of item information in the 2-parameter model [2]:
on the left-hand side, Ii(θ) is the item information from test taker with
ability θ answering item i; on the right-hand side, ai is the item dis-
crimination parameter of item i, and pi(θ) is the probability of person
with ability θ answering item i correctly (defined in Eq. (1)).

Ii(θ) = a2
i pi(θ)(1− pi(θ)) (2)

Notice that Ii(θ) is maximized when pi(θ) = 0.5. This means that
an item provides the most information about a test taker with ability
θ when we are most uncertain about whether the test taker will get
this item right.2 Also, the greater the item discrimination ai (an item’s
ability to differentiate test takers of different levels of ability), the
greater the item information.

Under the context of item information, the item that is best suited to
a test taker with ability θ is the item with the highest information for θ

in the item bank. This will be used in item selection (Sec. 4.3).
Given the definition of item information, we can also define the test

information [2] as the sum of the item information of its items:

I(θ) = ∑ Ii(θ) (3)

Another use of item information is to quantify the measurement preci-
sion of the test. The standard error [2] is defined as

SE(θ) =
1√
I(θ)

. (4)

The larger the test information, the smaller the standard error,
and the more precise the measurement of the test on ability θ . The
standard error will be used in the simulation studies to construct a metric
for comparing the measurement precision of our adaptive tests with
their original static counterparts, and this metric will provide evidence
for selecting appropriate lengths for the adaptive tests (Sec. 4.5).

4.2 Initialization
As shown in Fig. 3, the first step of the CAT algorithm is to initialize
θ for a test taker, which can then be used for item selection. After
examining the test tryout data of both VLAT and CALVI, we find that
the distributions of θ are approximately normal for both tests. Thus,
most people’s θ ’s are close to the mean of the distribution. Therefore,
we initialize the θ of both adaptive tests using the mean of the θ ’s in
respective test tryout data. We explore the implications and possibilities
of different methods for initializing θ in the discussion section.

4.3 Item Selection
The next item in A-VLAT or A-CALVI will be the item that yields
the highest item information for the test taker’s current θ estimate.
However, simply selecting without constraints could risk not covering
the important aspects of the original test, which is a salient trade-off of
shorter adaptive tests. This is referred to as content balancing [29, 31].

To ensure content balancing, we impose non-psychometric con-
straints to the item selection process such that A-VLAT covers all 12
chart types and 8 tasks of VLAT and A-CALVI covers all 11 misleaders
of CALVI. We refer to them as non-psychometric features.3

This is achieved by the following logic: we initialize the list of
non-psychometric features to contain all features needed to be covered.
If the remaining number of items in the test is greater than the length
of this list, then the item with the highest information is selected from
2This should not be confused with the test taker being most uncertain about
which answer is correct (i.e. randomly picking an option). For instance, if
a test taker picks randomly in a 3-option item, P(correct) would be 1/3 and
P(incorrect) would be 2/3—so we would be more certain that they would
answer incorrectly than correctly. Uncertainty is maximized at 1/2, not 1/3.

3The list of non-psychometric features is provided in supplemental materials.

the bank, and its associated non-psychometric features are removed
from the list. If the remaining number of items in the test is equal to
the length of this list, the highest-information item with at least one of
the remaining features is selected, and its associated non-psychometric
features are removed from the list.

4.4 Scoring
In adaptive testing, the θ (ability) estimate needs to be updated every
time a test taker answers an item (shown in Fig. 3). We initialize θ to a
prior distribution based on the test tryout data from participants taking
VLAT and CALVI. Then, with each answer, we perform a Bayesian
update to adjust the distribution of the θ estimate. We compute the
final score of a test taker by taking the mean of the distribution of the θ

estimate at the end of this iterative process.

4.5 Termination
We develop a fixed-length CAT for A-VLAT and A-CALVI. While CATs
can be variable-length or fixed-length, variable-length tests can be diffi-
cult to implement in formal learning spaces with fixed time constraints,
and require additional considerations and procedures to develop. We
determine the lengths using simulations4 by comparing the standard
error of each person in fixed-length CAT of various lengths to that of
the original static version of the test. In Sec. 4.5.1 and Sec. 4.5.2,
we present details of the simulation studies resulting in 27 items for
A-VLAT and 11 trick items for A-CALVI.

Because we select the original static tests as the baseline for both
A-VLAT and A-CALVI, we define the following metric:

relative difference in SE(θ) =
SEA(θ)−SEO(θ)

SEO(θ)
, (5)

where SEA(θ) is the standard error for θ in the adaptive test and
SEO(θ) is the standard error for θ in the original test. This metric
is a measure of relative precision of the adaptive test compared to
the original version; the smaller relative difference in SE(θ) is, the
more precise the adaptive test compared to the original version. For
example, a relative difference in SE(θ) of 0.30 implies that for this θ ,
the standard error of the adaptive test is within 30% of the standard error
of the baseline. Similarly, a relative difference in SE(θ) of 0 means
that the adaptive and original versions are equally precise. Note that
if this quantity is positive, the adaptive test has a larger standard error
than the baseline for θ . If the quantity is negative, then the adaptive
test has a smaller standard error than the baseline for θ .

4.5.1 Simulation for A-VLAT
In this simulation study, we compare the measurement precision of
A-VLAT with VLAT and provide reasoning for why we select 27 items
as the length for A-VLAT.
Data The item analysis of VLAT test tryout data on 191 participants
yielded θ estimates for all 191 participants. We fit a normal distribution
for θ using this data and generate a sample of 500 simulated persons
(i.e., θ ’s). We treat the simulated θ ’s as the ground truth latent abilities
for the simulated persons and refer to them as true θ ’s below.
Method Because our goal is to find a reasonable fixed length for A-
VLAT, we build a simulation that realizes the 500 simulated persons’
test results under A-VLAT of different lengths from 19 items5 to 53
items and the original version of VLAT, which has a length of 53. We
do so by (1) plugging in the true θ and the item parameters into Eq. (1)
to compute the probability of correctness for each simulated person, (2)
simulating the binary correctness outcome with that probability, and
(3) computing the mean of the posterior distribution of the θ estimate
as the final score for each person as described in Sec. 4.4.

From here, we compute the relative difference in SE(θ) for all 500
simulated persons.
4The code and data for simulations can be found in supplemental materials.
5The non-psychometric constraint of A-VLAT dictates that it must cover all 12
chart types and 8 tasks. Since any item is associated with a chart type and a
task, A-VLAT needs to have at least 19 items to satisfy the non-psychometric
constraint in the worst case.
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Results Figure 4 shows the 500 simulated persons’ distribution of
relative difference in SE(θ) for A-VLAT of length 19 to 53. Upon
inspecting the trend, we find that this chart has approximately four
segments: relative difference in SE(θ) experienced the sharpest drop
from length 19 to length 26, a milder decrease from 27 to 36, another
steep yet short downfall from 37 to 40, and finally plateaus after 41.
Note that it never goes below 0 because the baseline uses all 53 items,
and adaptively selecting 53 items would yield the same result.

After examining Fig. 4, we select 27 as the length of A-VLAT. This
reduces the length of the original test by half, and the median and
most observations of relative difference in SE(θ) are below 0.15, a
reasonable loss of measurement precision in exchange for halving the
test. It should be noted that there is no gold standard for selecting the
perfect cutoff in the literature. Test administrators can use Fig. 4 to
help customize the length based on their needs and constraints. We will
discuss customization of our adaptive tests in Sec. 7.3.

4.5.2 Simulation for A-CALVI
In this simulation study, we compare the measurement precision of
A-CALVI with CALVI and provide reasoning for why we select 11 as
the number of trick items for A-CALVI.
Data Similar to the A-VLAT simulation, we used the θ estimates for
all 497 participants from CALVI test tryout to generate a sample of 500
simulated persons. We treat all simulated θ ’s as the ground truth latent
abilities for the simulated persons.
Method The same method in Sec. 4.5.1 was applied. we obtained the
relative difference in SE(θ) for all simulated persons.6

Results Figure 5 shows a downward trend. From length of 13, the me-
dian and most observations of relative difference in SE(θ) fall below
0, indicating that A-CALVI outperforms the original CALVI in terms of
measurement precision; this is because A-CALVI selects better items
from the bank of 45 than the fixed 15 items in CALVI. We select 11 as
the length of A-CALVI because it is shortest length that can cover all
non-psychomtric features and the median and most of the observations
of relative difference in SE(θ) at length 11 are below 0.10.

4.6 Composition of A-CALVI Items via Qualitative Analysis
The developers of CALVI included 15 items with well-constructed non-
misleading visualizations (i.e. normal items) to accompany 15 items
with misleading visualizations (i.e. trick items). This is because (1) if
a test taker realizes that all items are about misleading visualizations,
they could adopt the strategy of never selecting the obviously correct
answers and (2) when people encounter visualizations in the real world,

6Similar to A-VLAT, A-CALVI needs at least 11 items to cover all 11 misleaders
because each item in the bank is associated to only one misleader. The original
CALVI has 15 trick items, so we selected 15 as an upper bound.
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they see both normal, well-constructed and misleading visualizations,
which makes distinguishing misleading ones difficult [14]. However,
a test taker’s performance on the 15 normal items does not affect
the θ estimate in CALVI, and the normal items constitute half of the
test, making it long and time-consuming. Therefore, we conduct a
qualitative study to investigate the effect of normal items and whether
they would be necessary in A-CALVI.

We recruited two groups of participants from Prolific for two con-
ditions: (1) in without-normal condition, participants took A-CALVI
without normal items (i.e., only 11 adaptively-selected trick items from
the bank of 45 trick items); (2) in with-normal condition, they took
A-CALVI with normal items (i.e., 11 adaptively-selected trick items +
11 fixed normal items). The 11 normal items were randomly sampled
from the set of 15 normal items in the item bank of CALVI.

After participants in both conditions completed the items on the
test, we asked them to answer a post-test survey of Yes/No and open-
ended questions7 to investigate the possible impact of the presence of
normal items. These questions included whether they noticed items
with misleading charts (i.e., trick items) and how they approached
the rest of the test after noticing trick items. We also provided the
participants with the items they saw and their responses (presented
in the order in their test) to help them recall the test content. In the
with-normal condition, we also explored how participants approached
the rest of the test after noticing the presence of normal items.
Participants A total of 60 participants were recruited from Prolific
for this qualitative study, with 30 for the without-normal condition
and 30 for the with-normal condition. The data of one participant
in the with-normal condition was discarded due to a data collection
error, leaving a total of 59 participants. All participants fall under the
following criteria: speak fluent English, have normal or corrected-to-
normal vision, are between 18 and 65 years old, and are U.S. residents.
Participants who failed more than half of the attention check questions
were excluded, and all participants passed the attention check in this
study. In addition, Prolific participants from similar studies that the
authors conducted in the past were excluded.
Procedure We started by presenting the consent form and information
page describing the structure of the study to the participants. We
instructed participants that they need to select an answer for the current
item/question before proceeding to the next one, and once they moved
on, they could not return to previous ones. After the participants
completed the test items, they were directed to the post-test survey.
Method We reviewed and coded participants’ responses on the post-
test survey to understand their experience with the test and how trick
and normal items affected their approach to the test.
Results In the without-normal condition, 24 out of 30 participants
reported they noticed the presence of trick items, after which 16 paid

7The open-ended questions can be found in supplemental materials.



more attention or became more skeptical of the items, 6 did not change
how they approached the rest of the items, and 2 gave unclear responses.

In the with-normal condition, 19 out of 29 participants reported that
they noticed the presence of trick items, after which 14 of them paid
more attention or double checked their answers, 4 did not change how
they approached the rest of the items, and 1 participant gave an unclear
response. When asked whether the presence of normal items changed
their approach to answer trick items, 16 out of the 19 participants said
no, and the remaining 3 participants mentioned that it only made them
more suspicious of the normal items.

There seems to be little evidence that the presence of normal items
affected how participants approached the trick items, but we acknowl-
edge that this sample size is small and the possibility of normal items
having an effect still exists. Thus, we refrain from completely removing
normal items, but instead look to reduce the amount.

Our underlying goal is the same as CALVI—the test taker sees a
mix of trick and normal items, and we reason about this from the
the test takers’ perspective. Based on the analysis of trick items in
the original CALVI, there are certain misleaders that are substantially
harder to identify, such as Overplotting or Missing Data [14], meaning
these items are essentially perceived as “normal” in the eye of the
test taker. Therefore, the items from such misleader categories can
be effectively considered as “normal” items by the test takers (i.e.,
perceived “normal”). We also notice that it is highly likely that the
option of “Cannot be inferred/inadequate information” is the correct
answer when it appears in a trick item in A-CALVI. To prevent the
strategy of always selecting this option when it appears, we decide to
include in A-CALVI all of the normal items from CALVI that contain
this option but it is not the correct answer: there are 4 such items. With
the 4 actual normal items and the perceived “normal” items, we expect
that, from the test taker’s perspective, there would be a balanced mix
of trick and “normal” items, following a similar format as the original
CALVI. Thus, A-CALVI consists of 11 trick items selected adaptively
by the CAT algorithm and 4 actual normal items. The total length of
A-CALVI is 15, half of the length of the original CALVI.

4.7 Final Configurations of A-VLAT and A-CALVI
a-vlat The final configuration initializes the first item by using the
mean of θ ’s from the VLAT test tryout data to select the item with
highest information in the bank. After the test taker answers each
item, that item is removed from the bank, and θ is updated accordingly,
which is then used to select the next item. Each time, A-VLAT selects
the next item with the highest information under the constraint that the
12 chart types and 8 tasks must be covered before the test terminates.
A-VLAT terminates after a test taker has answered 27 items.
a-calvi The final configuration initializes the first item using the mean
of θ ’s from the CALVI test tryout data to select the item with highest
information in the bank. After the test taker answers each item, that
item is removed from the bank, and θ is updated accordingly, which
is then used to select the next item. Each time, A-CALVI selects the
next item with the highest information under the constraint that the 11
misleaders must be covered before the test terminates. The 4 normal
items are positioned at 4 randomly pre-determined locations among the
trick items, but which normal item appears at which of the 4 positions is
randomly determined at runtime for each test taker. A-CALVI terminates
after a test taker has answered 11 trick items and 4 normal items.

With the configurations of A-VLAT and A-CALVI finalized, it is nec-
essary to know whether the two tests can provide stable and consistent
measurements and whether they measure the abilities they are designed
to measure. Therefore, we conduct four online studies to evaluate the
reliability (Sec. 5) and validity (Sec. 6) of the adaptive tests.

5 RELIABILITY EVALUATION

Reliability of a test is whether it can provide consistent and stable mea-
surement. We provide evidence of test-retest reliability, a common
way of assessing reliability and used in various domains to evaluate the
reliability of CATs (e.g., [3, 20]).

Test-retest reliability evidence is gathered by administering a test to
the same group of people twice with a time interval between the first and

the second administrations and comparing participant’s performances
on each attempt. An interval of 1 or 2 weeks is typical [26]. For both
A-VLAT and A-CALVI, we have the same study design: we recruit one
group of participants from Prolific. Everyone takes the adaptive test
and is invited back to take it again after a week.

We use the intraclass correlation coefficient (ICC) as the reliability
metric recommended by literature [26]. Next, we describe the models
to compute ICC for A-VLAT and A-CALVI and present the results.

5.1 Model for Reliability Metric
ICC can be computed via a random effects model, and we used a
Bayesian measurement error version of the model because the measure-
ment for each person is a distribution rather than a point estimate. It is
important to take into account the measurement error when computing
ICC, as otherwise it will be underestimated [33]. Our model is preregis-
tered on OSF (see link in abstract) and can be found in supplemental
materials.8 The model is:

θ
∗ ∼ Normal(µ +α j,σε )

θ ∼ Normal(θ∗,se(θ))
α j ∼ Normal(0,σα ),

where θ∗ is the latent ability, µ is the unobserved mean, α j is the
random effect for person j, σε is the standard deviation within-person,
σα is the standard deviation between people, θ is the observed ability,
and se(θ ) is the measurement error of θ . For the priors of this model,
we selected Normal(0,1) and Normal(−1,1) for µ for A-VLAT and
A-CALVI, respectively, because they are approximately the distributions
of the estimated abilities in the VLAT and CALVI test tryout data. We
also selected Normal+(0,1) for σα and σε .

For both the reliability of A-VLAT and A-CALVI, we ran our model
with 4 chains, each with 20,000 iterations. We discarded 10,000
warmup iterations per chain and thinned the final sample by 5, yielding
8,000 total post-warmup draws.

This model outputs distributions of σα and σε , which we then use
to compute ICC with the following formula [23]:

ICC =
σ2

α

σ2
α +σ2

ε

.

ICC can be understood as the ratio between the variance between people
(σ2

α ) and the sum of variance between people and the (undesirable)
within-person variance (σ2

ε ) [23].

5.2 Reliability of A-VLAT
Participants 90 participants were recruited in anticipation that around
60 would return to the second study so that we have a sample size close
to 60. This sample size was determined by collecting pilot data with
20 participants, fitting the model with pilot data, generating simulated
participants with the fitted model, and choosing the sample size that
would yield a ±0.1 95% credible interval around the ICC.9

In the end, 47 participants completed both parts of the study. All
participants fall under the same criteria listed in Sec. 4.6.
Model Diagnostics The minimal bulk effective and the minimum
tail effective sample sizes are 6,757 and 7,067, and the R̂ values are
approximately 1.00 for all parameters.
Results Figure 6 shows the posterior density of ICC and a scatterplot
of participants’ scores on the first attempt versus those on the second
attempt. The median ICC is 0.98 with 95% CI of [0.87, 1.00], so
A-VLAT has excellent test-retest reliability [8, 24].

5.3 Reliability of A-CALVI
Participants We determined the sample size by first following the
same method in Sec. 5.2. However, in the model with measurement
8We initially pre-registered an implementation of this model that is difficult to
fit and computes extra parameters (the latent θ ∗s) that we do not need. We
later found an alternative parameterization better suited for our purpose, so the
results in this section are from the alternative parameterization.

9All pilot analyses for sample size determination are in supplemental materials.
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Fig. 6: Reliability of A-VLAT: the left plot is a posterior density plot of
ICC with a point interval plot at the bottom; the point is the median, and
the lighter and darker bars are the 95% and 66% intervals. The right
plot is a scatterplot of the 47 participants’ scores on the first and second
attempts, where each point represents a participant, and the cross lines
at each point represents the measurement error (95% intervals).

error on pilot data, the intervals of ICC did not shrink as the sample size
of the simulated participants increased. Therefore, we use a sample
size of 60 because it is consistent with the sample size of the reliability
study for A-VLAT and the 95% intervals on σα and σε have similar
width as those in Sec. 5.2. In addition, we report the ICC results from
models with and without measurement error because the interval of
ICC may be large for the model with measurement error. Based on the
attrition rate of the previous study, we recruited 115 participants, in
anticipation that around 60 would return to the second study. In the end,
73 participants from the first part of the study returned to the second
part. All participants fall under the same criteria listed in Sec. 4.6.
Model Diagnostics The minimal bulk effective and the minimum
tail effective sample sizes are 7,272 and 7,560, and the R̂ values are
approximately 1.00 for all parameters.
Results Figure 7 shows the posterior density of ICC and a scatterplot
of participants’ scores on the first attempt versus those on the second
attempt. The median ICC is 0.98 with 95% CI of [0.82, 1.00], so
A-CALVI has excellent test-retest reliability [8, 24]. Even though the
model with measurement error is able to produce a small interval for
ICC with data from this study, we report the result from the other model
as stated in pre-registration: the median ICC is 0.77 with 95% CI of
[0.66, 0.85]. We select the ICC from the model with measurement error
as the final report for reliability because a model that does not account
for measurement error consistently underestimates ICC. [33].

6 VALIDITY EVALUATION

We evaluate whether our adaptive tests are valid—that they measure
what they are designed to measure—by computing the convergent
validity [7]: the correlation between test takers’ performance on the
adaptive tests and their performance on the original static tests. This
is an appropriate measure of the validity of the adaptive tests [19]
because VLAT and CALVI are both valid measurements [14, 22] and the
equivalence of the original and adaptive tests through strong correlation
would demonstrate that the adaptive tests indeed measure the same
abilities as the originals, hence are valid.

To compute the correlation coefficient for convergent validity, the
same group of participants need to take both versions of the tests.
Because retaking the tests may create learning and ordering effects,
we use two groups of participants to counterbalance the effects. For
both A-VLAT and A-CALVI, we have the same study design with two
groups, both recruited from Prolific: each person takes both tests,
with a week10 in between sessions. Order is counterbalanced: half the
participants (Group 1) takes the original test first, and the other half
(Group 2) takes the adaptive test first. The procedure of our validity
studies is the same as that in Sec. 4.6.
10Because of the similarity of content between the adaptive and original tests,

we choose to have a one-week interval to mitigate learning effects.
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Fig. 7: Reliability of A-CALVI: the left plot is a posterior density plot
of ICC; the right plot is a scatterplot of the 73 participants’ scores on
the first and second attempts with measurement error.

6.1 Model for Validity Metric

Correlation coefficients can be computed via a Bayesian bivariate Nor-
mal model. We again use a measurement error model. The model
is preregistered on OSF (see link in abstract) and can be found in
supplemental materials.11 The bivariate Normal model is:[

θ∗
O

θ∗
A

]
∼ Normal2

([
µO
µA

]
,σO,σA,ρ

)
θO ∼ Normal(θ∗

O ,se(θO))
θA ∼ Normal(θ∗

A ,se(θA)).

where θ∗
O and θ∗

A are the latent abilities measured from the original test
and the adaptive test, with µO and µA as their means, σO and σA as their
standard deviations, and ρ as the correlation between them. θO and θA
are the observed abilities, with measurement errors se(θO) and se(θA).
In the implementation of this model, we re-parameterized µO and µA
in terms of the difference between them by subtracting the mean of θO
from all the observed θ ’s.

For the prior of the model, we selected Normal(0,1) for the differ-
ence between θO and θA, as 1 is a large difference in latent IRT ability.
We picked Normal(1,0.5) for σO and σA, because standard deviations
should center around 1 as the IRT model is parametrized so that latent
abilities have a standard deviation around 1. For ρ , we selected a
uniform prior (the LKJ distribution with parameter η = 1).12

We ran our final model with 4 chains, each with 20,000 iterations.
We discarded 10,000 warmup iterations per chain and thinned the final
sample by 5, yielding 8,000 total post-warmup draws.

This model outputs the distribution of the correlation coefficient ρ

for convergent validity.

6.2 Validity of A-VLAT

Participants 120 participants were recruited (60 for each group) in
anticipation around 100 would return to the second part of the study
so that we have a sample size close to 100. This sample size was
determined by collecting pilot data with 10 participants in each group,
fitting the model with pilot data, generating simulated participants with
the fitted model, and choosing the sample size that would yield a ±0.1
95% credible interval around ρ .

In the second part of the study, 49 returned in Group 1 and 37
returned in Group 2, for a total of 86 participants. All participants fall
under the same criteria listed in Sec. 4.6.

Model Diagnostics The minimal bulk effective and the minimum
tail effective sample sizes are 7,607 and 7,394, and the R̂ values are
approximately 1.00 for all parameters.

11The model results in this section are based on an alternative implementation
different than the initially pre-registered for the same reason in Sec. 5.1.

12We pre-registered LKJ distribution with parameter η = 3 as the prior of ρ in
the initial implementation of the model for A-VLAT, because it needed a tight
prior to converge. However, the alternative implementation—which does not
estimate all θ ∗s—converges much more easily, so we relaxed the prior on ρ .
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Fig. 8: Validity of A-VLAT: the left plot is a posterior density plot
of correlation coefficient ρ; the right plot is a scatterplot of the 86
participants’ scores on VLAT and A-VLAT with measurement error.

Results Figure 8 shows the posterior density of ρ and a scatterplot
of participants’ scores on the adaptive test versus those on the original
test. The median ρ is 0.81 with 95% CI of [0.72, 0.87]. While there
is no gold standard for convergent validity, a correlation coefficient
below 0.50 should be avoided and above 0.70 is recommended [6], so
A-VLAT has high convergent validity.

6.3 Validity of A-CALVI

Participants A sample size of 100 was determined in the same way
as in Sec. 6.2. Based on the attrition rate of the previous study, 140
participants were recruited (70 in each group), in anticipation that
around 100 participants would return to the second part of the study.

In the first part of the study, one participant’s data was discarded
because they failed the attention check questions. In the second part,
47 and 43 returned in Groups 1 and 2, for a total of 90 participants. All
participants fall under the same criteria listed in Sec. 4.6.

Model Diagnostics The minimal bulk effective and the minimum
tail effective sample sizes are 6,455 and 5,090, and the R̂ values are
approximately 1.00 for all parameters.

Results Figure 9 shows the posterior density of ρ and a scatterplot
of participants’ scores on the adaptive test versus those on the original
test. The median ρ is 0.66 with 95% CI of [0.53, 0.76]. Since a
correlation coefficient below 0.50 should be avoided and above 0.70 is
recommended [6], A-CALVI has acceptable convergent validity.

7 DISCUSSION

7.1 How Reliable, Valid, and Precise Are CATs Really?

The results from Sec. 5 and Sec. 6 have shown that we have successfully
created two reliable and valid adaptive tests, A-VLAT and A-CALVI,
which measure the same abilities as the original static VLAT and CALVI.
In addition, we collected data that can be used to demonstrate the mea-
surement precision of both adaptive tests: in validity evaluation, every
participant was asked to take both the adaptive and original versions.
We can use this data to analyze the relative difference in SE(θ) of both
adaptive tests as we did in Sec. 4.5 with simulation data.13

For A-VLAT, the distribution of relative difference in SE(θ) for 86
participants has a mean of 0.089 (i.e., for a person with average ability
in this group, the standard error for them is within 8.9% of the standard
error of the baseline.) with a standard deviation of 0.11.

For A-CALVI, the distribution of relative difference in SE(θ) for 90
participants has a mean of 0.023 with a standard deviation of 0.039.

We observe that results of relative difference in SE(θ) from actual
participants reveal that both adaptive tests are similarly precise com-
pared to their original static counterparts, in accordance with the sim-
ulation results in Sec. 4.5.1 and Sec. 4.5.2. This demonstrates the
measurement precision of A-VLAT and A-CALVI and further supports
the justification for the shortened lengths of the adaptive tests.

13The code for this analysis is provided in supplemental materials.
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Fig. 9: Validity of A-CALVI: the left plot is a posterior density plot
of the correlation coefficient ρ; the right plot is a scatterplot of the 90
participants’ scores on CALVI and A-CALVI with measurement error.

Another consideration of reliability is whether a test taker can re-
cover quickly if they mistakenly select a wrong answer. First, we define
di as the absolute value of the difference between the mean of the θ

estimate distribution and the true θ of a test taker after answering the
i-th item in the test. Then, “mistakenly selecting a wrong answer for
item i” is defined as when di > di−1; i.e., when their θ estimate moves
away from the true θ after answering an item. Naturally, “recovery”
from choosing a wrong answer for item i happens at the first step i′
where di′ ≤ di; i.e., their θ estimate moves back to being within at least
di of their true θ , and recovery length is i′− i. We conducted simula-
tions14 to study the recovery lengths in our adaptive tests. We generated
500 simulated participants for each test as before, and simulated their
response correctness to A-VLAT and A-CALVI. The median recovery
lengths for A-VLAT and A-CALVI are 3 and 2 with standard deviations
of 4.8 and 1.1, respectively. Therefore, test takers can recover quickly
from a mistake in our tests, demonstrating good reliability.

7.2 Correlation within Chart Types, Tasks, and Misleaders

Items in the banks of VLAT and CALVI span a range of chart types,
tasks, and misleaders. Studying the relationship between people’s
performance within these different categories of visualization features
can shed light on how different aspects and skills of visualization
literacy connect and transfer, which can then help us better understand
this ability and potentially further optimize adaptive testing.

Actual participants have been asked to answer these visualization
literacy items from prior work [14, 22], as well as the qualitative study,
reliability evaluation, and validity evaluation in this paper. This gives
us the opportunity to use this data to examine the relationship between
participants’ performance on different chart types, tasks, and mislead-
ers. Therefore, we conducted an exploratory study to compute the
correlations within these visualization features by using both test tryout
data (VLAT and CALVI) and data collected in this paper and employing
the same IRT models described in Sec. 3.15 Next, we present some
highlights from this exploration and discuss their implications.

VLAT Chart Types We found high correlations between performance
on certain chart types: 0.83 with 95% CI of [0.72, 0.92] for scatterplot
and bubble chart, 0.82 with 95% CI of [0.72, 0.90] for 100% stacked bar
and stacked bar charts, and 0.81 with 95% CI of [0.69, 0.90] for scatter-
plot and line chart. There are also chart types without high correlations
with others: choropleth map’s and stacked area chart’s correlation with
other chart types do not exceed 0.38 and 0.52, respectively.

VLAT Tasks Many pairs of tasks have high correlations: 0.93 with
95% CI of [0.88, 0.97] for retrieve value and make comparisons, 0.89
with 95% CI of [0.81, 0.96] for find extremum and make comparisons,
0.79 with 95% CI of [0.70, 0.86] for determine range and retrieve value.
Most tasks highly correlate with at least another task.

14The code for the simulations is provided in supplemental materials.
15The entire results can be found in supplemental materials.



CALVI Misleaders Most pairs of misleaders have weak or moderate
positive correlations: Manipulation of Scales - Inappropriate Scale
Range and Manipulation of Scales - Inappropriate Use of Scale Func-
tions have a correlation of 0.75 with 95% CI of [0.58, 0.89], highest
among all pairs of misleaders. Some misleaders have very weak correla-
tions with others; Overplotting especially stands out as its correlations
with the other misleaders range from -0.21 to 0.34. This is reasonable as
Overplotting is one of the most difficult misleaders to judge correctly.

Although A-VLAT and A-CALVI are significantly shorter than their
original versions, there are opportunities to further shorten them by
leveraging these correlations. For instance, the VLAT tasks retrieve
value and make comparisons are highly correlated, so test developers
could make the item selection process less constrained by only covering
one of the two instead of both. Further research on incorporating these
correlations into CAT algorithms for visualization literacy is needed.

Moreover, these correlations are valuable quantitative data that in-
forms taxonomy in visualization literacy: people’s performance on
tasks retrieve value, find extremum, and make comparisons are highly
correlated, which means it may be reasonable to categorize them into
one task. Additionally, when researchers and educators design curric-
ula or tools to improve people’s visualization literacy, they can draw
insights from these correlations to create more efficient and effective in-
terventions: since people’s performances on answering items with scat-
terplots and bubble charts are strongly correlated, teachers may choose
to focus on one, or group lessons together for increased efficiency.

7.3 Customization of Adaptive Tests
When using A-VLAT and A-CALVI, test administrators can customize
many components of the tests, including initialization, item selection,
and termination criterion. For initialization, we chose the means of
the θ distributions from test tryouts. However, test administrators can
explore other alternatives, such as randomly choosing the first item from
the bank to decrease the item exposure (i.e., the frequency at which an
item is administered across all administrations) of certain items. Test
administrators can also customize the non-psychometric constraints in
item selection. For example, if one wishes to focus on only covering all
VLAT chart types or only covering all tasks, they could adjust the non-
psychometric constraints to achieve that. Moreover, the results from
the simulation studies in Sec. 4.5 can guide administrators to adjust
the length of the adaptive test based on their time-limit constraints and
requirement for measurement precision. For scoring, we recommend
reporting the mean of the posterior distribution of θ as a point estimate
(described in Sec. 4.4), as well as the raw correctness (i.e., number of
items answered correctly over the total number of items answered) to
help test takers intuitively interpret their final scores.

Test administrators may wonder about the reliability and validity
of their customized tests. We think that validity would remain rel-
atively stable as the lengths of adaptive tests change so long as the
non-psychometric features are covered, because these features ensure
that the adaptive and original versions are qualitatively similar. Also,
we think that the more non-psychometric features not covered, the
less valid the adaptive tests would likely be. However, if two features
are very similar, as discussed in Sec. 7.2, not covering one may not
have a noticeable effect on validity. In addition, test-retest reliability
could vary if the length is too short or long. On the one hand, if too
short, the θ estimates would be more susceptible to measurement error
and have limited variability, which can affect reliability. On the other
hand, if a test is too long, test takers’ motivation, attention, and effort
might change on the second attempt, causing the test-retest reliability
to decrease. Although test length can affect reliability and validity
in extreme cases, we believe that moderately changing the length of
A-VLAT or A-CALVI would have a marginal effect on reliability and
validity so long as the non-psychometric constraints are not violated.

For test administrators who only need to measure the visualization
literacy of a group of people once, they can use A-VLAT and A-CALVI
as alternatives to their original versions because they are much shorter,
contain balanced content, and have similar measurement precision.
For researchers and educators who want to conduct pre-post testing
to evaluate the effectiveness of their interventions by administering a

visualization literacy test once before and once after the intervention,
we recommend using our adaptive tests for both administrations. For
the second administration, they can choose to exclude certain overused
items in the first attempt if they are concerned about item exposure.
They could also use the estimated θ of a particular person in the first
attempt to initialize this person’s first item in the second attempt.

7.4 Limitation and Applicability in Practice
To create assessments under the IRT framework, it is necessary to con-
struct items, run a test tryout study, and compute item parameters using
IRT models. This process requires substantial resources as well as tech-
nical expertise on IRT modeling, which can be a barrier to implementing
adaptive tests in practice. Moreover, adaptive assessments require more
complex infrastructure to deliver than a standard series of questions and
it is not trivial to add newly designed test items, due to the adaptive na-
ture requiring computation at each step. However, given the benefits of
CATs, there is a need to democratize community access to capabilities
for test development and administration. Both A-VLAT and A-CALVI
are therefore implemented using an experimental framework, designed
to create flexible and reusable visualization assessments. One key fea-
ture is the decoupling of static and dynamic experiment/assessment
content, which supports the implementation of CATs in a more gen-
eralized fashion. Consequently, A-VLAT and A-CALVI assessments
are designed such that they can be reshaped by intermediate program-
mers, making it easier for researchers and practitioners to adapt these
assessments for specific needs. As more assessments are developed
in the visualization community, such infrastructure could play a role
in developing adaptive versions of future tests, while also providing
helpful validity, reliability, and general test analysis capabilities. Code
is available in the paper’s supplemental materials.

7.5 Automated Item Generation
Although A-VLAT and A-CALVI are half the lengths of their original
versions, the size of the item banks are still limited, meaning that
repeated administrations of the tests would increase the item exposure
quickly. Larger banks can reduce item exposure and allow for more
attempts of re-assessments without giving out the same items. However,
generating large banks is costly, both in terms of time and resources.
The current process is not scalable because it requires manually creating
the visualizations and writing the question text for each item, as well
as recruiting a large number of participants for test tryout in order to
estimate the item parameters needed for adaptive testing.

There is an opportunity for automating the item generation process
and inferring item parameters without recruiting a large number of
actual participants: the items in the banks are made up of specific
components that are common in all items, such as the visualizations,
question text structure, and the answer options. One can potentially
leverage visualization grammars and machine learning techniques to
automatically generate items and infer their item parameters using
substantial existing data. Future studies can investigate ways to scale
and improve the item generation process.

8 CONCLUSION

To more efficiently measure visualization literacy, we develop A-VLAT
and A-CALVI, which are adaptive versions of VLAT and CALVI that
are half the length of the original tests. We conduct a qualitative study
to improve the question composition of CALVI, and incorporate non-
psychometric features of both assessments as constraints, ensuring that
the adaptive tests cover all tasks and chart types (for VLAT) or mis-
leaders (for CALVI) from the original assessments. We establish the
reliability and validity of these adaptive tests via four online studies and
associated analyses. We demonstrate how to apply CAT to create more
efficient visualization literacy assessments that are reliable, valid, and
precise. As visualization literacy can influence data-driven decisions,
both A-VLAT and A-CALVI can be used to support the study of visual-
ization literacy development and intervention evaluations through pre-
and post-testing. Adaptive assessments can transform measurement
practice in visualization literacy, and our work establishes a channel to
support the adoption of more efficient assessments in practice.
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