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A. Some combinations of slabs and pointintervals B. Multiple lineribbons with varying probability mass

D. Logit dotplot using lineribbon and dots geoms

C. Anthropomorphic dotplots using the dots 
      geometry and the Wee People font

E. Raincloud plots created by combining slab,
      pointinterval, and dots geometries
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Fig. 1: Examples from the three major classes of geometries in ggdist: (A) slabintervals, such as density plots, CDFs, intervals, 
and gradient plots; (B) lineribbons, such as uncertainty bands and fan charts; and (C) dots, such as dotplots and beeswarm charts. 
Myriad combinations of these are possible, leading to charts like (D) logit dotplots and (E) raincloud plots [1]. 

Abstract—The grammar of graphics is ubiquitous, providing the foundation for a variety of popular visualization tools and toolkits. Yet 
support for uncertainty visualization in the grammar graphics—beyond simple variations of error bars, uncertainty bands, and density 
plots—remains rudimentary. Research in uncertainty visualization has developed a rich variety of improved uncertainty visualizations, 
most of which are difficult to create in existing grammar of graphics implementations. ggdist, an extension to the popular ggplot2 
grammar of graphics toolkit, is an attempt to rectify this situation. ggdist unifies a variety of uncertainty visualization types through the 
lens of distributional visualization, allowing functions of distributions to be mapped to directly to visual channels (aesthetics), making it 
straightforward to express a variety of (sometimes weird!) uncertainty visualization types. This distributional lens also offers a way to 
unify Bayesian and frequentist uncertainty visualization by formalizing the latter with the help of confidence distributions. In this paper, I 
offer a description of this uncertainty visualization paradigm and lessons learned from its development and adoption: ggdist has existed 
in some form for about six years (originally as part of the tidybayes R package for post-processing Bayesian models), and it has evolved 
substantially over that time, with several rewrites and API re-organizations as it changed in response to user feedback and expanded to 
cover increasing varieties of uncertainty visualization types. Ultimately, given the huge expressive power of the grammar of graphics 
and the popularity of tools built on it, I hope a catalog of my experience with ggdist will provide a catalyst for further improvements to 
formalizations and implementations of uncertainty visualization in grammar of graphics ecosystems. 
A free copy of this paper is available at https://osf.io/2gsz6. All supplemental materials are available at https://github.com/mjskay/ggdist-
paper and are archived on Zenodo at doi:10.5281/zenodo.7770984. 

Index Terms—Uncertainty visualization, probability distributions, confidence distributions, grammar of graphics 

1 INTRODUCTION 

The grammar of graphics [54] is ubiquitous, providing the foundation 
for a variety of visualization toolkits. Yet support for uncertainty 
visualization in grammar graphics systems, generally speaking, remains 
rudimentary. Popular implementations like ggplot2 [48, 49] and Vega-
lite [44] typically provide versions of error bars (for points), uncertainty 
bands (for lines), boxplots, and density plots. However, research in 
uncertainty visualization has developed a rich variety of alternative 
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uncertainty representations, often designed to address shortcomings 
in those existing visualization types. Examples include, but are not 
limited to, quantile dotplots [14, 31], gradient error bars [11], gradient 
plots [6,25], fan charts [25], and innumerable variations on eye plots [4, 
18, 31, 45]. Yet, most of these alternative representations are—simply 
put—painful to convince existing grammar of graphics implementations 
to produce. 

ggdist [29] is an attempt to rectify this situation. It started under 
the guise of tidybayes [30]—an R package I wrote for post-processing 
Bayesian models for use with ggplot2—in 2016. tidybayes slowly 
gained usage in the Bayesian statistics community, but the package 
always had two complementary, but not perfectly aligned, uses: post-
processing Bayesian model output for visualization, and creating un-
certainty visualizations in the grammar of graphics. The latter is bigger 
than just Bayesian statistics: everyone needs to visualize uncertainty! 
And, contrary to popular opinion—as we’ll see later—Bayesian and 

https://orcid.org/0000-0001-9446-0419
https://mjskay.github.io/ggdist/articles/slabinterval.html
https://mjskay.github.io/ggdist/articles/lineribbon.html
https://mjskay.github.io/ggdist/articles/dotsinterval.html
https://lnalborczyk.github.io/post/glm/
https://osf.io/2gsz6
https://github.com/mjskay/ggdist-paper
https://github.com/mjskay/ggdist-paper
https://doi.org/10.5281/zenodo.7770984
mailto:reprints@ieee.org
mailto:mjskay@northwestern.edu


frequentist uncertainty visualization can be done within the same frame-
work. Recognizing this broader need, in 2020 I spun off the uncertainty 
visualization components of tidybayes into a new package, ggdist, and 
published it to CRAN [21]. Since then it has steadily grown in use inside 
and outside the Bayesian statistics community in R, and now averages 
about 14,000 downloads per month (modest for an R package). 

ggdist aims to be (1) a coherent extension to the grammar of graph-
ics that makes it easy to create a variety of uncertainty visualizations, 
and (2) an implementation of a particular formalism for describing 
uncertainty visualizations: mappings of functions of distributions (e.g. 
densities, CDFs, quantiles) onto aesthetics (e.g. height, color, opacity). 
That formalism is the primary focus and contribution of this paper. My 
ambition is that not only should that formalism be able to express a va-
riety of uncertainty visualizations through a single coherent framework, 
but that that framework should be complete enough that someone else 
can wander along and use it to express new uncertainty visualization 
types I’ve never thought of before.1 Naturally this is hard to demon-
strate, but I will attempt to do so by giving a tour of ggdist through 
recreations of a variety of uncertainty visualizations in the literature. 
Along the way, I’ll discuss lessons I’ve learned in how to effectively 
integrate uncertainty visualization into the grammar of graphics. 

Ultimately, in the spirit of recent retrospectives on visualization 
system design [43], I hope to distill down some of what I’ve learned 
developing a moderately-well-used uncertainty visualization toolkit.2 

Given the huge expressive power of the grammar of graphics and 
the popularity of tools built on it, I hope a systematic approach to 
integrating uncertainty into the grammar of graphics might provide a 
catalyst for improved implementations of uncertainty visualization to 
flourish in existing grammar of graphics ecosystems, and ultimately for 
even better formal descriptions of uncertainty visualization to arise. 

2 SETTING THE STAGE 

2.1 A simplified notation for the grammar of graphics 

As I would like to talk more generally than a specific grammar of 
graphics implementation—that is, I am more concerned with the for-
malism underlying ggdist than with the idiosyncrasies of its API—I’ll 
need a formal way of writing down visualization specifications sepa-
rated from a particular implementation. I’ll adopt here a notation that 
I’ve used when teaching ggplot2, Vega-lite, Altair, and Tableau. I’ve 
found students pick it up handily, which is at least some evidence for 
its understandability. The core notation describes a visualization in 
terms of its data variables, aesthetic mappings, and geometries. We 
create a scatterplot of the infamous mtcars dataset [19], for example, 
by mapping one variable onto the x aesthetic and another onto the y 
aesthetic:3 

weight → x 

mpg → y 

GEOM = point 
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This notation sets up two aesthetic mappings:4 a mapping from the 
weight variable onto the x aesthetic, and a mapping from the mpg 
variable onto the y aesthetic. It then employs a point geometry5 for 

1Emphasis on I—I think a formalism and its corresponding API truly shows 
its power when people make things with it that its creator did not conceive. 

2In the spirit of this being a retrospective, I’m keeping the tone informal. I 
think that’s more honest; besides, after two years of a pandemic, I at least need a 
break from stilted academic writing. I hope you do too! If not, my condolences. 

3I am aware it is traditional to slap a number on each figure and float it off 
into a random corner of the page. I violate that norm throughout this paper 
without remorse. 

4Or in Vega-lite parlance, encodings 
5Vega-lite-ese: mark 

display. I like this notation because it emphasizes that we are creating 
functions from data space to aesthetic (display) space; in grammar 
of graphics parlance these are scale functions which can themselves 
be specified (e.g., to use log scales, to pick how colors are assigned, 
etc). Other notations obscure this key insight into the structure of the 
grammar of graphics by, e.g., placing the aesthetic first and “assigning” 
data variables to it. In fact, let’s see that now: here is a translation of 
the above into ggplot2 and Vega-lite6 code, assuming cars is a data 
frame with weight and mpg columns: 

ggplot2: 
ggplot(cars) + 
aes( 
x = weight, 
y = mpg 

) + 
geom_point() 

Vega-lite: 
vl.data("path/to/cars.json") 
.encode( 
vl.x().fieldQ("weight"), 
vl.y().fieldQ("mpg") 

) 
.markPoint() 

This shows the close correspondence between the abstract notation 
above and the particulars of code in actual grammar of graphics imple-
mentations. Throughout the rest of this paper, I’ll stick to the abstract 
notation and corresponding ggplot2 + ggdist code for some particulars. 

2.2 Uncertainty visualization in the grammar of graphics, 
as she is spoke 

Speaking of existing implementations of the grammar of graphics, how 
do they implement uncertainty visualization? Rudimentarily, I think. 

One natural approach to uncertainty visualization is to use a Gaussian 
approximation: to represent all estimates and their uncertainty as a 
mean and standard deviation. This makes specification easy: instead 
of mapping a single value onto the x aesthetic, say, we map a point 
estimate onto x and provide an aesthetic for its standard deviation; call 
it xSD . Say we had a point estimate µ and had quantified its standard 
error (i.e. the standard deviation of its sampling distribution) as σ , we 
might plot a point with an error bar using a composite pointinterval 
geometry as follows, yielding a 95% interval calculated from a Normal 
distribution with mean µ and standard deviation σ : 

µ → x 

σ → xSD 

GEOM = pointinterval 

m

s

This is one approach taken by Vega-lite: it provides an errorbar 7 

mark (analogous the interval portion of pointinterval) and an xError 
channel (analogous to xSD). I’ll refer to this as the {x,xSD } approach. 

The problem, fundamentally, is that not all uncertainty is well-
represented by a Gaussian distribution. Consider uncertainty in a 
proportion (bounded at 0 and 1, thus as estimates approach the bound-
ary the interval becomes asymmetric—yet Gaussian intervals must be 
symmetric) or uncertainty in a variance parameter (bounded below at 
0). Or, consider the ubiquitous Student-t confidence interval: as the de-
grees of freedom go to ∞, a Student-t distribution is well-approximated 
by the Normal, but with low degrees of freedom (incidentally common 
in small-n studies—like at VIS), the tails of the distribution become 
fatter, and the Normal distribution is a poor approximation. Thus, a 
more general approach is needed. 

The obvious alternative, at least for interval representations, is to 
simply specify the interval endpoints; e.g. for a 95% Gaussian interval: 

6I use the Vega-lite API instead of its JSON form, as JSON is a horrifying 
mess of visual noise that no sane human should want to read or write. The 
Vega-lite API is a notable improvement, though without R’s facility for capturing 
and re-writing abstract syntax trees, it doesn’t quite reach the succinctness 
of ggplot2. This seems to be a fundamental limitation when writing domain-
specific languages in JavaScript, though the Vega-lite authors have done an 
excellent job with the language they’ve been given. 

7errorbar is, in my view, a misnomer, as is xError: fundamentally, the 
mark calculates a Gaussian interval, which might be being used to represent 
error in an estimate, but might not. Error is not the generic notion at play, a 
standard deviation is; and the generic mark is an interval, not an error bar. 



µ → x 

µ − 1.96 · σ → xMIN 

µ + 1.96 · σ → xMAX 

GEOM = pointinterval 

m

m - 1.96 × s m + 1.96 × s

Here, the magic values −1.96 and +1.96 are the (1 − 95%)/2 = 2.5% 
and (1 + 95%)/2 = 97.5% quantiles of the standard Normal distribu-
tion, thus yielding a 97.5% − 2.5% = 95% interval. This is generic 
in the sense that any interval can be represented, but unsatisfying in 
the sense that we have lost some level of abstraction that was present 
when we were just thinking in terms of estimates and their variances. 
This approach also requires that the user knows how to make these 
calculations. Both ggplot2 (with geom_pointrange) and Vega-lite 
(with the x and x2 channels supplied to errorbar) offer a variant of 
this solution for pre-calculated intervals. 

I will offer a different solution: to instead represent intervals as prop-
erties of a distribution, allowing us to neatly handle both the simple case 
of Gaussian error and more complex cases. Centering distributions— 
not standard deviations or intervals—in the specification of uncertainty 
will also allow us to build a richer set of uncertainty representations. 

3 UNCERTAINTY VISUALIZATION AS 
DISTRIBUTIONAL VISUALIZATION 

3.1 Intervals 

Imagine we represent an uncertain value generically as a distribution, 
or a random variable, M. Importantly, I do not consider this a probabil-
ity distribution necessarily: it could be a probability distribution, but 
it could also be a confidence distribution, which is a frequentist gen-
eralization of sampling distributions and bootstrap distributions [55]. 
Its defining characteristic will be that it has a cumulative distribution 
function (CDF), FM(x), which is: 

• For a probability distribution, FM(x) = Pr(M ≤ x), the probability 
that M is less than or equal to x. 

• For a confidence distribution, FM(x) = γ is the confidence γ at 
which x would be the upper limit of a one-sided γ% confidence 
interval, [−∞,x], for M. 

For either representation, we may also be interested in other func-
tions of the distribution. These include the derivative of the cumulative 
distribution function, i.e. the density function (or the mass function, if 
the distribution is discrete), fM(x), as well as the inverse of the CDF 

(also known as the quantile function), F−1
M (x). Given these functions, 

we can generate a variety of uncertainty representations, including but 
not limited to density plots and intervals. 

For example, a median and γ% quantile interval could be defined 
generically on any distribution M as follows: 

median(M) → x 

F−1 
M 

 
1− γ 

2 

 

→ xMIN 

F−1 
M 

 
1+ γ 

2 

 

→ xMAX 

GEOM = pointinterval 

median(M) 

F M 
−1 

⎡

⎣ ⎢ ⎢ ⎢ 1 − γ

2 

⎤ 

⎦ ⎥ ⎥ ⎥ F M 
−1 

⎡

⎣ ⎢ ⎢ ⎢ 1 + γ

2 

⎤ 

⎦ ⎥ ⎥ ⎥ 

If M is a probability distribution, this is a Bayesian credible interval, 
and if M is a confidence distribution, this is a frequentist confidence 
interval. This lets us abstract over the petty battles between this or 
that statistical camp and get to the meaningful business of visualizing 
uncertainty. This also allows us something not present in other attempts 
so far: to make it easy to specify multiple interval sizes, and to map 
interval size itself onto an aesthetic. For example, if we 8 wanted to 
show two intervals, a 95% and a 66%, where the smaller interval is 
shown as a thicker line, we could write: 

8Yes yes, I am using both “I” and “we” in this paper. “I” is me, and “we” 
is the conspiratorial “we”: I’d like to hope you’ll come along with me on this 
exciting journey of trying to sort out reasonable ways to visualize uncertainty. 

median(M) → x 

F−1 
M 

 
1− γ 

2 

 

→ xMIN 

F−1 
M 

 
1+ γ 

2 

 

→ xMAX 

γ → linewidth 

GEOM = pointinterval 
γ ∈ {0.66,0.95} 

γ = 0.95

γ = 0.66

This is a not-uncommon approach that tries to avoid dichotomous 
thinking by showing multiple intervals of different masses. It also has 
the nice grammar-of-graphics-ish property of mapping the mass (γ) 
onto the width of the line, instead of creating two explicit, separate 
layers, each specifying a different interval—it makes the mass into 
data. 9 This also makes it easy to generalize to other visualizations, e.g. 
by modifying the previous specification to map mass onto color instead 
of linewidth: 

γ → color 

GEOM = pointinterval 
γ ∈ {0.50,0.80,0.95} 

mass
0.95

0.8

0.5

On the other hand, these are still a bit low-level: they require the user 
to know how to calculate interval endpoints from the quantile func-
tion. This also limits us specifically to quantile intervals, when other 
intervals types, such as highest-density intervals [24] or shortest inter-
vals [34], might be preferable. Thus, ggdist also supplies a stat version 
of pointinterval, which bundles up some statistical calculations and 
default aesthetic mappings with the pointinterval geometry.10 All stats 
in ggdist support the xDIST and yDIST aesthetics, onto which objects that 
represent distributions can be mapped. They also allow the user to spec-
ify the type of point and interval used, and generate the corresponding 
values and mappings for x, xMIN, xMAX , and linewidth. This changes 
the specification to something like: 

M → xDIST 

STAT = pointinterval 
POINT = median 

INTERVAL = quantile interval 
γ ∈ {0.66,0.95} 

M

The representation of the distribution M could be a sample-based rep-
resentation, e.g. a bunch of draws from a Bayesian posterior or from 
a bootstrap distribution, or it could be an object representing a theo-
retical distribution in terms of its parameters, such as a Normal distri-
bution with a defined mean and standard deviation. Point estimates 
and interval types can be defined by arbitrary functions of distributions, 
and predefined functions for mean, median, and mode, and quantile, 
highest-density, and shortest intervals are provided. This generalizes 
the {x,xSD } approach used by Vega-lite to any distribution type while 
abstracting over the specifics of how points and intervals are calculated. 

In implementation, ggdist allows distributions to be represented 

9I learned at least two useful things from a relational databases class in 
undergrad: (1) it’s always better to put data into rows than into column names of 
tables—an insight that stems from database normal forms [10] (distinctions be-
tween which I have long forgotten) or what some statisticians call tidy data [50]; 
and (2) you are rarely at Google scale, so you’re probably better off with a 
relational database with proper transactions than some dumb old key–value 
store. The latter lesson each of my students refuses to learn until they build a 
web app to collect data from 300 people using some newfangled database they 
aren’t the target users for, and end up with garbage. Kids these days, etc. 

10See Sec. 5, or Wickham [48], for more on stats and geoms. 



by numeric vectors (a sample-based representation), objects from the 
distributional R package [39] (which supports theoretical distributions 
as well as samples), and rvar objects from the posterior R package [7] 
(a sample-based representation that mimics numeric arrays in R). For 
example, if we re-create the {x,xSD } representation abstractly thus: 

Normal(µ,σ) → xDIST 

STAT = pointinterval 
POINT = median 

INTERVAL = quantile interval 
γ ∈ {0.66,0.95} 

Normal(m, s)

In ggdist, using distributional::dist_normal, the specification 
is quite similar: 

ggplot(data) + 
aes(xdist = dist_normal(mu, sigma)) + 
stat_pointinterval( 
point_interval = median_qi, 
.width = c(.66, .95) 

) 

These are the default values for point_interval and .width (γ),11 

so just stat_pointinterval() also works here. To demonstrate gen-
eralizing this approach, consider the common need to place uncertainty 
intervals on the results of a t-test, which can be derived from a tν (µ,σ) 
distribution with ν degrees of freedom, location µ (e.g. an estimated 
mean), and scale σ (e.g. a standard error). Given these three values in 
a data frame, a visualization specification might be: 

tν (µ,σ) → xDIST 

STAT = pointinterval 

tn(m, s)

In ggdist code, the aesthetic specification closely matches this abstract 
notation: aes(xdist = dist_student_t(nu, mu, sigma)). 

3.2 Ribbons 

Once we have pointinterval representations, it is straightforward to 
develop uncertainty band representations by generalizing points to lines 
and intervals to ribbons—thus, lineribbon. Imagine a regression that 
models car miles per gallon based on weight (the details of the function 
g are not important): 

log(mpg) ∼ Normal (g(weight),σ) 

Such a model could provide a predictive distribution for a car’s miles 
per gallon conditional on its weight: p(mpg | weight), which we might 
want to plot alongside the raw data. If a lineribbon is a geometry 
combining a line with an arbitrary number of uncertainty bands around 
it, abstractly, we want something like this: 

weight → x 

p(mpg | weight) → yDIST 

γ → fill 
STAT = lineribbon 

γ ∈ {0.50,0.80,0.95} 
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(I also show the raw data as a separate point layer, for comparison.) 
Assuming fit is a Bayesian version of this model fit using the brms 

11For historical reasons that have to do with a combination of a very long 
discussion with a bunch of people on the Stan probabilistic programming lan-
guage forums [28] and naming conventions in some R APIs for fixed arguments 
to functions with variable argument lists [47], γ in ggdist is spelled .width. 
Reflecting on my past mistakes, a better name would be mass. 

modeling package, and preds is a data frame of weight values to predict 
on, we can add a column to preds that contains a random variable rep-
resentation of p(mpg | weight) using brms::posterior_predict [8] 
and the posterior::rvar data type [7]. The latter is a data type I 
created specifically to wrap large samples that represent distributions 
into objects that mimic R vectors and arrays, and which can be added 
to data frames: 

preds$mpg_given_weight = rvar(posterior_predict(fit, preds)) 

This creates a new column, mpg_given_weight, containing rvar 
objects representing p(mpg | weight) for the weight on each row of 
the preds data frame. Given this data frame, the code equivalent of 
the abstract specification above is: 

ggplot(preds) + 
aes(x = weight, ydist = mpg_given_weight) + 
stat_lineribbon() 

stat_lineribbon defaults to .width = c(.5, .8, .95) and 
maps the resulting .width onto the fill aesthetic, so we do not need 
to specify the .width or fill mappings. Once we have a multiple-
ribbon geometry, it is easy to create other visualization types, like 
gradient fan charts [6, 25]. For example, we could use a large number of 
intervals, say k = 50 or 100, with masses between 0 and 1 (exclusive): 

γ → fill 
STAT = lineribbon 

γ ∈ 

 
i − 0.5 

k 

   i ∈ 1 . . .k 

 

k = 100 
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This set of k γ values is the same sequence generated by the 
ppoints(k) function in R, so we can pass .width = ppoints(100) 
to stat_lineribbon to get a gradient fan chart with 100 intervals. 
This stems directly from the choice to make γ into data that can be 
mapped onto aesthetics, and is one example of support for a chart type 
that was a happy accident of ggdist’s design.12 

3.3 Slabs 

Speaking of gradients, the obvious other direction to go for uncertainty— 
if we are to move beyond intervals—is density plots. Most grammar of 
graphics implementations support density plots, but these are typically 
designed only for sample-based representations: they calculate a kernel 
density estimate (KDE) from a sample and allow this to be visualized. 
Given ggdist’s core abstraction of distributions, we can take this a step 
further, visualizing both sample-based representations and theoretical 
distributions.13 

However, stopping at just densities seems the wrong level of abstrac-
tion:14 many useful uncertainty visualizations can be created through 
the whole suite of distributional functions: CDFs, densities, and quan-
tiles. Thus, ggdist instead has a notion of a slab geometry, which has 
a thickness onto which arbitrary functions of the distribution can be 
mapped. For example, imagine two groups, a and b, each with uncer-
tainty in its mean represented by a random variable M | group. We 
could specify a density plot of these distributions as: 

12This happy accident was discovered in my response to a user’s question in 
tidybayes issue #103. 

13You may be tempted to say: but Matthew, of course you could easily 
pre-calculate densities from a theoretical density function and plot them, e.g. 
using ggplot2::stat_function. Unfortunately, once you add non-linear 
axis transformation into the mix, this is a recipe for silent errors caused by 
failing to adjust the density by the derivative of the transformation—an error 
ggdist prevents. See Sec. 6.3. 

14See earlier footnote7 about error bars versus intervals. 

https://github.com/mjskay/tidybayes/issues/103


M → xDIST 

group → y 

fM(x) → thickness 

STAT = slab 

thickness

0

0
max fM(x)

max fM(x)

a

b

gr
ou

p

(I also include a pointinterval with a median and 66% interval above— 
and elsewhere in this section—for reference.) The slabs have a subscale 
for thickness, 15 which is an orientation-aware aesthetic (if the distribu-
tions were mapped onto yDIST, thickness would act as a width instead of 
height) with a fixed baseline: values of 0 on the thickness scale always 
correspond to the base of the slab. This makes it appropriate for both 
probability densities and CDFs, both of which have a natural 0 point. 
In the above example, the density fM(x) is mapped onto thickness, 
creating a traditional density plot. Importantly, because the geometries 
use the same scale, both subscales have the same overall maximum 
thickness, which ensures that the area under both densities is equal.16 

This is the default output of stat_slab() in ggdist, which maps 
densities onto the thickness aesthetic. If desired, the mapping fM(x) → 
thickness can be translated to code in one of two ways: 

1. aes(thickness = after_stat(pdf)): This maps the pdf 
computed variable onto thickness. Computed variables in gg-
plot2 are calculated by stats and made accessible in aesthetic 
mappings via after_stat(). ggdist stats provide several com-
puted variables, including pdf, cdf, and .width. See Sec. 5. 

2. aes(thickness = !!p_(x)): This uses a small domain-
specific language for probability expressions I added to ggdist, 
and is intended to more closely mimic a mapping like p(x) → 
thickness in code. The !! pseudo-operator comes from the 
rlang meta-programming R package [20] and performs unquota-
tion [51]: it inserts the expression returned by p_(x), which in 
this case is after_stat(pdf), into the aes call.17 

Slab geometries have several useful properties designed to make it 
easy to create a variety of uncertainty visualizations. One important 
property is that the alpha (opacity), fill, and outline color aesthetics of 
the slabs can have data values mapped onto them at a sub-geometry 
level.18 This functionality, combined with the ability to map arbitrary 
distribution functions, means we can easily recreate a bunch of visual-
izations from the literature. The obvious first example would be a color 
gradient plot [25], by mapping density onto alpha: 

M → xDIST 

group → y 

fM(x) → alpha 

STAT = slab 
a

b

gr
ou

p

15Grammar of graphics aficionados might ask: why not use faceting instead of 
creating a new positional subscale? Experience has shown many situations where 
faceting doesn’t cut it: for example, a thickness subscale easily handles complex 
plot layouts with multiple estimates as grouped or even possibly-overlapping 
densities (even combined with layers showing raw data)—combinations difficult 
or impossible to create with facets. 

16This default is, most of the time, what you want, as it ensures each distribu-
tion integrates to 1. For exceptions to this rule, ggdist provides a normalize 
option and a scale_thickness_shared function which allow finer control 
over how thickness scales are shared across groups, panels, and geometries. 

17 I added this syntax when ggplot2 deprecated stat(), which was a synonym 
for after_stat(). This (1) made expressions with after_stat needlessly 
verbose and (2) replaced a declarative verb, stat—which indicates the type of 
expression but not when it is computed—with a procedural verb, after_stat. 
I feel that this change violates the declarative foundations of ggplot2, and the 
mini-DSL for probabilistic expressions is my small protest against it. 

18Just as an implementation note, this happens to be an incredible pain in the 
ass. See the description of geom_slab rendering in Sec. 5. 

This translates naturally to aes(alpha = !!p_(x)). Fine fine, but 
let’s get weird. Back in 2014, the inimitable Michaels Correll and 
Gleicher—arguing that error bars should be considered harmful [11]— 
proposed instead a visualization which has a solid bar inside the 95% 
interval and gradient tails that fade out beyond the interval, to emphasize 
the arbitrariness of the 95% confidence level. We can use the CDF to 
construct a function with these properties, and map it to alpha: 

−max 

 
|2FM(x) − 1| 

0.95 

 

→ alpha 

STAT = slab a

b

gr
ou

p

In ggdist this function is either: 
• -pmax(abs(2*after_stat(cdf) - 1), .95) or 

• -pmax(abs(2*!!Pr_(X <= x) - 1), .95), using the proba-
bility expression mini-DSL. 

Thus, ggdist can create this particularly weird uncertainty visualiza-
tion without breaking the bonds of its core abstraction. Importantly, the 
function I’ve used to construct the tails is not arbitrary; it is meaningful 
in itself: 1 − |2FM(x) − 1| is the consonance curve [2], which (in the 
frequentist interpretation) is the two-sided p-value for the null hypoth-
esis M = x. Horizontal slices through this curve at a height of α are 
(1 − α)% quantile intervals: 

1 − |2FM(x) − 1| → thickness 

STAT = slab 

0.05

0.50

95% CI

50% CI

0

1

1
-

2F
M
(x
)-

1

Fair enough, but let’s get weirder: in 2021, Helske et al [18], inspired 
by Correll and Gleicher, proposed combining their gradient tail with a 
violin plot. We can do that by adding back in the density-to-thickness 
mapping, and use the SIDE parameter, which specifies if the slab should 
be drawn on the top side (default), bottom side, or both. I’ll also adjust 
the tails to fade outside the 85% interval, since otherwise the fading is 
hard to see in the skinny tails of the violin: 

fM(x) → thickness 

−max 

 
|2FM(x) − 1| 

0.85 

 

→ alpha 

STAT = slab 

SIDE = both 
a

b

gr
ou

p

Okay fine, but let’s get even weirder: Helske et al [18] further suggested 
using discrete intervals for the colors instead of a gradient, to aid 
discriminability. We can do that too! A key feature of the slab stat is 
that it also computes intervals, and for each point along the slab, retains 
a column indicating the mass (γ) of the smallest requested interval 
containing that point.19 This means that we can integrate intervals 
directly into the slab by mapping γ onto alpha or fill: 

fM(x) → thickness 

γ → fill 
γ ∈ {0.5,0.8,0.95,1} 

STAT = slab 

SIDE = both 
a

b

gr
ou

p

Helske describes these violin-interval plots as “more challenging to cre-
ate”; ggdist supports them naturally through a combination of its core 

19This can also be done by discretizing the CDF, and that was the recom-
mended approach in earlier versions of ggdist; see the cut_cdf_qi function. 
However, that does not generalize to other kinds of intervals, like highest-density 
intervals—hence the approach described here. 

https://mjskay.github.io/ggdist/reference/cut_cdf_qi.html


features: making interval mass (γ) into data and allowing distribution 
functions and intervals to be mapped to aesthetics within a single slab. 

Another variation on violin plots is the raindrop plot of Barrowman 
and Myers [4], which maps log-density instead of density onto thickness 
inside a desired interval, say 95%: 

log fM(x) if γ ≤ .95 
∅ otherwise 

 

→ thickness 

STAT = slab 

SIDE = both a

b

gr
ou

p
The rationale here is that some distributional features, such as fat tails 
(kurtosis), can be easier to see in log-density than density [4]. In ggdist, 
the above spec is written: 

aes(thickness = ifelse(.width <= .95, log(!!p_(x)), NA)) + 
stat_slab(side = "both", normalize = "groups") 

Where normalize = "groups" is needed to tell the slab to normalize 
thickness on a per-group basis, as log-density does not have a natu-
ral zero point. Without this, the endpoints of the arcs defining the 
“raindrops” may not reach the thickness baseline. 

Another interesting2021 uncertainty visualization is Haber and 
Wilkinson’s [16] fuzzygram, i.e. fuzzy histogram. We can general-
ize it to a fuzzy bar chart. This chart type has what I would call a 
compelling generative story: an explanation for how the uncertainty 
encoding in the chart arises based on a generative process. Imagine we 
want to add uncertainty to a bar chart, and we have a distribution for the 
uncertainty in the value of each bar. Now say we sample a large number 
of semi-transparent bar charts from these distributions, and plot them 
all on top of each other. As the number of charts approaches ∞ and the 
opacity of any given chart goes to 0, the stack of overlapping bars for 
each value will begin to resemble the complementary CDF, 1 − F(x), 
of that distribution.22 That insight leads to the following encoding: 

1 − FM(x) → alpha 

STAT = slab 
a

b

gr
ou

p

I would describe this chart type as theoretically interesting but inter-
pretationally problematic. Anecdotally, without the overlaid reference 
point and interval, folks I show this to often do not correctly identify 
the mean, believing the darker parts of the bar are more likely (a not-
unreasonable misinterpretation).23 On the other hand, I do like the idea 
of generative stories in uncertainty visualization; e.g., I’ve used Plinko 
boards to depict uncertainty in election forecasts, which try to capital-
ize on a physical process—one that might intuitively24 feel random to 
people—to depict uncertainty through a form of sedimentation [23]. 

Another advantage to being able to map arbitrary data values onto 
slab aesthetics is that we can map the results of logical conditions onto 
those aesthetics. A common procedure in Bayesian estimation is to use 
regions of practical equivalence (ROPEs) [32]. Say you are interested in 
whether an estimate is “practically” equal to 0. You define a ROPE of 
0± some small effect size that you consider so close to 0 it is effectively 
indistinguishable from it. Then you ask: what is the probability the 
value is in the ROPE—i.e., practically equivalent to 0? We can visualize 
this probability by highlighting the ROPE on a density: 

20 AKA weird. 
21Yes, there are a lot of footnotes. No, I don’t care. 
22Assuming additive blending and opacities that sum to 1. 
23I don’t know if this is an example of within-the-bar bias [38] or not. 
24As this is an uncertainty visualization paper, I am professionally obligated 

to use “intuitive” at least once without defining it. 

fM(x) → thickness 

|x| < 2 → fill 
STAT = slab 

a

b

-2 0 2 4 6 8 10 12

gr
ou

p

|x| < 2
TRUE

FALSE

For each distribution, Pr(|X | < 2)—the probability the value is in the 
ROPE of ±2—is directly encoded by the proportion of the slab high-
lighted in blue. Because logical conditions can be mapped directly onto 
aesthetics, we can write aes(fill = after_stat(abs(x) < 2)) 
to create this chart. 

3.4 Dotplots 

These days, when every other uncertainty visualization paper is about 
frequency framing or discrete outcome displays—spaghetti plots [12, 
33] hypothetical outcome plots [22, 27], quantile dotplots [14, 31] and 
so on—I would be remiss to write a whole uncertainty visualization 
toolkit that can’t make one measly discrete outcome visualization.25 

The natural counterpart to the continuous encoding of the slab geometry 
is ggdist’s dots geometry, which can create Wilkinson dotplots [53] (for 
raw data)26 and quantile dotplots (to show uncertainty). 

Quantile dotplots were designed for uncertainty communication, and 
depict quantiles of a continuous distribution using a dotplot, to help 
the viewer reason about that distribution as a set of discrete possible 
outcomes [31]. Put another way, they discretize the density function, 
and allow reasoning about intervals through counting: e.g., in a 100-dot 
quantile dotplot, Pr(X < 2) translates to the question, how many dots 
out of 100 are less than 2? Continuing our example from the slab 
geometries, here are two quantile dotplots using 100 dots each: 

M → xDIST 

group → y 

STAT = dots 

QUANTILES = 100 a

b

-2 0 2 4 6 8 10

gr
ou

p

It is worth noting that ggplot2 has a dotplot geometry already, but that 
it is often awkward to use: as it uses a bin width specified by the user, 
there is no guarantee the dotplot fits inside the available space, often 
leading to dots running outside the plot region. By contrast, the dots 
geometry in ggdist uses numerical optimization to automatically find a 
shared bin width across all dotplots in the geometry that ensures they 
fit in the available space (notice I did not specify bin width above).27 

One property of dotplots is the opportunity to encode additional 
information in the dots themselves. For example, we could take ad-
vantage of Unicode support in the shape aesthetic (which determines 
how points are drawn) to use emoji to encode just how we feel about 
possible effect sizes in a distribution:28 

25Plus it would be a bit silly for me to develop a whole-ass visualization 
toolkit that can’t at least make quantile dotplots, since I came up with them in 
the first place [31]. 

26And minor variations thereof, like beeswarm plots, which can be created by 
setting SIDE = both and (optionally) adjusting the LAYOUT parameter; see the 
dotsinterval vignette for examples. 

27It also allows constraints on minimum and maximum bin width, and has 
various options for what to do if those constraints are exceeded, such as com-
pressing the layout so that dots may overlap. Anecdotally, automatic dotplot 
layout is one of the most popular features of ggdist, as it relieves the intense 
frustration of the endless tweaking necessary to get the dot size right. 

28This example was inspired by a tweet from Michael Correll suggesting 
effect sizes at VIS might be best described with a dotplot of poop emojis. I was 
delighted to find that ggdist could replicate it, but have spared the literature a 
faithful rendering of the poopmoji plot by opting for smiley faces here. 

https://presidential-plinko.com/
https://mjskay.github.io/ggdist/articles/dotsinterval.html
https://twitter.com/Birdbassador/status/916332327696875520
https://twitter.com/mjskay/status/1361366253424832512


M → xDIST 

x > 0 → shape 

STAT = dots 

QUANTILES = 50 

This plot does require us to specify what the shape scale function 
is. Abstractly, if we assume each aesthetic mapping foo has a scale 
function sfoo, we might define the scale function for shape as: 

sshape(x) : x → 

 
if x 
if ¬x 

In ggplot2 this is: 

scale_shape_manual(values = c("TRUE" = " ", "FALSE" = " ")) 

This may seem manifestly silly, but there’s something to the idea of 
making discrete outcomes more concrete—or at least more memorable— 
through graphic depictions, whether it be with emoji or other icons [17]. 
Since arbitrary fonts can be used with ggplot2 shapes, it is one avenue 
to creating more expressive dotplots: for example, inspired by a tweet 
from Gabe Bassett, I once used Alberto Cairo’s Wee People font [9] with 
geom_dots to create dotplots with anthropomorphic icons (Fig. 1C). 

3.5 Further examples 

My hope in the preceding sections was to whet your appetite for the 
expressive power of an uncertainty visualization grammar grounded in 
distributions, both of probability and of confidence. It was not intended 
as a tutorial (hence the paucity of code), but to give a taste for the 
underlying formalism of ggdist, how it can help us think about uncer-
tainty visualizations, and how it extends the grammar of graphics in a 
principled way to support fluid specification of a variety of uncertainty 
visualizations. For more examples, and specifically for examples with 
code, the interested reader can check out the vignettes in the ggdist 
documentation, which include a slew of examples not covered here, and 
the vignettes in the tidybayes documentation, which include examples 
of the use of ggdist with Bayesian models. 

4 USE IN THE WILD 

I sometimes wonder if the best way to validate visualization ideas is to 
deploy them into the world and wait to see what happens (as Munzner 
puts it: to see what users do of their own accord [36]). Yet, given the 
vagaries of research project timelines, most systems in VIS do not have 
this luxury—understandably so, lest we wait 10 years to graduate a 
PhD student. While there are examples of wildly successful systems 
that came out of visualization research (e.g. d3 [5], Vega-lite [44]), few 
systems have both the generality and reach of those exemplars. I think 
ggdist falls somewhere in the middle: it has been deployed for several 
years and enjoys a modest following. This gives me the opportunity to 
look at some coarse—but naturalistic—data on usage. 

ggdist currently sees about 14,000 downloads per month from 
CRAN [13] (up from just a few thousand on original launch in 2020, 
piggy-backing on tidybayes’ already-established community). Per 
Google Scholar, it has been cited 46 times (and tidybayes 236 times).29 

Its Github project has been starred ~620 times, putting it in the com-
pany of popular packages like cowplot (~640), ggalt (~630), and ggtext 
(~600) in the ggplot2 extension gallery. It has 169 issues in its Github 
issue tracker, not counting the 305 issues in tidybayes (many of which 
are ggdist-related issues from before ggdist and tidybayes split). Issues 
especially can be a sign of user engagement, because projects without 
broader engagement will have issues opened only by the author. To 
better understand that engagement, I exported all issues from ggdist 
(see Github or the supplement) and read back through them, engaging 
in a light tagging process based on what I recalled about those issues. 

29These are all citations of the software itself: neither package has had a paper 
written about it—yet. 

Of the 169 issues on Github, 79 (47%) were opened by someone 
other than me; there were 45 unique authors, excluding me. A further 
16 issues were opened by me in direct response to some user need, 
either flowing from a comment on another issue or from a conversation 
on another platform, often Twitter.30 Thus, just over half of all issues 
on ggdist’s tracker stem from user engagement—and from a variety of 
users. I roughly categorized issues (with some overlap) as follows: 

• 38%: A request that did (or would) result in a new feature. 
• 20%: A user asking for help, usually with a particular plot they 

are trying to create. 
• 17%: A bug. 
• 16%: Internal issues, such as code refactoring, cleanup, or TODOs. 
• 9%: Documentation. 

Currently, 34 issues (20%) remain open; only one of these is a bug 
(recently-reported). I have been fortunate to get a wide variety of 
engagement from users, which has lead to substantive improvement 
to ggdist. It is hard for me to summarize that engagement, but I’ll 
highlight two instances that had a salient impact on the overall design 
of ggdist, and which also carry some useful lessons for uncertainty 
visualization in the grammar of graphics. 

First, issue #83 involves an extensive discussion about how to refac-
tor ggdist to merge two classes of stats. Older versions of ggdist 
distinguished between stats designed to summarize distributions repre-
sented as vectors of samples (mapped onto x or y) and those designed 
to represent distribution objects (mapped onto a now-superceded dist 
aesthetic). My experience answering user issues led me to conclude 
that this distinction was confusing, so I opened this issue as an attempt 
to find a better solution. 

Two expert users joined in the discussion, and together we consid-
ered a variety of options, including (1) creating a new distribution 
subtype of x and y scales, similar to the way that continuous values, 
discrete values, dates, and times are handled by ggplot2; or (2) creating 
new aesthetics, like xDIST and yDIST. I prototyped an implementation of 
the former, realizing some shortcomings: distributions cannot easily be 
treated as subtypes of positional scales like continuous or discrete vari-
ables are, because distributions themselves have subtypes (like being 
continuous or discrete). After further discussion, I settled on the xDIST 

and yDIST design, which also makes it easy to intermix distributional 
objects with non-distributional objects along the same positional scale. 
This has proven to be a good choice, as I have received feedback from 
users that the new xDIST and yDIST aesthetics are much easier to use. 

Second, issue #19—to automatically detect discrete theoretical dis-
tributions and render them correctly as histograms—had been a long-
standing wishlist item. About 9 months after I opened it, prompted 
by a conversation on Twitter, a ggdist user posted some examples of 
plots they might be able to create if the issue were resolved. After a 
productive brainstorming about the design of discrete distribution dis-
plays, I implemented a feature in ggdist whereby histograms of discrete 
theoretical distributions are treated as a type of density plot: a stepped 
version of their probability mass function is available through the same 
mappings used for density functions of continuous distributions. This 
integrates discrete distributions into the same broader framework used 
to construct other visualization types in ggdist, meaning I was able 
to resolve the issue without creating new special cases for handling 
discrete distributions from the users’ perspective. 

Several other issues and features have stemmed from interactions 
of this kind, including interactions with other R package authors who 
make use of ggdist (18 other packages, not including tidybayes, depend 
on ggdist). Overall, I think ggdist has garnered a modest following, and 
I owe a great debt to community for contributing to its development. 

5 HOW DOES ALL THIS WORK, ANYWAY? 

Interested implementers might ask: whither the implementation de-
tails? The glib response, of course, is the ggdist source code, which is 

30I spend possibly too much time on #rstats Twitter/Mastodon/Bluesky 
engaging with data scientists around visualization problems. 

https://twitter.com/gdbassett/status/1519067260555513859?s=20
https://twitter.com/gdbassett/status/1519067260555513859?s=20
https://github.com/mjskay/uncertainty-examples/blob/master/weepeople_dotplots.md
https://mjskay.github.io/ggdist/
https://mjskay.github.io/ggdist/
https://mjskay.github.io/tidybayes/
https://exts.ggplot2.tidyverse.org/gallery/
https://github.com/mjskay/ggdist/issues
https://github.com/mjskay/ggdist/issues/83
https://github.com/mjskay/ggdist/issues/19
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Fig. 2: Flow of data through the visualization construction pipeline for a Helske [18]-style interval+density plot using ggdist::stat_slab. The 
layer, part of ggplot2, applies initial aesthetic mappings, translating input data into columns understood by stat_slab, which then constructs a 
larger data frame containing evaluations of distribution functions over an x grid for each distribution (the user can specify the grid size if needed; 
the default size is 501). Then, layer applies a second set of aesthetic mappings, and geom_slab uses the final data frame to construct the plot. 

well-tested (with near-100% test coverage), available on Github, and 
archived on Zenodo. The less glib response is: this section of the paper. 

Space being artificially scarce, 31 I’ll outline the data processing 
pipeline (Fig. 2) for just the slab statistic/geometry; the others follow 
similar principles. The basic implementation of slabs relies on two enti-
ties: stat_slab and geom_slab. Both of these objects are contained 
inside a ggplot2 layer, which amongst other things is responsible for 
applying aesthetic mappings and scale functions. For more details on 
how stats, geoms, and layers work in ggplot2, see Wickham [48]. 

To render a slab layer, first, the layer applies an initial set of 
aesthetic mappings (Fig. 2A), defining (at least) positional variables 
like x/y and distribution mappings like xDIST /yDIST . Then, stat_slab 
(Fig. 2B) evaluates the distributional functions (the density and CDF) 
and the intervals for each distribution in the xDIST (or yDIST ) aesthetic. 
It determines reasonable limits within which to draw each distribution 
(the exact limits if finite, and the 0.1% or 99.9% quantile by default if 
infinite) and creates a grid of x (or y) values to evaluate the functions at. 
Several special cases must be handled, including constant distributions 
(rendered as a point mass) and discrete distributions (as a histogram; 
see the end of Sec. 4). It then creates a data frame containing values of 
x, f (x) (in a column named pdf),32 F(x) (cdf), and γ (.width—the 
mass of the smallest interval containing x). These new columns are 
called computed variables in ggplot2. 

The layer then applies a second set of aesthetic mappings (Fig. 2C): 
those which depend on computed variables (as indicated by wrapping 
them in after_stat() or by using the probability expression mini-
DSL; see Footnote 17). Then, geom_slab (Fig. 2D) renders each slab 
using one of two algorithms, depending on its fill_type parameter: 
segments or gradient. Prior to R 4.1, the R graphics engine did 
not have proper gradient support, so the only available algorithm was 
segments (depicted in Fig. 2D), which sub-divides slabs into blocks 
of consecutive x (or y) values with the same appearance, interpolating 
x, y, and thickness values at cutpoints between blocks. This algorithm 
remains well-suited for fills with sharp cuts, such as ROPEs or small 
numbers of intervals. Alternatively, as of R 4.1, with proper gradient 
support in some R graphics output formats (e.g. SVG and PDF) [37], 
ggdist can output high-quality color gradients. The gradient algo-
rithm does this by rendering each slab as a polygon with a linear gra-
dient fill, using the x (or y) positions as control points on the gradient. 
This algorithm is best-suited to color gradient density plots. 

In support of the above pipeline, ggdist includes extensive utilities 
for manipulating distributions (some of which are exposed in its API), 
including functions for calculating various interval types, for detecting 
discrete and constant distributions, and for determining distribution 
limits. As the basic structure of the pipeline in ggplot2 should be 
similar to other grammar of graphics systems, my hope is that such 
systems could easily adopt a formalism like the one I’ve described, 

31Perhaps one day we’ll throw off the shackles of the IEEE. 
32This is also where corrections to the density must be made, depending on 

the x (or y) scale function; see Sec. 6.3. 

allowing them to support a variety of uncertainty visualizations through 
a distributional approach. 

6 REFLECTIONS AND LESSONS LEARNED 

6.1 Distributional notation makes uncertainty 
visualization much less annoying 

The core use of distributional visualization to enable a variety of uncer-
tainty visualization types was inspired by my work with Xiaoying Pu 
developing a Probabilistic Grammar of Graphics (PGOG) [40], which 
tackled the problem of specifying area and unit visualizations of condi-
tional probability distributions by integrating probability notation into 
the grammar of graphics. PGOG focused mainly on product plots [52], 
icon arrays [3], and dotplots [53], while ggdist expands the expres-
siveness of a distributional visualization syntax to cover visualization 
types that are not just functions of density and mass functions, but also 
functions of CDFs and intervals.33 

A key insight from working on both PGOG and ggdist is that bringing 
notation for probability distributions into the grammar of graphics is a 
powerful, expressive way to create visualizations of distributions and 
uncertainty. Iterating on that syntax through user feedback (Sec. 4) has 
lead to, I think, an approachable but flexible abstraction for uncertainty 
visualization. A crucial insight—that frequentist uncertainty visual-
ization can be brought into that same framework under the remit of 
confidence distributions [55]—frees us from multiple tyrannies: (1) 
endless battles about whether one should be a frequentist or Bayesian 
when you just want to get on with visualizing your uncertainty; (2) 
memorizing silly little formulas for this or that test statistic; (3) im-
plementing different, mutually incompatible, and wholly brittle code 
paths for visualizing uncertainty under different statistical paradigms. 
A better world is possible! 

6.2 Balancing abstraction and learnability 

A continual source of tension in the design of ggdist has been the 
balance between abstraction and learnability. At its base, ggdist actually 
only has three geometries, all of which are composite meta-geometries: 
(1) a slabinterval geometry, consisting of a slab, point, and interval; 
(2) a lineribbon geometry, consisting of a line and ribbon; and (3) a 
dotsinterval geometry, consisting of dots, a point, and an interval. All 
other geometries in ggdist are shortcut geometries, constructed using 
some combination of default parameters and/or aesthetic mappings 
applied to one of those three meta-geometries. 

In principle, ggdist could have only those three geometries; in prac-
tice, this would not be as usable. First, certain combinations of options 

33On the other hand, ggdist still does not implement the conditional probabil-
ity syntax we had in PGOG—though the mini-DSL for probability expressions 
was inspired by it—and it does not support product plots or stacked densities. 
In a way, ggdist has to be more conservative at integrating crazier ideas from 
research since it has actual users; also, while the conditional syntax in PGOG 

is elegant for specifying a general class of probabilistic visualizations, its use 
cases for uncertainty specifically are a little less clear to me. So we’ll see. 

https://github.com/mjskay/ggdist
https://doi.org/10.5281/zenodo.3879620


are often used together to create useful geometries; shortcuts for these 
save time. Second, many users will not delve into the depths of ggdist’s 
options to learn how to create each combination they need, so short-
cuts aid learnability and discoverability. ggdist’s shortcut geometries 
include ones for intervals, eye plots (mirrored slabs with a pointinter-
val), complementary CDF plots, and gradient plots (See Fig. 1A). I 
have found users appreciate these shortcuts, and often ask for more: a 
raincloud plot shortcut (Fig. 1E) is a common request, for example.34 

I have found it productive to hold off on implementing every re-
quested shortcut. I usually wait until I can figure out how solving a 
particular problem (e.g., creating Helske-esque violin-interval plots) 
can be done within the distributional framework in a way that ex-
pands the expressiveness of ggdist (e.g., allowing interval masses to 
be mapped onto slab aesthetics). Meanwhile, extensive documentation 
and examples tempers the need for quite so many explicit shortcuts; an 
easy-to-adapt example in the documentation acts as a sort of shortcut 
itself. ggdist has extensive long-form vignettes that showcase myriad 
plot types with simple examples. This tension between abstraction 
and learnability is common to grammar of graphics toolkits: if the 
“purest” form of the grammar of graphics has no chart types at all (per 
Wilkinson [54]), but designers often think in terms of chart types [41], 
how do we best meet them in the middle? 

6.3 Uncertainty visualization is tightly coupled 
with grammar of graphics scales 

As an earlier footnote alluded,13 we must be very careful when vi-
sualizing density functions. A naïve implementation of stat_slab 
might simply pass x values through the density function of the distri-
bution mapped to xDIST . However, if a non-linear scale transformation 
is applied, this will result in incorrect densities. This is because, for a 
random variable Y = g(X), the density function fY is: 

fY (y) = fX 
 
g −1(y) 


· 
 g −1 ′ (y) 

  
In other words, if we have a random variable X that we transform via 
the function g to get Y , we must adjust its density values by the factor 
|g−1 ′ (y)|, the absolute value of the derivative of the inverse of g. For ex-
ample, if X is drawn from a log-Normal(0,1) distribution, we could plot 
this distribution in base ggplot2 by using ggplot2::stat_function 
combined with R’s built-in log-Normal density function, dlnorm: 

ggplot() + 
stat_function( 
fun = \(x) dlnorm(x, 0, 1) 

) 

median

0 1 2 3 4 5 6 7 8 9 10

If we plot this on a log scale, i.e. plot Y = log(X), we should hope to 
see a Gaussian density with a median of 100 = 1 (since medians are 
preserved under transformation). However, because ggplot2 has no 
way to know this function is a density (nor if it did, does it know the 
derivative of the scale function), the resulting density will be incorrect: 

ggplot() + 
stat_function( 
fun = \(x) dlnorm(x, 0, 1) 

) + 
scale_x_log10() 

median should
be here???

0.01 0.1 1 10 100

The line at 1 does not divide the area into two regions with equal mass, 
as it would if it were the median. I have no doubt this has led to 
errors amongst ggplot2 users. 35 Fortunately, ggdist does know how to 

34A request I am unlikely to fulfill, as the complexity of specifying options 
and aesthetics for such a bloated composite geometry—with point, interval, slab, 
and dots sub-geometries!—means the shortcut is unlikely to be much easier to 
use than just specifying a slabinterval alongside a dots geometry. 

35For example, ggplot2 issue #4783 is written by a user asking why a theoreti-
cal density and samples from a distribution do not line up under transformation— 
a less attentive user may never have noticed. 

correctly transform densities. It uses a combination of symbolic and (as 
a fallback) numerical methods to calculate derivatives of ggplot2 scale 
transformations to adjust densities.36 As a result, we can visualize a 
log-transformed log-Normal density and get the correct result: 

ggplot() + 
aes(xdist = dist_lognormal(0,1)) + 
stat_slab() + 
scale_x_log10() 

median is here :)

0.01 0.1 1 10 100

This emphasizes the need for uncertainty visualization systems to be 
scale-aware: it is not possible to comprehensively implement uncer-
tainty visualization purely as a data pre-processing step.37 This is one 
example of what Xiaoying Pu and I termed a tight coupling in a study 
of ggplot2 users [41]: data pre-processing (calculating the density) is 
tightly coupled with the visualization specification (the scale transfor-
mation), and these must be kept in sync. Moving the calculation of 
densities into the visualization specification itself is one way to ensure 
this, eliminating a whole class of potential errors. 

6.4 Where to go from here 

I would hardly deign to pretend ggdist has solved all of uncertainty 
visualization. In truth, it’s stuck to a well-defined corner of it: 
largely univariate uncertainty visualization (although lineribbon sup-
ports some multivariate chart types: besides being able to visualize 
many conditional distributions at once as ribbons, when used with the 
curve_interval function lineribbons can visualize joint uncertainty 
bands in the style of functional boxplots [26, 35, 46]).38 Obvious ex-
tensions include two-dimensional densities, for which support exists 
in ggplot2, but that support is not built around the same framework 
of distributional functions and objects that ggdist is. Thus, ripe for 
integration and extension. 

Thinking further afield, there are other types of uncertainty visualiza-
tions not well-supported in ggdist, or which ggdist’s abstractions are not 
relevant to. One obvious example is spaghetti plots [12, 33]—though, 
if you already have a joint sample from a distribution of paths in a 
long-format data frame, ggplot2 makes it trivial to construct these plots. 
Similarly, animated hypothetical outcome plots (HOPs) [22, 27] are 
straightforward to construct using ggplot2 with the gganimate package. 
A more interesting question might be: if one designed a new uncertainty 
visualization grammar from the ground up to support all of the visual-
izations in ggdist and PGOG, plus static sample-based visualizations 
like spaghetti plots and animated sample-based HOPs, what would it 
look like? Can a coherent framework bring all of these ideas together, 
and suggest new ideas too? I am hopeful it can. 

7 CONCLUSION 

ggdist has been a six-year journey in implementing a distributional, 
petty-statistics-camp-agnostic approach to uncertainty visualization in 
the grammar of graphics. While there remain many interesting future 
challenges to integrating further classes of uncertainty visualizations 
under one umbrella, the flexibility and expressiveness of ggdist thus far 
demonstrates the power of its underlying abstractions. Taking a step 
back, it also shows the value of continuing to push more aspects of vi-
sualization specification into the formal description of the visualization 
itself, both by enabling a wider range of visualization types to be easily 
created and by reducing the potential for certain classes of errors.39 

36Specifically, ggdist applies R’s built-in D [42] function to get the symbolic 
derivative of the expression defining the scale function and, if that fails, uses 
numDeriv::jacobian [15]. In the future, if my pull request #341 to the scales 
package is accepted, derivatives of scale functions will be offloaded into the 
guts of ggplot2 and simultaneously be made more reliable. 

37It also suggests that grammar of graphics systems should implement deriva-
tives as part of their scale transformation functions. 

38See examples at the end of the lineribbon vignette. 
39Potential we also saw in reducing errors with incorrect normalization of con-

ditional probability distributions in PGOG [40] or in keeping data transformation 
and visualization specification code in sync more generally in ggplot2 [41]. 

https://mjskay.github.io/ggdist/articles/
https://github.com/tidyverse/ggplot2/issues/4783
https://github.com/r-lib/scales/pull/341
https://mjskay.github.io/ggdist/articles/lineribbon.html#curve-boxplots-aka-lineribbons-with-joint-intervals-or-curvewise-intervals


SUPPLEMENTAL MATERIALS 

Supplemental materials, released under a CC-BY 4.0 license, are avail-
able on GitHub (github.com/mjskay/ggdist-paper) and archived on Zen-
odo (doi:10.5281/zenodo.7770984). Materials include: (1) an RMark-
down file that generates the figures in the paper; (2) generated figure 
images; (3) a tagged archive of ggdist Github issues; (4) an RMark-
down file calculating some descriptive statistics of ggdist Github isses; 
and (5) the full source of this paper. 

The full source of ggdist, released under a GPL 3.0 license, is 
available on GitHub (github.com/mjskay/ggdist) and archived on Zen-
odo (doi:10.5281/zenodo.3879620). ggdist may also be installed from 
CRAN [21] via the R command install.packages("ggdist"). 
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