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Abstract—Understanding how helpful a visualization is from experimental results is difficult because the observed performance is
confounded with aspects of the study design, such as how useful the information that is visualized is for the task. We develop a
rational agent framework for designing and interpreting visualization experiments. Our framework conceives two experiments with
the same setup: one with behavioral agents (human subjects), and the other one with a hypothetical rational agent. A visualization
is evaluated by comparing the expected performance of behavioral agents to that of a rational agent under different assumptions.
Using recent visualization decision studies from the literature, we demonstrate how the framework can be used to pre-experimentally
evaluate the experiment design by bounding the expected improvement in performance from having access to visualizations, and
post-experimentally to deconfound errors of information extraction from errors of optimization, among other analyses.

Index Terms—Evaluation, decision-making, rational agent, scoring rule

1 INTRODUCTION

Intuition-driven design guidelines for designing data visualizations are
increasingly being replaced with data-driven recommendations based
on visualization studies. To assess the extent to which modern empirical
study of visualizations does in fact capture the value of visualization,
however, requires accounting for the design of the experimental task
and conditions for study. To understand how well people performed
with a visualization in a controlled study, or how important an observed
difference in performance between two visualization is, we must under-
stand what sorts of performance differences an experimental scenario
admits.

However, it can be difficult in designing a study to predict how the
choices one makes impact the experiment’s capability for capturing
meaningful performance differences. We can liken the experiment
design process to setting various "knobs" that will impact the difficulty
of the task, the extent to which participants are motivated to study the
visualization to complete the task, and the best achievable performance
on the task. These knobs include the input distributions used to gener-
ate stimuli, the allocation of these inputs across participants, and the
payoff function that will reward participants for making good deci-
sions. More broadly applicable experiment design decisions include
how many participants to target and how to compare key interventions
(e.g., between-subjects, pre-post design, etc.).

While it is difficult to define "optimal" choices for these myriad de-
cisions, the results of a study can still provide useful knowledge about
visualization performance when properly conditioned on the potential
the study had, whether to show differences between visualization strate-
gies or to evaluate a specific strategy. For example, a canonical form of
conditioning used to assess a study’s potential to detect an effect such as
a difference between treatments ensures that the study design provides
sufficient statistical power to detect an effect of the hypothesized size.

More generally, we would like an approach to interpreting the results
of a study comparing visualization strategies that helps a reader answer
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questions like the following:

• How hard is the task? For example, how well could we expect
someone do without consulting the visualized data at all?

• Considering the study design alone, how incentivized would we
expect participants to be to use the visualized information?

• To what extent are observed differences in performance likely to
stem from informational asymmetries in the visualizations (e.g.,
visualizing only a mean versus a more expressive depiction of a
distribution)?

• To what extent is sub-optimal performance with a visualization due
to participants not differentiating the task-relevant information it
provides, versus not being able to properly use the information they
gained to choose a response?

Our inability to answer the above questions from many empirical
research papers highlight how visualization research lacks clear com-
parison points, or performance benchmarks that can aid the design
and interpretation of controlled visualization experiments. Answering
such questions contextualizes what was learned from observing the
performance of any single visualization in absolute terms defined on
the experiment design. Without clear benchmarks, readers and authors
alike tend to draw conclusions from coarse, relative information like
visualization performance rankings. A good set of benchmarks are nec-
essary to assess the fitness of the experiment design itself for studying
a given visualization research question.

We contribute a rational agent framework based on quantifying the
value of information to a judgment or decision problem. Our framework
defines benchmark measures representing attainable performance given
a visualization experiment design. Benchmarks defined in the rational
agent framework can be applied before an experiment is run to vet
how capable the experiment design is of showing important differences
between visualizations and of resolving good performance with any
single visualization. Applying the framework after an experiment pro-
vides further insight into behavioral agent performance, by enabling the
researcher to deconfound sources of erroneous answers. For example,
agents might be unable to extract the information from the visualization,
or unable to optimally translate the information to a decision.

We apply the framework to two well-regarded visualization exper-
iments from the literature: one on the impact of visualization design
on effect size judgments and decisions [19] and one on the impact of
visualization design on transit decisions [6]. In both cases, we identify
1) ways in which the experiment design could have been improved
(through different measures or payoff functions) and 2) sources of loss
that help explain behavioral results but were not fully addressed in the
original presentations of results.
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2 RELATED WORK

2.1 Visualization Evaluation
Our work aims to improve evaluation methods in visualization. Previ-
ously, researchers have contributed overviews of qualitative and quanti-
tative approaches [16, 25, 33] and conceptual models and approaches
for ensuring that one selects an evaluation that is appropriate for a given
task, context, or contribution type [15, 28, 30].

Whenever visualizations are meant to support inference in addition
to merely describing an observed dataset [12], the evaluation approach
should define a standard for assessing the quality of the inference. How-
ever, several recent surveys of evaluative studies for visualizations [5]
and uncertainty visualizations specifically [13, 23] suggest that the use
of well-defined judgment and decision tasks is rare. Instead, a majority
of uncertainty visualization studies rely on measures of perceptual accu-
racy and/or self-reports of satisfaction, confidence, or other properties
that may have an unclear or even opposite relationship with rational use
of the information for the problem at hand [13, 23]. This has led some
researchers to advocate for adopting Bayesian inference as a benchmark
against which to compare reactions to visualizations [12,20,22]. These
models use the deviation of human performance from the Bayesian
ideal as a means of better understanding patterns in human judgments,
and for inspiring new design approaches [12, 18]. While human judg-
ments need not be perfectly Bayesian for such approaches to lead to
a better understanding of how people use visualizations, if there is
no correspondence between human behavior and the Bayesian agent’s
behavior, design suggestions aimed at aligning the human behavior
with the Bayesian’s them may not be effective. In contrast to prior ap-
plications of Bayesian theory to visualization, the value of the rational
agent framework does not depend on actual humans acting like rational
agents. Our work is related to ideal observer analysis, used in psy-
chophysics, which theoretically upperbounds behavioral performance
by a Bayesian agent in the same situation in order to reason about
factors influencing human perception [24]. However, our framework
defines the baseline performance in addition to the upperbound, and
hence provides a “scale” for interpreting behavioral performance and a
means to separate sources of loss in decision-making.

2.2 Interpreting experiment results
Our work is related to recent integrative modeling [10] approaches to
benchmarking the irreducible variance in data used for modeling [1, 7].
For example, the explanatory power of theories embedded in behavioral
models can be assessed by quantifying irreducible error inherent in an
experimental task [7], grounding a perspective for how well a model
performs. We take a similar approach, but with the goal of benchmark-
ing how well humans can be expected to do under different assumptions
when faced with an experimental task.

3 THE RATIONAL AGENT FRAMEWORK

The value of the information presented in a visualization can be quanti-
fied by how much it improves the expected payoff in a decision problem.
The visualized information reduces uncertainty about a payoff-relevant
state, thus helping the agent make better decisions. The value of the
visualization can be understood as the expected improvement in payoff
when an agent has access to the visualization.

Our framework conceives two studies, an experimental study and
a theoretical one. The first occurs in the real world with behavioral
participants, and the other is based on an analysis of a hypothetical
rational world with a rational agent participant. We assume an ex-
periment design as input, including information on how stimuli will
be generated, what decisions or beliefs participants will report, and
how their responses will be incentivized and scored. If the experiment
has already been conducted, the raw or modeled behavioral results
are also part of the input. The two studies assume exactly the same
decision problem and data-generating process, enabling analysis of an
experiment both before and after it is run.

Below we establish preliminaries, including what constitutes a vi-
sualization experiment in our framework, the conceptual devices of
the rational and behavioral agent, and how they are used in pre- and

Payoff-relevant state θ ∈ Θ

Signal (visualization) v ∈V
Data generating process π ∈ ∆(V ×Θ)

Agent’s action a ∈ A
Scoring rule (payoff) S : A×Θ → R

Table 1: Notation for defining a visualization experiment (assuming a
single visualization strategy).

post-experimental analyses. We apply these definitions to an example
forecast visualization experiment.

3.1 Decision Problems

Decision theory provides a natural framework for understanding an
agent’s task in a visualization study. A decision problem starts by
assuming a state space Θ that describes the set of finite values (sce-
narios) that an uncertain state can take. Each possible state θ ∈ Θ

is a description of reality, and only one may hold at a time. A data
generating model defines a distribution over scenarios p ∈ ∆(Θ). In
many experiments the distribution over states is uniform.

A decision problem is defined by a distribution over states p ∈ ∆(Θ)
an action space A and a scoring rule S : A×Θ →R that maps the action
and state to a quality or payoff. Given a distribution p and scoring rule
S denote the expected score of an action by S(a, p) = Eθ∼p[S(a,θ)].
The optimal decision for a distribution p is the one with the highest
expected quality, i.e. a∗ = argmaxa∈A S(a, p).

In decision problems corresponding to prediction tasks, the action
space is a probabilistic belief over the state space, i.e., A = ∆(Θ).
For such problems, a scoring rule is said to be proper if the optimal
action is to predict the true distribution, i.e., p = argmaxa∈A S(a, p).
Squared loss, a.k.a., the quadratic scoring rule, is an example of a
proper scoring rule that measures the accuracy of beliefs. For any
scoring rule S : A×Θ → R there is an equivalent proper scoring rule
Ŝ : ∆(Θ)×Θ → R defined by playing the optimal action under the
reported belief. Formally,

Ŝ(p,θ) = S(argmaxa∈A S(a, p),θ). (1)

Example We illustrate the framework with a hypothetical weather
forecast experiment, loosely inspired by [29]. Imagine a researcher who
wants to compare people’s performance in making a decision using
several visualization strategies for presenting a predicted daily low
temperature with uncertainty (i.e., a temperature distribution). They
define a task in which the participant must decide whether to salt
the parking lot or not, i.e., by selecting action a from action space
A = {0 = no salt;1 = salt}. They plan to score the participants for each
decision task by simulating a temperature according to the predicted
distribution. The payoff relevant state θ is from state space Θ = {0 =
not freezing,1 = freezing}, corresponding to whether the simulated
temperature was above or below the freezing point. Given the state
space Θ = {0 = not freezing;1 = freezing} the experimenter endows
the following payoff function as a scoring rule:

S(a,θ) =


0 if a = 0,θ = 0 no salt, not freezing

−100 if a = 0,θ = 1 no salt, freezing
−10 if a = 1,θ = 0 salt, not freezing

0 if a = 1,θ = 1 salt, freezing

(2)

3.2 Information Structures and Visualizations

In a visualization experiment, the subject is given a stimulus in the
form of a visualization that is associated with the state. Since the
visualization is associated with the state, if the subject understands the
visualization well, he can improve his performance at the decision task.

To gauge the performance of a behavioral subject in such a task we
introduce the rational agent who faces the same task with the same
stimulus. Formally, a visualization strategy induces an information
structure that is given by a joint distribution π ∈ ∆(V ×Θ) over signals
v ∈V (corresponding to the visualization) and states θ ∈ Θ. This joint
distribution assigns to each realization (v,θ) ∈ V ×Θ a probability
denoted π(v,θ). The joint distribution allows us to calculate expected
performance in the experiment. In the data generating process, there



may be a fine-grained state x ∈ X which determines the payoff-relevant
state θ , i.e. there exists a function θ̂ that θ = θ̂(x).

Our framework allows us to study the performance of a single vi-
sualization strategy, or to compare a set of k visualization strategies,
inducing information structures π1,π2, . . . ,πk, respectively.

Example The experimenter decides to evaluate a few different
visualization strategies that can be used to present a weather forecast
(Figure 1) for the decision problem they designed (Section 3.1). One
shows only the expected daily low temperature. Another shows the
expected low plus an interval expressing a 95% confidence interval on
the point estimate. Two others depict the probability distribution over
possible low temperatures as a gradient plot (plotting probability as
opacity) and animated hypothetical outcome plot (HOPs) [14] (plotting
probability as frequency).
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Fig. 1: Example visualizations for a hypothetical weather forecast task.

They define a data-generating process as follows: the daily low
temperature is generated from a Gaussian distribution N(µ,σ2) with a
deterministic mean µ = 5◦C and standard deviation σ . The standard
deviation σ is uniformly drawn from {2,3,4,5}.

For visualization strategies that depict uncertainty (CI, gradient,
HOPs), the signal v is (µ,σ); for the visualization of the mean, the
signal v is deterministically µ .

The data-generating process results in a joint distribution π ∈ ∆(V ×
Θ) on signal and state for the three non-trivial visualization strategies.
The joint distribution allocates probability to getting a decision task for
different combinations of θ and σ in Section 3.2.

visualization v for σ σ = 2 σ = 3 σ = 4 σ = 5
θ = 0 0.24845 0.23805 0.2236 0.2103
θ = 1 0.00155 0.01195 0.0264 0.0397

Table 2: The joint distribution π ∈ ∆(V ×Θ) on signal and state for
the three non-trivial visualization strategies in the weather forecasting
experiment.

The notation for the weather forecasting experiment is summarized
in Table 3.

Payoff-relevant state θ ∈ {0,1}
= {not freezing, freezing}

Data generating model • fine-grained state: daily low temperature
x ∼ N(µ,σ 2); θ = θ̂(x) = 1[x ≤ 0]
Pr[θ = 1] = Pr[t ≤ 0];
µ = 5 fixed;
σ uniformly from {2,3,4,5}.

• equivalently,
Pr[θ = 1] uniformly from

0.62%,4.78%,10.56%,15.87%.
Agent’s action a ∈ {0 = no salt,1 = salt}

Signal (visualization) vvis ∈V vis, vis = visualization strategies
vis ∈ {mean, CI, gradient, HOPs}

of temperature
Scoring rule (payoff) S(a,θ) (see Eq. (2))

Table 3: Notation for the freezing-salting example.
The agent’s belief about the freezing state θ can be represented by

the probability p = Pr[θ = 1] of freezing. The corresponding proper
scoring rule is

Ŝ(p,θ) =


0 if p ≤ 0.1,θ = 0 no salt, not freezing

−100 if p ≤ 0.1,θ = 1 no salt, freezing
−10 if p > 0.1,θ = 0 salt, not freezing

0 if p > 0.1,θ = 1 salt, freezing

(3)

3.3 The Rational Agent: Baseline, Benchmark, and Infor-
mation Value

Two key constructs in our analysis of a behavioral agent are the de-
cisions of a rational agent without the visualization and with the vi-
sualization. In each case, the rational agent makes perfect use of the
information available to them. In the case where they have access to
a visualization, they do so by Bayesian updating from the joint distri-
bution π to a posterior belief. Here we define the rational agent for a
single visualization strategy.

The rational agent’s belief prior to the stimulus is their prior distri-
bution:

p(θ) = ∑v∈V π(v,θ). (4)
The rational agent’s belief after the stimulus is their posterior distribu-
tion. The posterior belief is defined by following Bayes rule:

q(θ) = π(θ |v) = π(v,θ)
∑θ∈Θ π(v,θ) . (5)

These two constructs induce a performance of the rational agent
which can be compared to the performance of the behavioral agent. For
a scoring rule S and information structure π , denote the correspond-
ing proper scoring rule by Ŝ, prior distribution by p, and posterior
distribution by π(θ |v). Consider:

rational baseline: The rational baseline is the performance of the
rational agent without access to the signal, i.e., with only the prior
belief.

R∅ = Eθ∼p[Ŝ(p,θ)]. (6)

rational benchmark (visualization optimal) The rational bench-
mark is the performance of the rational agent with access to
the signal, i.e., with the posterior belief.

RV = E(v,θ)∼π[Ŝ(π(θ |v),θ)]. (7)
The expected payoff of any behavioral agent with the same visu-
alization is below the rational benchmark.

value of information: The difference between the rational benchmark
and the rational baseline quantifies the value of the information
being visualized in the context of the scoring rule:

∆ = RV −R∅.

The value of information provides a unit of difference in expected
score for comparing behavioral performance.

3.3.1 Multiple Visualization Strategies
When the framework is applied to multiple visualization strategies,
the visualization optimal may vary. To compare multiple visualiza-
tion strategies, the rational benchmark is defined with regards to the
most helpful visualization. Suppose the experimenter is comparing a
set of k different visualization strategies, with information structures
π1, . . . ,πk.

visualization optimal: The visualization optimal is the performance
of the rational agent with access to the signal, i.e., with the poste-
rior belief.

Rk
V = E(v,θ)∼πk[Ŝ(πk(θ |v),θ)]. (8)

The expected payoff of any behavioral agent with the same visu-
alization is below the visualization optimal.

rational benchmark: Given multiple visualization strategies, the ra-
tional benchmark is instead defined as the best performance of the
rational agent across different visualization strategies. Suppose
the experimenter aims to compare visualization formats 1 . . .k, in-
ducing information structures π1, . . . ,πk. The rational benchmark
is defined as

RR
V = maxi E(v,θ)∼π i[Ŝ(π i(θ |v),θ)]. (9)

In addition to behavioral losses due to not properly receiving infor-
mation or not optimizing one’s decision (discussed below), we define
an information loss induced by information asymmetry across visual-
izations, quantifying the extent to which visualization strategies provide
varying amounts of information about the uncertain state.



information loss The information loss captures the loss of informa-
tion when data is summarized into a less informative visualization.
We measure the information loss for a given visualization strategy
by the difference (RR

V −RV )/∆ between the rational agent bench-
mark (the rational best performance across visualizations) and the
visualization optimal for a particular visualization strategy.

Example We pre-experimentally analyze the hypothetical weather
forecast experiment.

We first calculate the prior and posterior distributions of the rational
agent. Note that a distribution p on a binary state space Θ = {0,1} can
be fully described by the probability that the binary state is θ = 1
(freezing). From Eq. (4) we have the prior probability of freez-
ing p = 0.0796. and the posterior probabilities are Pr[θ = 1|σ ] =
0.62%,4.78%,10.56%,15.87%, relatively for σ = 2,3,4,5, as given
in Table 3.

Figure 2 depicts the expected score of the agent for both no-salt and
salt actions as a function of her belief p, as specified in Equation (2).
Notice that if the belief is certainty either 0 or 1, then the payoff is
given explicitly by the scoring rule. For an uncertain belief p ∈ (0,1)
between 0 and 1 the payoff is given by linearly interpolating between
certain beliefs, i.e., the payoff is the expected value of the action over
the belief. Lines correspond to the no-salt and salt action. The optimal
action for each posterior belief – i.e., the action taken by the rational
agent – can be read off as well. For each signal, we find its posterior
on the horizontal axis, and evaluate which of the two actions give a
higher payoff and take that one. From this analysis it is clear that the
no-salt action a = 0 is taken on the lower two signals {2,3} and the
salt action a = 1 is taken on the higher two signals {4,5}. The payoff
lines cross at p = 0.1 where the decision-maker is indifferent between
no-salt and salt actions, so the proper scoring rule in Equation (3) sets
belief threshold at p = 0.1.

The rational agent framework gives the following quantities:
rational baseline: R∅ =−7.96.

The prior p = 0.08 is optimized at no-salt and gives an expected
payoff of −7.96.

visualization optimal: RCI
V = Rgradient

V = RHOPs
V = −5.69; Rmean

V =
−7.96.

In CI, gradient, and HOPs, each signal arises with probability 1/4
and the average of the optimal actions under the induced posteri-
ors (read off Figure 2) gives RV =−5.69. For the visualization
of the mean, the rational agent has only the prior information and
obtains Rmean

V = R∅ =−7.59.

rational benchmark: RR
V = maxvis Rvis

V =−5.69, the best achievable
across visualizations.

value of information: ∆ = RR
V −R∅ = 2.27.

Suppose the experimenter sets the conversion rule f (r) = $1 +
$0.01r from score r to real dollars as follows: an agent gains a fixed
$1 for completing each trial, plus a $0.01 in real dollars for each point
earned in scoring rule space. The conversion rule is set such that an
agent is guaranteed to obtain a positive payment. We calculate the
expected real payments to a rational agent in Table 4. If the goal is to
incentivize an agent to consult the visualization, we would conclude
that the incentive is badly designed because it is a very small fraction
of the amount expected without looking at the visualizations (<3%).

f (R∅) f (RV ) ∆ f ∆ f / f (R∅)

$0.920 $0.943 $0.023 2.5%

Table 4: f (R∅) shows the expected payment to a rational agent without
the visualization, f (RV ) shows the expected payment to a rational
agent who reads the visualization, while ∆ f = f (RV )− f (R∅) is the
incentive to consult the visualization.

The information loss can also be calculated pre-experimentally.
information loss CI, gradient, and HOPs: (RR

V −RV )/∆ = 0. Mean:
(RR

V −Rmean
V )/∆ = 100%.
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Fig. 2: Score S(a, p) as a function of belief p ∈ [0,1] as probability of
freezing.

From this pre-experiment analysis, the experimenter should also
expect the mean visualization to behave badly in payoff compared to
the interval, because the mean has a information loss of 100%, i.e. it is
not informative for the decision task.

3.4 The Behavioral Agent and Performance Analysis

The behavioral agent faces the same task as the rational agent upon
seeing a visualization and choosing an action a from an action space A.
Once the experiment has been conducted the collected data implies an
empirical joint distribution πB ∈ ∆(A×Θ) over the behavioral actions
and the states.

Experimenters can estimate the following measures to quantify be-
havioral performance:
behavioral score: The behavioral score is the expected score of the

behavioral agent.
B = E(a,θ)∼πB[S(a,θ)]. (10)

behavioral value of information: The behavioral value of informa-
tion is the difference between the behavioral score and the rational
baseline (if non-negative).

∆
B = max(B−R∅,0).

The behavioral score B is always below the rational benchmark RV
and can be either above or below the rational baseline R∅. Impor-
tantly, if the behavioral score is below the rational baseline, then from
the scores alone we cannot reject the hypothesis that the behavioral
agent got no useful information from the visualization. Even with no
information, the rational agent performs better. On the other hand, if
the behavioral score exceeds the rational baseline, then the behavioral
agent systematically performs better than the rational agent with no
information and, therefore, must be getting some useful information
from the visualization.

To understand how much useful information the behavioral agent is
able to get from the visualization, we consider the ratio of the value of
information to the behavioral value of information, i.e., ∆B/∆ ∈ [0,1].
If this ratio is large, i.e., close to one, then there is little room to
improve the amount of effective communication of the visualization for
the decision problem. If this ratio is small, then there is theoretically
an opportunity to improve communication.

3.5 Calibrated Behavior and Fine-grained Analysis

The source of behavioral errors can be identified by observing that
the joint distribution of behavior and state may contain information
that the agent was not able to appropriately act on. In other words,
the correlation between behavior and state captures information that
is not necessarily reflected by the payoff. The agent’s behavior may
not be calibrated. The agent’s behavior is calibrated if action a ∈ A is
the optimal action on the conditional distribution over states when that
action a was taken. The following calibrated behavioral score is always
between the rational baseline and the rational benchmark:

calibrated behavioral score The calibrated behavioral score is the
score of a rational agent on information structure πB.

RB = E(a,θ)∼πB[Ŝ(πB(θ |a),θ)]. (11)

The calibrated behavioral agent performance allows for different
behavioral errors to be distinguished, and the information conveyed
by the visualization to be assessed even when the behavioral score is



below the rational baseline. We identify two sources of loss for the
behavioral agent:

belief loss The belief loss captures the loss in score as a result of
the agent not responding with different beliefs after looking at
visualizations of informationally distinct stimuli (e.g., different
proportions, probabilities, etc.). We measure the belief loss by
calibrating the behavioral decisions and responses. The difference
(RV −RB)/∆ quantifies the magnitude to which the agent is not
able to differentiate between stimuli.

optimization loss Upon viewing a visualization the rational agent
would update their beliefs and then choose the optimal action
under those beliefs. The optimization loss captures the loss from
the agent not properly updating their beliefs about the uncertain
state and making the optimal decision given their beliefs. The dif-
ference (RB −B)/∆ quantifies the magnitude to which the agent
is unable to use the information they have obtained.

3.6 Applying the Framework to Visualization Studies
3.6.1 Scope: What is a decision experiment?
The rational agent framework can be applied widely across empirical
visualization studies. To apply the framework the experiment task
needs to involve the visualization of states that can take on multiple
values and under which the rational agent’s optimal decision – for
payoff or accuracy – is non-identical. In such experiments, the rational
benchmark and the rational baseline are distinct and there is a non-
trivial value of information.

It is worth noting that our use of the term “decision” aligns with
statistical decision theory, and may conflict with colloquial interpre-
tations promoted elsewhere in visualization research. For example,
we could apply the framework to perception studies (like Cleveland
and McGill’s well-known position-length experiment [3]) and refer to
the task participants face as a decision task. The uncertainty in the
state comes from the fact that there is a distribution over ground truth
proportions that are used to generate stimuli.

There are just two conditions that prevent applying the rational agent
framework. The first is in studies where there is no differing state.
For example, if the exact same data are presented to all participants
in a single-trial between-subjects manipulation of visualization design
then there is no uncertainty about the state and the rational benchmark
and baseline would coincide. The second is in studies for which the
experimenter considers it impossible to define a ground-truth response
against which to evaluate participants’ reports, such as studies that
query agents’ emotional states (e.g., angry, excited, sad) after showing
a visualization. For such studies, optimal reports by a rational agent are
not well defined.

In decision experiments, scoring rules are typically used to incen-
tivize the behavioral agent to make good decisions and to evaluate the
quality of the decision made, such as the accuracy of a prediction. The
experimenter may use the same scoring rule for both incentives and
accuracy; or the experimenter may not incentivize the behavioral agent
at all. For example, it is not clear if participants in the position-length
experiment [3] were compensated more for doing the tasks well, but
mid-mean absolute error is used to evaluate their responses. The ratio-
nal agent framework applied to either scoring rules for incentives or
accuracy can help understand how effectively information is conveyed
by a visualization; the framework’s application to scoring rules for
incentives can additionally help understand the potential effectiveness
of the incentives.

For any decision task, we can distinguish between the decision–the
reported “action”–and the beliefs that led to that decision. However,
when a decision is defined on a coarse action space, such as binary,
calibration will be of limited use, because multiple different beliefs
will lead to the same decision so the decision is not informative about
the agent’s belief. Recall that the optimization loss is the difference
RB − B between the calibrated score and the raw score. When the
calibrated score is not informative about the agent’s optimal payoff as
dictated by belief, the experimenter does not estimate the optimization
loss precisely. Hence, an experimenter could potentially better quantify

the usefulness of the visualization by refining the action space or asking
for beliefs directly, i.e., with the action space A = ∆(Θ), the set of
distributions over states.

3.6.2 R∅ as a simple baseline
The rational baseline R∅ captures what a rational agent would do in
the experiment if they didn’t look at the visualizations. This concept
is novel in visualization research, where attempts to detect reliance on
visualizations remain relatively rare. Instead, observed performance is
usually compared only to the best possible performance for the task, as
in computing perceptual or decision accuracy.

We can compare R∅ to different notions of a simple baseline that
an experimenter might use to simulate a behavioral agent not paying
attention. For example, a researcher might consider random response
over the allowable values for the measure (e.g., randomly choosing
a value between 0 and 100 for a task that elicits an integer-valued
probability) as a useful simple baseline, or designing a study specifically
to compare observed behavior to expectations under a heuristic (e.g.
Kale et al. [19]). There is nothing wrong with using other simple
baselines to estimate bad performance. However, the unique value of
R∅ as a definitive benchmark is for separating cases where participants
got information from the visualization from cases where they did not. If
we use other forms of “random guessing” as the baseline, agents could
still not look at the visualization at all and do better than the random
baseline, so long as random guessing performs worse in expectation
than using the prior. Only observing that agents did better than the
prior lets us evaluate a “null hypothesis” that they did not consult the
visualization.

The fact that the prior is not provided to participants in many visu-
alization experiments does not affect its value for evaluating the state
of evidence on whether agents consulted the visualization. In some
cases, even when a prior is not provided, R∅ may still be a realistic
expectation of how participants who are not carefully consulting the vi-
sualization would respond. For example, when the experiment involves
repeated measures (trials) and agents receive feedback, with enough
trials we might expect behavioral agents to achieve the expected payoff
R∅ by learning that some fixed action guarantees an okay payoff with-
out looking at the visualization. Research into learning from samples
(e.g. Gonzalez and Dutt [8]) can inform speculation about particular
repeated feedback experiment designs.

3.6.3 Calculating behavioral scores
RV , the rational agent’s payoff under the action dictated by their poste-
rior beliefs, represents the best attainable performance by a behavioral
agent who does the experiment. Whenever the goal of the experiment
is to compare the performance of visualization strategies that differ in
the information they provide for the task, RV and ∆ can be calculated
for each visualization condition tested. Different visualization optimal
RV for informationally-inequivalent visualizations give us a sense of
how much the results of the experiment can be driven purely by in-
formation differences. In general, researchers who are interested in
understanding differences that result from visual design choices, rather
than informational differences, should aim for equivalent visualization
optimal RV . Exceptions include cases where the goal is to investigate
how visualization approaches compare for a real-world inspired task
where a conventional representation may not be richly informative, such
as situations where point estimates are preferred by convention [11].
Whenever informationally-inequivalent visualizations are compared,
the experimenter can use the information loss (RR

V −RV )/∆ to study
the maximum differences we expect under optimal use of the two
visualizations. 1

1Additionally, we can use comparisons between information loss for
informationally-different visualizations to weed out claims a researcher makes
about one visualization being informationally superior than another: A larger
effect than the difference in the two RV that is claimed to result from
informationally-inequality must be an overestimate. More generally, any exper-
iment that presents estimates corresponding to a higher expected score under
the scoring rule for a given visualization must be presenting an overestimate
confounded, for example, by sampling error [2].



Payoff-relevant state • θ0 ∈ {0,1}
= lose/win w/o. a new player

• θ1 ∈ {0,1}
= lose/win w. a new player

Data generating model • fine-grained state (x0,x1), where
x0 ∼ N(100,σ 2)

= score w/o. a new player
x1 ∼ N(µ,σ 2)

= score w. a new player
• win: score higher than 100, θi = 1[xi ≥ 100]

Pr[θi = 1] = Pr[xi ≥ 100]
• Pr[θ0 = 1] = 50%
• Pr[θ1 = 1] uniformly drawn
from {p1, . . . , p8}

Signal (visualization) v ∈V visualizing x0,x1

e.g. CI, HOPs, densities, QDPs
Agent’s action a ∈ {0 = not hiring,1 = hiring}

Scoring rule (payoff) S(a,θ)

Table 5: Kale et al. [19] decision problem under our framework.

Generally, we employ estimates of joint behavior of the agent with
the state, πB ∈ ∆(A×Θ), from a statistical model that accounts for the
design of the experiment. This is because rarely can the results of an
experiment be interpreted without accounting for confounding induced
by the design in the form of order effects, random effects of participants
or other factors, etc. The target in producing model estimates of πB

is to achieve a good prediction of the score distribution expected for
behavioral agents if the experiment were to be repeated many times
on a new sample from the same population. In general, generative
statistical models that model the joint probability distribution p(x,y)
and use Bayes rule to compute p(y|x) are preferable. For example, in
our demonstrations below, we use Bayesian regression models. How-
ever, our approach is compatible with sampling from observed results
directly or using non-generative models (e.g., Frequentist regression),
as long as push-forward transformations to the outcome space can be
simulated using fitted model parameter estimates. Regardless of the
specific modeling approach, experimenters should keep in mind that the
value of the rational agent framework for gaining insight into a design
or set of results depends on how well the behavioral scores predict
expected performance in that experiment. Scores produced by a mod-
eling approach that overfits to the particular observed behavior in the
experiment (e.g., overfit to the particular combination of participants as
shown in the example by [32]) will produce overfit benchmarks.

4 DEMONSTRATIONS

We apply the rational agent framework to two visualization experi-
ments.Both experiments won awards for their rigorous design at the
conferences at which they were published, making them a conservative
choice for demonstrating the interpretive value added by the framework.

4.1 Effect size judgments and decisions [19]
Kale et al. [19] use an online crowdsourced experiment to investigate
the extent to which visualization design impacts people’s use of heuris-
tics based on the central tendency in judging effect size [4], a measure
of the “signal” in a distributional comparison relative to the noise.

4.1.1 Experiment design
Kale et al.’s mixed design experiment compares judgments and de-
cisions across four approaches to visualizing a pair of distributions:
quantile dotplots (QDPs) [21], hypothetical outcome plots [14], 95%
containment intervals, and density plots, assigned between subjects.
Each participant does trials where the means are visually annotated and
where they are not. The distributions are framed as predicted scores in
a fantasy sports game for a team with and without a new player. Partici-
pants are tasked with using the visualizations for a binary decision task:
whether to pay to add the new player to their team, knowing that doing
so increases their chance of winning a monetary award but costs money.
Additionally, on each trial an unincentivized probability of superiority
(PoS) judgment is elicited, representing the participant’s belief about
the probability that a random draw from the score distribution with the
new player will be greater than one from the distribution without. This

allows us to calculate belief and optimization loss for both a belief and
a decision question.

Scoring rule Table 5 summarizes the decision problem under
our framework. The action space is A = {0,1} for the participant or
equivalently A = {not hire,hire}. There are two fine-grained random
states, one x0 indicating the score without a new player, and the other
one x1 indicating the score with a new player. The agent wins a game
if the realized score is above 100, i.e. θi = 1[xi ≥ 100]. The payoff
function is defined by

S(a,θ) =


0 if a = 0,θ0 = 0 lose without hiring

3.17 if a = 0,θ0 = 1 win without hiring
−1 if a = 1,θ1 = 0 lose with new player
2.17 if a = 1,θ1 = 1 win with new player

where the unit is millions of dollars in the simulated account. The
simulated accounts are initialized with 108M dollars. At the end of the
experiment, the agents are rewarded $0.8 per 1M more than 150M in
their simulated accounts.

Stimuli generation and optimal decision strategy The proba-
bility Pr[θ0 = 1] of winning without a new player is fixed at 50%. The
experiment varies the probability Pr[θ1 = 1] of winning with a new
player at 8 levels above 50%, corresponding to 8 ground truth PoS
sampled in log space from 0.55 to 0.95. The score x0 and x1 follow a
Gaussian distribution with identical standard deviations of either 5 or
15. x0 has a mean fixed at 100; the target PoS for each trial is realized by
varying the mean of x1. Each block of trials the participant completes
presents these eight levels twice, once with the lower standard deviation
and once with the higher standard deviation.

The realized score in the fictional sports game (used to determine the
participant’s payoff for a trial) is simulated using Monte Carlo method.
The agent faces a decision problem of hiring the new player or not,
where his expected utility is as follows:

3.17 ·Pr[x0 ≥ 100] if he does not hire;
2.17 ·Pr[x1 ≥ 100]+ (−1) ·Pr[x1 < 100] if he hires.

When the rational agent believes that 3.17 ·Pr[x1 ≥ 100]≤ 2.17 ·Pr[x1 ≥
100]+ (−1) ·Pr[x1 < 100], or equivalently that Pr[x1 ≥ 100]≥ 81.5%,
her optimal decision is to choose to hire a new player and vice versa.

As mentioned above, on each trial behavioral agents are asked for an
unincentivized PoS judgment Pr[x1 ≥ x0]. Under the choice to fix the
mean of x0 at 100, the PoS judgment maps to a unique probability of
winning with a new player, thus mapping to a unique optimal decision.
As a result, the PoS judgment represents beliefs associated with the
incentivized decision.

Rational Agent On any given trial, the agent is presented with
a probability Pr[x1 ≥ 100] of winning with a new player, randomly
drawn from the 8 predetermined levels p1, p2, . . . , p8. Without getting
any additional information (i.e., seeing any visualizations), the rational
agent has prior belief Pr[x1 ≥ 100] = 1

8 ∑
8
i=1 pi = 80.5%, so the optimal

decision is always not to hire a priori.
The rational agent knows the distributions of scores shown in the

visualization follow Gaussian distributions which are parameterized
by mean and variance. Different visualization strategies have the same
value to the rational agent, regardless of whether means are added or
not2. Hence, any visualization in the experiment is equivalent for the
rational agent to show the probability of the team winning with the
new player. After seeing the visualization, the rational agent knows
Pr[x1 ≥ 100] = pi for some i, and makes the optimal decision.

Dotted lines in Figure 3 show the rational baseline (R∅, left) and
rational benchmark (RV , right).

4.1.2 Pre-experimental Analysis

We calculate the rational agent baseline and benchmark for a single
decision task, in simulated account dollars in millions.

2A rational agent will spend infinite time looking at HOPs, to fully understand
the distribution of scores.
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Fig. 3: Estimated payoffs under the scoring rule used in Kale et al. [19]
for 100 simulated experiments in which behavioral agents make deci-
sions (behavioral decision score B, green) and report PoS judgments
(PoS raw score, purple, and adjusted calibrated PoS score, orange)
by visualization condition with means added and without. The rational
agent benchmark RV and the rational agent baseline R∅ are shown as
dotted lines.

Rational baseline: R∅ = 1.57. The rational agent achieves R∅ by
selecting any fixed action, or arbitrarily randomizing over the
actions.

Rational benchmark / visualization optimal: RV = 1.77 for all vi-
sualization formats.

Value of information: ∆ = RV −R∅ = 0.20.

The information loss is 0 for all visualization strategies.
When we translate these scores through the conversion rate to

real dollars received by the participant ( f (r) = $1+max{0,$0.08(r−
150M)} for each 1M over 150M in the account where r is in millions),
we get the total incentive that an agent has to consult the visualization,
shown in Table 63. This incentive seems reasonable for encourag-
ing agents to consult the visualization, as it is nearly a third of the
guaranteed payment from choosing any fixed action.

f (R∅) f (RV ) ∆ f ∆ f / f (R∅)

$1.66 $2.17 $0.51 30.72%

Table 6: f (R∅) shows the expected payment to a rational agent, f (RV )
shows the expected payment to a rational agent who reads the visu-
alization, while ∆ f = f (RV )− f (R∅) is the incentive to consult the
visualization.

One point worth acknowledging is that Kale et al. do not provide
participants with the prior, as is frequently true in visualization exper-
iments. This is not necessarily a flaw in the design. In this example,
there are reasons why we would expect behavioral agents to achieve
scores higher than R∅ in the experiment design despite not explicitly
being given the prior. For this example, the prior score can be obtained
by taking the same action in any trial or arbitrarily randomizing over ac-
tions. Additionally, participants were given feedback, and a participant
who was randomizing but watching feedback is arguably in a position
to approximately learn the prior over the course of the experiment.

4.1.3 Post-experimental Analysis

The original results presented by Kale et al. [19] include a consistent but
very small impact of annotating means on bias in PoS judgments, and
some disparity between what visualizations appear to perform best for
PoS judgments versus incentivized decisions: QDPs perform relatively
well across the two tasks, but performance with intervals and densities
varies across tasks. The authors advise visualization researchers to
be cautious in assuming that perceptual accuracy feeds directly into
decision-making, because a user’s internal sense of effect size is not
necessarily identical when they use the same information for different
tasks. The authors speculate that the decoupling of performance may re-
sult from users relying on different heuristics to judge the same data for
different purposes. (e.g., Kahneman and Tversky’s [17] suggestion of a
distinction between perceiving an event’s probability and weighting the

3With high probability, the simulated payoff falls over 150M. f can be
considered linear here, so we write the expected real payment as f (RV ).

probability in decision-making), or from not incentivizing the PoS ques-
tion. By applying the rational agent framework post-experimentally,
we further investigate their results and this ambiguity.

In our post-experimental analysis, we first empirically estimate the
expected payoff B for decisions. Because the study hypothesis in Kale
et al. concerned the comparison between performance with means an-
notated versus not annotated, we calculate the expected behavioral
score for the decision task for each of the four visualization strategies
crossed with the means manipulation, resulting in eight total scores
with uncertainty (Figure 3, green). We report scores from 100 simu-
lated experiments, with binary decisions sampled from the posterior
predictive distribution of the Bayesian logistic regression model in Kale
et al. [19]. These scores indicate that the behavioral agents’ decisions
achieved a payoff higher than the rational agent with prior and fairly
close to the rational agent with posterior, which we further analyze
below. A detailed discussion of our estimation is deferred to ??.

Kale et al. [19] elicit responses on a finer space Q = ∆({0,1}) - the
PoS reports, which is more informative than their decision task in that
each PoS corresponds to a unique belief on the winning probability.
We apply our framework by calculating the scores from PoS reports.
To calculate expected behavioral scores BQ for the PoS task, we sim-
ulate decisions by applying the optimal decision rule to reported PoS,
however this time we sampled from the posterior predictive distribution
of the authors’ linear-in-log-odds model for PoS judgments (Figure 3,
purple). Scores for the PoS task are closer to the prior than those for
the decision task. Similar to Kale et al.’s results, for both the decision
task and PoS task we see only a slight difference in expected behavioral
scores with and without the addition of means.

Finally, we calculate the calibrated behavioral scores. The calibrated
scores for decisions are the same as the expected payoff B; recall this is
because for a binary decision where the behavioral score is above R∅,
calibration cannot improve the score. We follow the same approach to
calibrate PoS reports and calculate the calibrated behavioral scores
CQ for the PoS task by discretizing the PoS report space (Figure 3,
orange). We discretize the space into intervals of length 0.02 so that
we can calculate the empirical Bayesian posterior of state θ1 without
overfitting.4

Belief Loss Recall that belief loss measures the extent to which
a behavioral agent can distinguish between stimuli by consulting the
visualization, and is quantified by taking the difference between the
rational benchmark and the calibrated behavioral responses, RV −RB,
and normalizing by ∆. Because calibrating the decision scores does not
improve upon the behavioral scores for Kale et al’s decision task, belief
loss is equivalent to (RV−B)

∆
in Figure 3.

We next consider belief loss for the PoS task as RV−CQ

∆
in Figure 3.

QDPs induce the least belief loss and HOPs the most. This may be
because agents will often not watch the HOPs animation for long,
and hence are lossy information processors compared to the rational
agent [19]. The ranking we observe across visualization conditions
resembles that observed in the Just-Noticeable-Difference (JND) esti-
mates in Kale et al.’s model of participants’ decisions. JNDs measure
how sensitive behavioral agents are to the evidence in making decisions.

Optimization Loss Recall that optimization loss is calculated as
(RB−B)

∆
. This loss is 0 for the decision task because expected scores

were above R∅. When we evaluate optimization loss for the PoS
task, we observe fairly substantial gaps between the behavioral and
calibrated behavioral scores (purple and orange distributions). The
normalized optimization loss is shown as CQ−BQ

∆
in Figure 3. These

scores indicate 1) that the behavioral agents are struggling to report
their beliefs but getting information from the visualizations, and 2)
the behavioral agents are getting a fair amount of information from
the visualizations: the calibrated scores are obtaining a relatively high
percentage of the rational benchmark.

When we look at decision scores, and compare them to calibrated
PoS, we see that the behavioral agents are making nearly optimal

4Note that discretization induces an unavoidable discretization error to the
estimation of calibrated score.



decisions given the information they have (to hire the new player or
not). This is because we can expect the PoS reports to capture the
agents’ perceived probability of winning with the new player (due to
the one-to-one mapping between PoS and probability of win by design).
This suggests agents are understanding the experiment task fairly well.

The fact that behavioral scores for the PoS report are considerably
improved by calibrating indicates that agents struggled to use the infor-
mation they had obtained to report their beliefs. Kale et al. acknowledge
that they cannot disambiguate the reason for the disparity in the PoS
versus decision results they observe, and speculate it may stem from
the PoS question not being incentivized or from a difference between
probability perception and weighting [17]. However, our comparison
between expected scores for the binary decision task and the PoS task
suggests that agents were consulting the visualizations and extracting
much of the information.

Alternative reasons agents may have struggled with reporting for
the PoS question is that while Kale et al.’s design cleanly maps PoS
to probability of winning with the new player, the latter is the more
directly relevant information to the decision at hand. PoS is also harder
to read from the visualizations that the participants were provided rela-
tive to the probability of winning. Our analysis calls into question the
possible explanations proffered in the paper for explaining differences
observed in how visualizations perform between PoS and decision
tasks. Had the experiment asked a directly payoff-related question like
What is the improvement in the probability of winning by hiring a new
player? the comparison the work makes between beliefs and decisions
may have been more informative for assessing conjectures like Kahne-
man and Tversky’s notion of differences in probability perception and
weighting [17].

4.2 Transit decisions [6]
Fernandes et al. [6] compare approaches to presenting bus arrival time
predictions–including textual descriptions of one-sided probability in-
tervals, containment intervals, QDPs, CDFs, density plots, density plots
with intervals, and only a point estimate (no uncertainty control)–for
making transit decisions about when to leave for the bus stop.

4.2.1 Experiment Design

Payoff-relevant state θ ∈ [0,30] bus arrival time
Data generating model θ from Box-Cox t distribution
Signal (visualization) v ∈V visualizing θ

Agent’s action a ∈ [0,30] time to go to bus stop
Scoring rule (payoff) S(a,θ)

Table 7: Decision problem for Fernandes et al. [6]
Fernandes et al.’s mixed design experiment compares incentivized de-

cisions across twelve visualization strategies that are assigned between
subjects. Each participant is presented with 40 total trials parameterized
by bus arrival time distributions. Participants are randomly assigned
one of three decision scenarios representing a hypothetical real-world
decision with an associated (unique) scoring rule.

The decision problem is summarized in Table 7. The agent takes
action from A = [0,30], a time to arrive at the bus stop. The payoff-
relevant state is θ ∈ [0,30], the time the bus arrives at the bus stop.
When a > θ , the agent does not catch the bus. If he misses the bus,
he is guaranteed to catch a second bus that arrives at θ ′+ 30, where
θ ′ follows the same arrival distribution as the first bus. In each of the
three decision scenarios, the agent gains a bonus r0 > 0 for each minute
of activities before arriving at the bus stop, rw < 0 for each minute
waiting at the bus stop, and a bonus rd > 0 for each minute spent at
the destination with a maximum time of T spent. The payoff can be
formulated as follows:

S(a,θ) =


r0a+ rw(θ −a)+ rd ·T if a ≤ θ

catching bus
r0a+ rw(θ

′+30−a)+ rd · [T − (θ ′−θ)] else
not catching bus

For each decision scenario, payoffs are generated as in Table 8.

Stimuli generation and optimal decision strategy Each trial
corresponds to a Box-Cox t distribution generated from a model of

Scenario ID r0 rw rd T
1 8 -14 14 90
2 14 -14 14 60
3 8 -17 17 120

Table 8: Payoffs of decision tasks for different scenarios.

real bus arrival predictions [21]. Fixing a belief distribution p where
the arrival time θ is drawn, if the agent chooses action a, his expected
payoff is

Eθ∼p[S(a,θ)] = ∑
θ≤a

Pr[θ ] [r0a+ rw(θ −a)+ rd ·T ]

+ ∑
θ>a

Pr[θ ]
[
r0a+ rw(Eθ ′∼p[θ

′]+30−a)+ rd · [T − (Eθ ′∼p[θ
′]−θ)]

]
.

4.2.2 Pre-experimental Analysis
We calculate the rational agent baseline, visualization optimal, and
rational benchmark for a single trial in the unit of simulated coins.

Scenario ID 1 2 3
R∅ 1078.7 767.5 1850.2

RV full information
1171.8 852.0 1919.4

(interval, pdf+interval, QDPs, pdf, cdf, none)
RV text60 1170.3 851.5 1918.7
RV text85 1171.0 851.6 1918.3
RV text99 1165.0 848.1 1914.9

RR
V 1171.8 852.0 1919.4

∆ 93.1 84.6 69.3

Table 9: The rational baseline R∅ for different scenarios, the visual-
ization optimal RV for different scenarios and visualization strategies,
the rational benchmark RR

V for different scenarios, and the value of
information ∆ = RR

V −RV for different scenarios.
Table 9 summarizes the rational baseline R∅, the visualization

optimal RV , the rational benchmark RR
V , and the value of informa-

tion ∆ = RR
V − RV . The visualization strategies are informationally

equivalent to the rational agent and equivalent to knowing the bus ar-
rival distribution, except for the text displays. This is because, with
the exception of text displays, there is a one-to-one mapping between
the distribution visualization on a trial and the bus arrival distribution.
Note that this is also true for no uncertainty displays (control). The
no uncertainty condition visualization displays the mean of the bus
arrival distribution. Each bus arrival distribution in the experiment
has a distinct mean, so the rational agent fully knows the bus arrival
distribution after seeing the mean. After seeing the visualization, the
rational agent knows the bus arrival distribution D, thus is able to make
the optimal decision. For the text probability interval displays, however,
the rational agent is not able to distinguish between distributions that
map to the same text, leading to a lower expected score.

We quantify this information asymmetry by information loss.

Information loss We calculate the information loss in Table 10.
Scenario ID 1 2 3

full information
0 0 0

(interval, pdf+interval, QDPs, pdf, cdf, none)
text60 1.6% 0.7% 1.2%
text85 0.9% 0.6% 1.6%
text99 7.3% 4.7% 6.5%

Table 10: The information loss (RR
V −RV )/∆ for different scenarios

and visualization conditions.
All types of visualizations have an information loss ∼ 1%, except

for text99 which induces a small information loss ∼ 7%.
We calculate the cumulative incentive for the rational agent (∆)

across 40 trials. In the experiment, each 1000 coins translate into a
$d bonus in real payment, with another $1.25 as a guaranteed base
payment, i.e. the payment conversion rule is f (r) = d

1000 r + $1.25.
d = 0.01698,0.08228,0.016076 for scenarios 1,2,3, respectively. The
value of information for a rational agent in real dollars is shown in
Table 11. Since the information loss for text displays is small (≤ 7%),
we omit the payoff calculation for text displays.

Across the three scoring rules, the incentive for the rational agent
to consult a visualization is always less than 10% of the guaranteed



Scenario ID f (R∅) f (RV ) ∆ f ∆ f / f (R∅)

1 $1.983 $2.046 $0.063 3.12%
2 $3.776 $4.054 $0.287 7.37%
3 $2.440 $2.484 $0.044 1.82%

Table 11: f (R∅) shows the expected payment to a rational agent who
takes the optimal fixed action, f (RV ) shows the expected payment to a
rational agent who reads the visualization, while ∆ f = f (RV )− f (R∅)
is the incentive to consult the visualization.

payment of choosing an optimal fixed action (Table 11). The incentive
is not well designed if the goal is to encourage agents to consult the
visualizations.

To improve incentives, we suggest subtracting f0 from all payments,
where f0 is a threshold that any behavioral agent’s score is unlikely to
fall below. For example, one obvious choice of f0 is 30 · r0, obtained
by a strategy to always arrive at the bus stop at 30 minutes.

Additionally, Fernandes et al. [6] conclude from the results of their
experiment that with the dot50 visualization, 50% of decisions will
be above 95% of optimal, about 80% of decisions will be above 90%
of optimal, and more than 95% of decisions will be above 80% of
optimal. However, we find that the baseline is able to achieve a
92.1%,90.1%, and 96.4% of the optimal for each scenario, respectively,
calculated assuming the agent does not look at the visualization. This
pre-experimental analysis therefore calls into question how impressive
the dot50 performance reported by the original work is, illustrating how
without a baseline to compare with, statements based on the proximity
of observed behavior to optimal can mislead.

4.2.3 Post-experimental Analysis
In our post-experimental analysis, we empirically estimate the behav-
ioral expected payoff B for the 10 visualization conditions in Fernan-
des et al. We fit a mixed-effects Bayesian regression model to predict
agents’ actions (i.e. chosen arrival time) from visualization condition,
scenario, and bus arrival distribution.

Our results show that behavioral payoffs are above or close to the
rational baseline. We conclude that optimization loss is the main source
of loss in decision-making, while belief loss reduces the difference
compared to raw behavioral scores. In other words, visualizations
appear to allow users to obtain a good proportion of the available
information in the visualization. A good visualization helps agents
make the optimal decision from the information.

A detailed presentation of our results is deferred to ?? in supplemen-
tal materials.

5 DISCUSSION

We contribute rational agent benchmarks for assessing 1) the potential
for an experiment to incentivize participants and show differences
between visualizations and with best attainable performance, and 2) the
sources of error that explain observed results from behavioral agents.
As our demonstrations on two celebrated visualization studies show,
our framework can be applied to identify improvements in designs and
to deepen understanding of results even when the original research
was rigorously done. A key feature is that it provides well-defined
comparison points for any given visualization, reducing reliance on
rough, relative ordering information that is often used to interpret
visualization experiment results.

Returning to the questions posed in Section 1, by applying our
framework we can expect to answer them as follows:

• How hard is the task? The value of information, the difference
between rational baseline and benchmark, captures the “room”
for improvement on the task.

• How incentivized are participants? Through pre-experimental
analysis, we calculate the expected increase in payment that the
participants can get from consulting the visualization.

• To what extent do the differences in performance stem from
informational asymmetries? This difference is quantified by the
information loss.

• What are the reasons for sub-optimal decisions from behavioral
agents? We separate the sources of loss into a) the belief loss, the

loss from not perceiving the information, and b) the optimization
loss, the loss from not properly using the information.

There are many other practical advantages to the rational framework,
which we observed in conducting analyses for our demonstrations. For
example, having the ability to compare results from different tasks in
score space, as we did for Kale et al. [19], can sidestep the challenges as-
sociated with trying to interpret and compare findings between models
that estimate different parameters, often under different mathematical
transformations that must be inverted to get any perspective on perfor-
mance from results. Additional benefits will arise on a case-by-case
basis, as demonstrated in our examples.

Integrating measures of the value of information into visualization
is an important step forward in the pursuit of more rigorous theoretical
foundations for visualization-based inference, as van Wijk called for
years ago, and researchers continue to call for today [5, 9, 12, 31].
By providing a widely applicable definition of a decision task and
associated analyses identifying the value of information, our work
makes possible deeper connections between information economics
and design with data visualization. There are many exciting extensions
to the rational agent framework to be explored in future work. For
example, for certain decisions tasks, such as binary decisions which are
amenable to complete characterization, it is likely possible to provide
more prescriptive guidelines that can point visualization researchers to
the right task to study in the first place given a high-level research goal
(e.g., evaluate visualization alternatives for election forecasts).

Another direction worth pursuing is to integrate the rational agent
benchmarks into the sample size calculations that experimenters use to
ensure that an experiment design is capable of assessing performance
differences. We might ask, What sample size is needed to resolve
performance with a visualization relative to the value of information
to the task? Alternatively, scoring rules could be designed to obtain
the same value of information with fewer samples, cf. Li et al. [26] It
may also be useful to use quantities from the rational agent framework
to contextualize target effect sizes (e.g., in units of ∆) or assumed
noise from measurement error (e.g., in units of the standard deviation
in scores across trials given the data-generating model) in fake data
simulation for power analysis.

5.1 Limitations
Conducting pre-experimental analysis is less useful if the experimenter
doubts the value of performance incentives (e.g., Mason and Watts [27]).
Pre-experimental analysis will also not offer actionable guidelines if the
experiment assumes a flat or no reward scheme. Although, choosing to
provide no clear incentive to use the visualizations may signal that the
experimenter trusts that participants will try their best. In such cases,
analyzing the value of information is still well-motivated for making
sure a study design provides enough room for seeing performance
differences and assessing information gain from a visualization.

The relationship between the rational baseline R∅ and what a par-
ticipant would do in the actual experiment if they did not look at the
visualizations is nuanced. As we describe above, the purpose of R∅ is
not to predict how randomizing behavioral agents will score, though
in some cases it may. The framework is also not intended as a theory
of how behavioral agents make decisions: the benchmarks are useful
for evaluating the quality of decisions of behavioral agents who act
differently from a rational one. While a rational agent would update
their beliefs based on the empirical joint distribution over signals and
states and then choose the optimal action under those beliefs, no in-
termediate measurement of beliefs is typically made of the behavioral
agent and so his optimization loss cannot be similarly decomposed. In
many experiments the behavioral agent is not informed of the prior
hence the Bayesian update is not well defined., with the lack of prior
information accounted for in the optimization loss.

One of the biggest impediments to applying the framework widely is
insufficient reporting of study details in empirical papers. For example,
full information about the scoring rule used in a study may not be
reported, such as when there are exclusion criteria like performance on
an attention check that led to non-payment for a task but not mentioned
in the paper.
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A SUPPLEMENTAL MATERIALS

• Supplemental material 1 - appendix to the paper, including:

– an example of visualization strategies used for the two
demonstrations, and

– a detailed discussion of results for transit decision experi-
ment.

• Supplemental material 2 - source codes and guided walkthrough
to the framework, including:

– code for demonstrations under ./demonstrations/, and
– a guided walkthrough of our framework, with application

to the hypothetical weather forecasting experiment. See
./guideline/guideline.pdf.
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