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0.28 0.11

      This election forecast displays that 
the Republican candidate has a 0.28 win 
probability, i.e., the right-tailed probability 
(the red area in the histogram).      

      People may misinterpret it, acting as if the 
candidate’s win probability             , which is 
their subjective win probability, modeled by a 
linear-in-probit (     ) function.   

      The distribution below is adjusted to 
account for the bias in subjective probability 
and causes people to act as if they had 
believed the win probability is 0.28.      

      Using the inverse of this subjective 
probability function (        ), we can find 
another distribution to display.  

�����=
is

lpr-1(          )0.28 0.37

���������������� =
is

lpr-1

lpr

0.11is

Dem wins Rep winstie Dem wins Rep winstie

1 2

3

4

Figure 1: The concept of subjective probability correction: In this exemplar election forecast, the right-tailed probability 
represents the Republican candidate’s win probability. 1 When viewing a win probability of 0.28, 2 people may misinterpret it 
and act as if the candidate has a 0.11 probability of winning. 3 To compensate for this bias in decision-making, we can use the 
inverse of the subjective probability function, which allows us to start with the desired probability, say 0.28, and fnd another 
distribution to display. 4 The resulting bias-corrected distribution causes people to act as if their subjective probability of that 
candidate winning is the desired 0.28, while actually displaying a win probability of 0.37. 

ABSTRACT 
We propose a new approach to uncertainty communication: we 
keep the uncertainty representation fxed, but adjust the distri-
bution displayed to compensate for biases in people’s subjective 
probability in decision-making. To do so, we adopt a linear-in-
probit model of subjective probability and derive two corrections to 
a Normal distribution based on the model’s intercept and slope: one 
correcting all right-tailed probabilities, and the other preserving 
the mode and one focal probability. We then conduct two experi-
ments on U.S. demographically-representative samples. We show 
participants hypothetical U.S. Senate election forecasts as text or a 
histogram and elicit their subjective probabilities using a betting 
task. The frst experiment estimates the linear-in-probit intercepts 
and slopes, and confrms the biases in participants’ subjective prob-
abilities. The second, preregistered follow-up shows participants 
the bias-corrected forecast distributions. We fnd the corrections 
substantially improve participants’ decision quality by reducing the 

                 
              

               
               

             
              

       
       

            
   

 

integrated absolute error of their subjective probabilities compared 
to the true probabilities. These corrections can be generalized to 
any univariate probability or confdence distribution, giving them 
broad applicability. Our preprint, code, data, and preregistration 
are available at https://doi.org/10.17605/osf.io/kcwxm 

CCS CONCEPTS 
• Human-centered computing → Visualization design and evalu-
ation methods; Information visualization; Empirical studies in visual-
ization; User models. 

KEYWORDS 
uncertainty visualization, subjective probability, perception, elec-
tion forecasts 
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1 INTRODUCTION 
Subjective probability measures the quality of decisions made under 
uncertainty [2, 36]. It is the internal probabilities people act as if 
they had believed when making decisions. In uncertainty commu-

nication, one way to improve subjective probability is to assume 

preprint
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a probability distribution over future events, then tackle how to 
represent this distribution in a way that reduces biases in subjec-
tive probabilities, bringing them closer to the true probabilities 
being communicated. This has been a fruitful line of inquiry in 
uncertainty visualization, leading to visualization types that im-

prove decision quality [12, 27, 41]. However, there may exist a limit 
to how much we can improve decision quality by modifying rep-
resentations alone; for example, some improved representations 
may only increase decision quality for people with higher working 
memory capacity [42]. 

We introduce a new approach that fxes the uncertainty rep-
resentation, but adjusts the distribution being displayed to 
account for biases in subjective probability. Intuitively, we must 
“undo” the distortions that occur when transitioning from true prob-
ability to subjective probability. More formally, if showing people 
distribution � will cause them to act as if they had seen some 
other distribution, say �(� ), then we need an invertible function 
� that describes people’s subjective probabilities as a function of 
the true probabilities. We then invert � and display the distribution 
′ � = �−1 (� ), so people will act as if they had seen � . This adjust-

ment to the displayed probability distribution compensates for 
biases in subjective probability to improve decision quality, and 
we call it a subjective probability correction. 

To create a subjective probability correction, we adopt a linear-
in-probit model of subjective probabilities, a mathematically con-
venient variation on the linear-in-log-odds model [61] that gener-
alizes both prospect theory [26] and models of proportion percep-
tion [15, 22]. In principle, the linear-in-probit model can be used to 
adjust any univariate distribution. We demonstrate how, for Nor-
mal distributions, we can scale and shift that distribution based on 
the intercept and slope of the linear-in-probit model to obtain a 
bias-corrected distribution. As this correction may move the mode 
of the distribution, we also present another correction that uses the 
skew-Normal distribution to preserve the mode of the distribution 
and one focal probability. 

We evaluate our proposed corrections in the context of U.S. Sen-
ate election forecasts. These forecasts predict candidates’ (or par-
ties’) vote percentages and compute win probabilities from the vote 
percentage distributions. In recent years, U.S. election forecasts 
have become controversial partly because people tend to misinter-

pret these probabilities [11, 58], making them a promising testbed. 
Specifcally, 

(1) We derive two corrections for Normal distributions based on 
a linear-in-probit model of subjective probability: a Normal 
correction and a skew-Normal correction. These corrections 
can be applied so long as the intercept and slope of the linear-
in-probit model for a given decision task are known. 

(2) We conduct an online experiment using a Senate election sce-
nario and a U.S. demographically-representative sample (N=306), 
and test two common representations (text and histogram) 
for the forecast distributions. We elicit participants’ subjective 
probabilities of a candidate winning under a betting task, esti-
mate the linear-in-probit intercepts and slopes for this task, and 
measure integrated absolute error of subjective probabilities 
compared to the true probabilities. 

Fumeng Yang, Maryam Hedayati, and Mathew Kay 

(3) We derive bias-corrected forecast distributions from the esti-
mated intercepts and slopes, and, in a preregistered follow-up, 
we repeat the experiment (N=603) but show participants text 
and histograms of these bias-corrected distributions. The correc-
tions substantially improve decision quality. For example, the 
skew-Normal correction reduces 60% of integrated absolute 
error for text (the posterior median reduces from 0.13 [0.12, 
0.14] to 0.054 [0.030, 0.076]) and 30% for histograms (the pos-
terior median reduces from 0.092 [0.074, 0.11] to 0.064 [0.045, 
0.081]), bringing subjective probabilities much closer to the 
true probabilities. The corrections debias the linear-in-probit 
intercepts, but do not completely debias the linear-in-probit 
slopes. 

While our approach substantially improves decision quality, our 
inability to fully correct biases in subjective probability opens up 
avenues for future work. Perhaps there is a ceiling on how much we 
can improve, or perhaps considering a mixture of decision strate-
gies people use would allow a more complete correction [27]. In any 
case, an error reduction of 5–10 percentage points is on par with im-

provements seen by modifying uncertainty representations [27, 31], 
suggesting our subjective probability corrections may be a valuable 
tool in the toolbox for uncertainty communication, complementing 
work on improved uncertainty representations. 

Preregistration statement Our frst experiment does not have 
a preregistration, because we do not have any expectation of ef-
fect size nor any specifc hypotheses. We use the data from this 
experiment to decide on model specifcation, priors, and sample 
size for the second experiment; these are preregistered. We also 
preregistered three measures for the second experiment: the (1) in-
tercept and (2) slope of the linear-in-probit model, and (3) integrated 
absolute error of subjective probability elicited from participants’ 
decision-making. 

2 BACKGROUND 
Our works draw upon three areas: (1) subjective probability in 
decision-making, (2) uncertainty visualization, and (3) perceptual 
optimization for visualization. 

2.1 Subjective probability in decision-making 
under uncertainty 

Subjective probability is commonly used in decision analysis [19]. 
This concept is diferent but related to the true (objective) probabil-
ity used by statisticians. It describes a decision-maker’s underlying 
belief in a probabilistic outcome, which they use for estimating 
their utilities or expected rewards [19, 36]. It is a behavioral mea-

sure, often inferred from the choices people make in a sequence of 
lotteries with an incentive [45, 56]. 

By contrast, directly reported probabilities of visually perceived 
proportions, which are sometimes used to evaluate uncertainty 
visualizations, do not measure decision quality [23]. For example, 
people may accurately repeat back the exact probability of rain 
from a weather forecast presented as text or a histogram. How-
ever, their responses might not match their underlying belief in 
the probability of rain (their subjective probability), perhaps better 
measured by whether or not they actually bring an umbrella. In an 
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election forecasting context, the subjective probability of a candi-
date winning may drive voters to cast a ballot or mobilize in their 
community [16] or lead them to be surprised when a candidate 
with a 0.3 forecasted win probability ultimately wins an election. 

In these decision-making processes, people do not usually per-
form mental calculations, but instead rely on cues or heuristics [7], 
leading to some distortion of judgment or misperception of prob-
abilities, which are biases in their subjective probability [7]. Our 
work builds upon such literature to measure people’s subjective 
probability in decision-making and aims to correct for people’s 
biases to improve their decision quality. 

2.2 Uncertainty visualization 
Much work in uncertainty visualization attempts to fnd more ef-
fective representations of distributional uncertainty, e.g., through 
encodings based on intervals [8, 12, 31], density functions [8, 12, 
21, 25, 31], or cumulative distribution functions [12, 25, 59]; or by 
employing frequency-framing approaches such as quantile dot-
plots [12, 27, 31], hypothetical outcome plots (HOPs) [24, 28], or 
spaghetti plots [33, 46]. Often this work is grounded in attempts 
to help the viewer better understand uncertainty or make better 
decisions from a representation. For example, Helske et al. [21] 
used densities with faded tails in an attempt to reduce researchers’ 
reliance on dichotomous thinking; frequency representations (like 
dotplots [31] or HOPs [24]) are also commonly used to improve de-
cisions under uncertainty, inspired by research in cognitive science 
that suggests people reason better with discrete outcomes than 
continuous probabilities [17]. Much of this work fundamentally 
rests on visualizing distributions or summary statistics of distri-
butions (whether they are probability distributions or confdence 
distributions [60]), and so is compatible with our approach to sub-
jective probability correction through adjusting distributions. A 
related bias-correction approach for uncertainty visualization is 
Correll et al.’s Value-Suppressing Uncertainty Palettes [10]: they 
merge successive categories in a bivariate colormap and suppress 
the color of the point estimate when uncertainty is larger. Their 
approach is more heuristic and is not based on models of perception 
or decision-making. Our model-driven approach could provide a 
theoretical grounding for similar value-suppression functions, as 
well as a principled way to choose how much value to suppress [30]. 

2.3 Perceptual optimization for visualization 
Perceptual optimization and bias correction are commonly em-

ployed in other areas of visualization, with a focus on perceptual 
features. For example, Micallef et al.optimized parameters like opac-

ity for scatterplots based on task objectives [37]. Other examples in-
clude adjusting orientation to compensate for biases in trend estima-

tion in scatterplots [34] and including annotations when two bars 
are perceptually indistinguishable [35]. Color is also oft-targeted 
for debiasing; for example, previous work constructed perceptually 
rather than mathematically uniform colormaps (e.g., viridis [52] 
and its corrected version cviridis [39]); colormaps have also been 
optimized for separating diferent classes in scatterplots [57], difer-
entiating common mark types [55], or highlighting unexpected 
events [9]. Area is another visual channel amenable to debias-
ing: Flannery [13] proposed scaling points on maps according to 
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a power-law transformation of area perception rather than raw 
areas (cf. Stevens’ power law [54]). Other approaches changed sam-

pling methods [44] to create perceptually-optimized scatterplots 
or used a neural network simulation of early perceptual process-
ing to adjust the parameterization of fow visualizations [43]. Our 
work attempts to bring this tradition to uncertainty visualization 
by systematically adjusting a displayed distribution using models 
of people’s subjective probability [61]. 

3 BIAS-CORRECTING PROBABILITY 
DISTRIBUTIONS 

This section describes our mathematical derivation of the subjective 
probability correction. To help readers follow our derivation, we 
frst introduce the statistical concepts needed using an example of 
election forecasts. 

3.1 Preliminaries: Probability distributions and 
election forecasts 

Forecasts are often made using probability distributions over possi-
ble outcomes. For example, election forecasters may show a proba-
bility distribution for the vote percentage that a candidate is pre-
dicted to receive using 1 a probability density function (PDF). 
The PDF for distribution 

2

� is denoted �� (�). The highest point 
on the PDF, the mode, is the most likely vote percentage the 
candidate will receive. On a PDF, probability is read by looking at 
the area under the curve. 

In election forecasts, a meaningful 3 focal point is 50% vote 
share: above this value, the candidate wins. In this example, the 
area under the curve to the right of 50% is 0.3 of the total area 
under the curve. In other words, 4 the right-tailed probability, 
P(� > 50%

5

), is 0.3, which is the candidate’s win probability. 
The complementary cumulative distribution function 

(CCDF) gives all of the right-tailed probabilities for a distribution.1 

It is denoted 1 − �� (�) = P(� > �). For example, if we read 

1
Similarly, the cumulative distribution function (CDF), �� (� ) = P(� ≤ � ) , gives 
left-tailed probabilities. 

��� ��� ��� ��� ���

���

���

���

���

���

��� ��� ��� ��� ���

2

�����

�����

��
��
��
��
���
�
�

1

6

3

4

5

The forecast
distribution (PDF)

The focal point is ���

The win (right-tailed) 
probability is ��� 

CCDF

The mode

Figure 2: An election forecast (top) and its CCDF (bottom). 



��

��

 

              

             
             
           

        
        

         

     
 

          
          

         
           
             

         
             
          

 
      

      

        
   

           

          
         
           

           
         

            
      

          
          

         
         

           
         

                
        

           
     

            
           

            
             

         
           

           
     

    
            

        
             

           
         

           

          
           

           
              

       
          

         

      

         

        
            

             
        

            

      

         

          
        
           

  

     

          
          

          
         

                
  

           
       

            
  

      

        
     

   
       

  
 

 
         

 
 

         

      

    

       
   

 
                  

        

� 

CHI ’23, April 23–28, 2023, Hamburg, Germany 

down from 50% to the CCDF and across, we see that the probability 
of winning, P(� > 50%), is 6 0.3. Our goal then is to translate 
all of the probabilities in a forecast distribution (e.g., its CCDF) 
into a new, bias-corrected distribution—one which causes people’s 
subjective probabilities to resemble the original distribution. For 
that translation, we turn to models of probability perception. 

3.2 Linear-in-probit model for subjective 
probability 

In a review of work on subjective probability and proportion percep-
tion (including prospect theory [26] and visual perception [15, 22]), 
Zhang and Maloney [61] propose a linear-in-log-odds (llo) model 
as a good ft for patterns of probability and frequency distortions 
in a variety of domains. This makes it a promising foundation for a 
robust bias correction for subjective probability. While their model 
is expressed in terms of a slope and a crossover point, we express 
it as a slope (� ′) and intercept (� ′): �′ ′ �subjective = llo(�true) = logit−1 � � + � · logit(�true) (1) 

For mathematical convenience, we will use a linear-in-probit 
(lpr) model instead: 

�subjective = lpr(�true) = probit−1 [� + � · probit(�true)] (2) 

The logit and probit functions are both S-shaped functions, and 
are difcult to distinguish empirically (see Appx. B); consequently, 
one or the other is often adopted for mathematical convenience [1]. 
Here, the probit formulation is useful because the probit function is 
the inverse cumulative distribution function of the standard Normal 
distribution (probit(�) = Φ−1 (�)), which will allow us to derive a 
closed-form bias correction for Normal distributions. 

The linear-in-probit function is controlled by its intercept (�) and 
slope (�), which determine the shape of the relationship between 
true and subjective probabilities (Fig. 3). When both probabilities 
are probit-transformed, their relationship is linear (Fig. 3b). This 
model allows for an overall bias (determined by �) in subjective 
probability, and for distortions which pull probabilities towards 0 
or 1 (� > 1) or towards the center (� < 1; Fig. 3, the third column). 

Besides empirical work suggesting its broad applicability [61], 
this model has face validity when applied to an election forecasting 
scenario. Journalists encounter challenges communicating uncer-
tainty in their forecasts to ensure readers do not ignore it [11]. 
People tend to “round” forecasted win probabilities towards 0 or 1, 
e.g., misinterpreting a forecast that a candidate has a 0.3 chance of 
winning as a very unlikely event (Fig. 1), then being frustrated if the 
candidate ultimately wins the election. This phenomenon can be 
captured by a linear-in-probit model with � > 1: large probabilities 
are pulled towards 1, and small probabilities are pulled towards 0 
(Fig. 3, the fourth column). 

3.3 Generic bias correction 
If we wish for people’s subjective probability distribution to be � , 
we need to display an alternative distribution—the bias-corrected 
version—such that people will act as if they had seen � . This re-
quires knowing the intercept (�) and slope (�) of the linear-in-probit 
model, which are domain-dependent [61] and must be empirically 
measured (Sec. 4). We must also know the probabilities of interest 
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to the viewer: they might be interested in left- or right-tailed prob-
abilities, e.g., loss or win probabilities of a candidate. Assuming we 
know � and � , and the viewer is interested in left-tailed probabili-
ties (P(� ≤ �)), one approach would be to use the inverse of the 
linear-in-probit function2 

(lpr
-1
) to transform the cumulative distri-

bution function (CDF) of � to derive a bias-corrected distribution. 
We call this distribution � < , a left-tailed bias correction: 

probability we display people’s subjective probability 

P(� < ≤ �) = lpr−1 (P(� ≤ �)) 

Alternatively, the viewer may be interested in right-tailed probabil-
ities (P(� > �)). In election forecasts, this could be the probability 
a candidate gets more than 50% of the vote and wins the election. 
Thus, we may use the complementary cumulative distribution func-
tion (CCDF) of � to derive � > , the right-tailed bias correction: 

probability we display people’s subjective probability 

P(� > > �) = lpr−1 (P(� > �)) 

Applied to a general distribution, such a correction may require 
the use of numerical diferentiation to fnd corresponding densi-
ties. However, applied to a Normal distribution, we can derive the 
correction analytically. 

3.4 Normal correction for subjective 
probabilities

If � ∼ Normal �, �2
�
, then the complementary cumulative distri-

bution function (CCDF) of � gives the probability the candidate 
receives more than any given vote percentage, and it is denoted:� � � �� � − � � � − � 
P(� > �) = 1 − �

Normal � �, �2 = 1 − Φ = Φ 
� � 

Then given the intercept (�) and slope (�) of the linear-in-probit 
function, we can derive the right-tailed bias-corrected distribu-
tion, � > , by substituting the CCDF into the inverse of the linear-
in-probit function: 

probability we display people’s subjective probability 

P(� > > �) = lpr−1 (P(� > �))� � � − � �� 
= lpr−1 Φ 

�
� �� � − �� − 

= Φ 
�� � � 

= 1 − �
Normal � � − ��, (��)2 � � 

> 
=⇒ � > ∼ Normal �>, � 2 

where �> = � − �� 

and �> = �� 

We can similarly derive a left-tailed bias-corrected distribu-
tion,

3 � < : 

� � � �
probit(� )−� Φ-1 (� )−�2

By inverting Eq. 2, we get lpr-1 = probit-1 = Φ .
� � 

3
The step-by-step derivation is provided in Appx. C. 
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The linear-in-probit intercept (�) controls the 
fixed point of the function, shifting the 
function in both probability and probit space. 
It can be considered an overall bias, 
describing how people map the probability 
of 0.5 to other probabilities.   

(b) probit space

(a) probability space

The linear-in-probit slope (�) controls the 
degree of distortion. The further it is from 1, 
the more distorted the function is. When � > 
1 and �������the last column), small 
probabilities are pulled towards 0, and large 
probabilities are pulled towards 1.   

�����������

�����

������������������

������������

Examples of linear-in-probit functions

In the probability space, these 
functions are S-shaped or 
inverted-S-shaped. 

In the probit space, the 
relationship between true and 
subjective probabilities is linear. 
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�
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�
�

towards 0.5

towards 0

towards 1

Figure 3: Examples of linear-in-probit models of subjective probability as a function of the true probability. Each panel shows a 
fxed intercept (� ; an overall bias) or a fxed slope (�; the degree of distortion). The bottom row shows the same models as in the 
top row, with both the �− and �−axis transformed by the probit function. More examples are provided in Appx. A. 

probability we display people’s subjective probability 

P(� < ≤ �) = lpr−1 (P(� ≤ �))� � 
< 

=⇒ � < ∼ Normal �<, � 2 

where �< = � + �� 

and �< = �� 

This suggests that when faced with Normally-distributed uncer-
tainty, a viable correction for subjective probability is to scale the 
original distribution by � and shift it up by �� (left-tailed correction) 
or down by �� (right-tailed correction; see Fig. 5a). 

One limitation of this correction is that when � is nonzero, the 
mode of the distribution is also shifted. This may not be desirable: 
in the context of election forecasting, for example, if the forecast is 
for the vote percentage in a two-party race, the modal prediction 
may be shifted from below 50% of the vote to above it, changing 
which party is forecast to win in the most likely case (see Fig. 5). It 
may be desirable to keep the predicted winner unchanged, which 
motivates another correction method as below. 

3.5 Skew-Normal correction to preserve modal 
forecast 

If we wish to preserve the modal probability when the point pre-
diction is meaningful, we cannot use the Normal correction, as it 
will shift the mode of the distribution. Since the Normal correction 

is entailed by a transformation of all right- (or left-) tailed probabil-
ities, we must relax those conditions. We will derive a right-tailed 
skew-Normal correction, � ∗, with the following conditions:4 

(1) Instead of ensuring all right-tailed true probabilities are ac-
curately refected by their corresponding subjective proba-
bilities, we will preserve a focal probability; i.e., we want 
P(� ∗ > �focal) = lpr−1 (P(� > �focal)) for some domain-

specifc �focal. In the election forecasting scenerio, we preserve 
P(� > 50%); i.e., the probability that one candidate gets more 
than 50% of the vote and wins the election. 

(2) Unlike with the Normal correction, we will preserve the mode 
of the distribution; i.e.,we want mode(� ∗) = mode(� ). Since 
the mode and mean of a Normal distribution are equal, this 
implies we want mode(� ∗) = �. 

(3) Finally, so that the width of � ∗ roughly approximates the cor-
rected Normal distribution apart from the skew, we will pre-
serve the standard deviation; i.e., we let �∗ = �> . 

Unfortunately, there is no closed-form parameterization of the 
skew-Normal distribution in terms of its mode,

5 
so we use numeri-

cal optimization to fnd a skew-Normal distribution with the desired 

4
A left-tailed skew-Normal correction could be derived analogously. 
5
Though it is unimodal, and given a skew-Normal distribution, it is straightforward to 
use numerical optimization to fnd the mode by fnding the � value that maximizes its 
density function. 
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linear-in-probit functionlinear-in-probit function

We start with the distribution which 
we wish to be people’s subjective 
probability distribution (�).

We transform the desired 
subjective probability P����������to 
the probability we should display to 
people P�����������via the inverse of 
the lpr function. 

We map the displayed probability 
to a new CCDF, which preserves 
the desired right-tailed probability. 

1

3

For election forecasts, people may 
care about the win (right-tailed) 
probability of this distribution, 
described by the CCDF.

2

The new CCDF gives us the density 
function of the final distribution (����), 
which we display to people to cause 
them to believe the desired 
probability distribution is �. 5

4

2

1

3

4

5

Figure 4: Illustration of the Normal correction for right-tailed probabilities. If we want the 1 orange distribution � to be people’s 
subjective probability distribution, we display the 5 blue distribution � > , and subjective quantiles from this distribution are 
preserved (have the same � values) when translating the two CCDFs ( 2 4 ) through the 3 linear-in-probit function. 

��� ��� ��� ��� ��� ��� ��� ���

The Normal corrected distribu-
tion has a modal point prediction 
where the candidate may receive 
>50% of the vote and win.

The original forecast distribution 
(aka the subjective distribution) 
has a modal point prediction 
where the candidate may receive 
<50% of the vote and lose.

The Skew-Normal corrected 
distribution preserves the mode, 
also showing that the candidate 
may receive <50% of the vote 
and lose.

(a) (b)

���������������

Figure 5: The diference between the Normal and Skew-Normal corrections. (a) The Normal correction may shift the mode of 
the distribution, changing the modal point prediction; (b) the Skew-Normal preserves the mode of the distribution and the 
modal point prediction. 

mode, focal probability (P(� ∗ = �focal), and standard > �focal) � ∗ ∼ skew-Normal(�, �, �) (3)

deviation (�∗). 
The typical parameterization of the skew-Normal is defned by We reparameterize the skew-Normal distribution in terms of its 

location (�), scale (�), and skew (�): 6 
standard deviation (�∗) to satisfy the third condition: 

6
We use the typical defnition of a skew-Normal distribution, with density function:� � � � �� 

2 � − � � − � 
�skew-Normal (� |�, �, �) = � Φ � 

� � � 



�� 

      

        
 

    
    

            
         

            
        

             
           

         
               

                
           

            
              

         
 

          
          
            

           
         

  
           
          
         

          
         

        
          

    

         
          
       
          

   
        
     

  
           

        
         

           
         

           
          

           
             

             
          
    

       

       
          

          
           

        
         

          
          

          
           

          
           
          

          
         

 
 

            
         

          
             

         
          

        

         
        

             
          

       
            

          
           

           
        

  

          
          
           
          

         
        

            
    

  
           

           
           

         
          

          
          

     

            
             

� 

Subjective Probability Correction for Uncertainty Representations 

� ∗ ∼ skew-Normal
′ (�, � ∗ , �) (4) 

�∗ 
where � = √ (5)

2�2
1 − 

� (�2 +1)

The goal then is to fnd the location(�) and skew (�) parameters 
to satisfy the frst two conditions. We use Nelder-Mead optimiza-

tion [38] to minimize the sum of two squared distances: (1) the 
squared distance between the focal probability under the distribu-
tion � ∗ (P(� ∗ > �focal)) and the desired focal probability (�focal); 
and (2) the squared distance between the mode of the distribution 
� ∗ (mode(� ∗)) and the original mode/mean (�). 

In practice, we are able to minimize this sum to ≈ 0; i.e., to fnd 
� and � such that P(� ∗ > �focal) = �focal and mode(� ∗) = �, 
satisfying conditions (1) and (2) above. An example of the resulting 
distribution is shown in Fig. 4b. It is similar to the Normal correc-
tion, except that its mode is the same as the mode of the original 
distribution. We provide code for this procedure in supplementary 
materials. 

To apply these corrections to a decision-making task, we must 
know the intercept (�) and slope (�) parameters of the linear-in-
probit function for a particular domain. It is also important to assess 
whether or not the theory of our bias corrections strategies holds 
up in practice. Thus, we require human subjects experiments. 

4 EXPERIMENTS 
We conduct two human subject experiments set in the context of 
U.S. Senate election forecasts. Here we assume people care about 
win probability and only correct for win (right-tailed) probabilities. 
Experiment 1 estimates the intercept (�) and slope (�) parameters 
of the linear-in-probit function for subjective probabilities in the 
decision-making task of betting on election winners. These param-

eters allow us to derive the Normal and skew-Normal corrections 
described above (Sec. 3). 

Experiment 2, which is preregistered, evaluates the two proposed 
bias corrections for win probabilities. We repeat the same procedure 
but show participants the bias-corrected distributions, expecting 
that the biases in participants’ subjective probabilities of a candidate 
winning will decrease. 

This section describes the experimental materials and design 
shared between the two experiments. 

4.1 Materials 
Cover story We use a cover story where participants read and 
interpret hypothetical U.S. Senate election forecasts. U.S. election 
forecasts have become controversial in recent years partly because 
people tend to misinterpret them [11, 58]. While media outlets such 
as FiveThirtyEight have been forecasting U.S. Senate elections since 
2018, the general public is less familiar with U.S. Senate elections 
than a presidential election, which may reduce the efects of partici-
pants’ prior knowledge on the experiments. We use the same cover 
story as Westwood et al. [58], but simplify it to focus on one candi-
date (Candidate A). As Westwood et al. only use text to convey a 
forecast in their experiments, we adjust the wording for histograms 
(bottom of Fig. 6). 

CHI ’23, April 23–28, 2023, Hamburg, Germany 

Election forecasts State-of-the-art election forecasts estimate the 
percentage of the vote a candidate (or party) receiving, and con-
vert the vote percentage distributions into the probability of one 
candidate (or party) winning the election [20, 32]. As the proposed 
corrections focus on Normal distributions, we generate election 
forecasts using Normal distributions with a standard deviation of 
2.5% for vote percentage. These roughly correspond to the known 
standard deviation (2–4%) of senatorial polling in the U.S. [47]. 
We vary the means of the Normal distributions to generate difer-
ent forecasts, and have ten values {46.80, 47.80, 48.53, 49.15, 49.72, 
50.28, 50.85, 51.47, 52.20, 53.20}% for Candidate A’s vote percentage. 
At a standard deviation of 2.5%, these mean values correspond to 
ten forecasts with various win probabilities: {0.1, 0.19, 0.28, 0.37, 
0.46, 0.54, 0.63, 0.72, 0.81, 0.9}; i.e. the right-tailed probabilities 
P(� > 50%) = 1 − �

Normal 50% �, 2.5%2
� 
. 

Text Similar to Westwood et al. [58], both experiments use a text 
representation to convey the probability of winning and vote per-
centage (Fig. 6 top). We explicitly tell participants the probability 
of Candidate A winning and a point prediction of the mode of the 
vote percentage distribution (the most likely outcome). A text de-
scription is also commonly used to convey election forecasts and 
polling results in media outlets [4, 50, 51]. 

Histogram The other representation in the experiments is a his-
togram of a forecast distribution, with the right-tailed probabili-
ties P(� > 50%) highlighted (Fig. 6 bottom). We use a violet color 
(#b150fb) for highlighting to avoid partisan efects. There are many 
visualizations for conveying forecast distributions (e.g.,densities [12, 
25], CDFs [12, 25], quantile dotplots [12, 27, 31], intervals [8, 27]). 
Because our focus is on adjusting the distribution, not the represen-
tation, we select one as a representative to assess our corrections. 
Histograms are a natural choice as they are commonly used in 
media outlets to convey election forecasts, especially senatorial 
forecasts [49–51]. 

Corrections After analyzing the data of Experiment 1, we would 
have known the intercepts (�s) and slopes (�s) of the linear-in-
probit functions for text and histogram (detailed in Sec. 5). In Exper-
iment 2, we derive both Normal and skew-Normal bias corrections 
for the original Normal forecast distributions. We recalculate the 
point predictions for text and regenerate histograms, preserving 
the same y-axis height and total area under the histogram as were 
in the frst experiment. 

4.2 Elicitation 
For each of the ten forecasts (ten probabilities of Candidate A 
winning), we use three questions (Fig. 7). The frst two ascertain 
whether participants can read the text (or histogram) and are used 
to examine the construct validity. The third elicitation induces par-
ticipants to make decisions using probabilistic forecasts and is the 
focus of our analysis. It elicits the subjective probabilities people 
internalize and act on in their decision-making [36] and measures 
decision quality (see Sec. 2.1). 

Elicitation 1: Likelihood. On a scale from 0 (very unlikely) to 100 
(very likely), how likely is Candidate A to win the election? (Fig. 7a) 

https://doi.org/10.17605/OSF.IO/KCWXM
https://doi.org/10.17605/OSF.IO/KCWXM
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A prominent group of statisticians 
analyzed the most recent polls that 
include questions about who voters 
prefer. Their analysis a few days before 
the election shows that Candidate A 
has a 19% chance of victory and is 
expected to win between 47% and 
48% of the vote.

(a) Display original distributions (b) Normal corrections (c) Skew-Normal corrections

Experiment 1 Experiment 2

A prominent group of statisticians 
analyzed the most recent polls that 
include questions about who voters 
prefer. Their analysis a few days before 
the election is shown in the chart below.

A prominent group of statisticians 
analyzed the most recent polls that 
include  questions about who voters 
prefer. Their analysis a few days before 
the election shows that Candidate A 
has a 41% chance of victory and is 
expected to win between 48% and 
49% of the vote.

A prominent group of statisticians 
analyzed the most recent polls that 
include questions about who voters 
prefer. Their analysis a few days before 
the election shows that Candidate A 
has a 41% chance of victory and is 
expected to win between 47% and 
48% of the vote.

A prominent group of statisticians 
analyzed the most recent polls that 
include questions about who voters 
prefer. Their analysis a few days before 
the election is shown in the chart below.

A prominent group of statisticians 
analyzed the most recent polls that 
include questions about who voters 
prefer. Their analysis a few days before 
the election is shown in the chart below.h
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Figure 6: Examples of representations and bias-corrected forecast distributions. 
Fig. (a) shows text (top) and the histogram (bottom) in Experiment 1. In this example forecast, the true probability of winning 
is 0.19, and the mode of the vote percentage distribution falls into 47%–48%. 
Figs. (b) – (c) show the representations of the bias-corrected distributions in Experiment 2. For text, note that the diferences in 
the bolded description. For histograms, the two corrections have the modes falling into 48%–49% and 47%–48%, respectively, and 
the areas highlighted are 0.37. Also, note that for histograms, we use a diferent color in this fgure for aesthetic purposes. 

Option 1: You win 100 coins 
if a coin flip results in heads.

Option 2: You win 1000 
coins if Candidate A wins.

Option 1

Option 2

Option 1: You win 100 coins 
if a coin flip results in heads.

Option 2: You win 350 coins 
if Candidate A wins.

. . .

(a) How likely...

(b) How surprised...

0 100

Option 1

Option 2

0 100

Option 1: You win 100 coins 
if a coin flip results in heads.

Option 2: You win 70 coins 
if Candidate A wins.

Option 1

Option 2

(c) Ten betting questions

. . .

. . .10

10

or �%

Figure 7: Illustration of the user interface for the three elicitations: For each of the ten forecasts, participants frst answer (a) a 
likelihood question and (b) a surprise question. They then make (c) a sequence of 10 betting decisions, asking them to choose 
between two options. Each bet (a box) is presented separately, and the rewards in Option 2 are randomized. 

Elicitation 2: Surprise. On a scale from 0 (very unsurprised) to 100 
(very surprised), how surprised would you be if Candidate A wins the 
election? (Fig. 7b) 
Elicitation 3: Betting. Participants are asked to make a sequence 
of ten binary decisions where they choose between two reward 
options (Fig. 7c): 

Option 1: You win 100 coins if a coin fip results in heads. 
Option 2: You win {50, 60, 70, 80, 90, 100, 150, 200, 350, 1000} coins 
if Candidate A wins. 

As participants decide whether or not to take the bets, this elicita-
tion invites a sequence of comparisons between 0.5 (the result of a 
coin fip) and participants’ subjective probabilities of Candidate A 
winning. Comparisons to well-known frequency probabilities reli-
ably elicit subjective probability in decision-making [40], especially 
under a betting task [3, 19, 26, 36]. Also, online prediction markets 
for U.S. elections have been active for decades [18], giving this 
task some real-world applicability. We refned the task by piloting 
several versions based on the literature, consulting with colleagues, 
fne-tuning the wording, and carefully checking quantitative and 
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qualitative data from each pilot. We also incentivize participants, 
following the literature in subjective probability [19, 56], and sim-

ulate a winner for the election based on the forecast and inform 
participants that they will receive the coins as a study bonus (10,000 
coins = $1 USD). 

The two options are set as follows. The expected reward of 
Option 1 is 50 coins (100 coins · 0.5), and the expected reward 
of Option 2 is the reward times the true probability of winning 
(reward · �true). Thus, the rewards in Option 2 are set to cover the 
range of values of 50/�true (�true ∈ {0.1...0.9}, see Sec. 4.1), the 
rewards at which a normative decision-maker would switch from 
Option 1 to Option 2. To avoid learning and order efects, the ten 
bets are presented one at a time in random order for each forecast. 

4.3 Experimental design 
Factorial design Both experiments follow mixed factorial designs. 
The within-subjects factor is the ten forecasts. The between-subjects 
factors are representations and corrections. Each participant sees 
ten forecasts, and the order is randomized. In Experiment 1, each 
participant is randomly assigned to either histogram or text. In Ex-
periment 2, each participant is randomly assigned to one of the four 
combinations: {text, histogram} × {Normal correction, skew-Normal 
correction}. This design reliably measures subjective probabilities 
in decision-making and minimizes carryover and fatigue efects. 

Training Both experiments include a training session for partic-
ipants to ensure the construct validity of the study. The training 
session presents an example forecast and asks participants three 
questions: (1) which candidate is more likely to win; (2) what is 
Candidate A’s chance of winning; and (3) which outcome is more 
likely. For histograms, we annotate the example histogram to ex-
plain the meaning of the highlighted (and gray) areas, which is the 
probability of Candidate A winning (or losing), and the meaning of 
the tallest bar, which is the most likely outcome (the mode of the 
distribution). The training session does not give feedback, and all 
participants in both experiments get at least one of the questions 
correct. We provide these in supplementary materials. 

Procedure After participants enter the Qualtrics survey and con-
sent, they frst take part in the training session. Participants are then 
informed that the scenario and questions will always be the same, 
and they will receive a bonus of up to $2.30 USD based on their 
responses. They then fnish ten forecasts, and in each forecast, they 
answer the likelihood and surprise questions, and make ten betting 
choices. After ten forecasts, they are asked for their strategies in 
the questions and additional feedback. Each participant answers 10 

likelihood and 10 surprise questions and makes 10 · 10 = 100 binary 
betting choices, taking about 15 minutes (see the details in Appx. D). 

Participants We recruit all participants from Prolific.co and limit 
experiments to desktop users, as forecast websites are often de-
signed for desktop use. Because of the U.S. election context, we use 
U.S. demographically-representative samples provided by Prolific.co. 
In Experiment 1, we request a minimal sample size of 300, as we do 
not have an expectation of efect size; each of the two conditions has 
about 150 participants. In Experiment 2, we have four conditions. 
As the precision of our estimates from Experiment 1 is satisfac-
tory, we request the same per-condition sample size (150) to ensure 
similar precision, resulting in a request of 600 participants.7 

The 
exact number of participants depends on Prolific.co’s sampling 
strategies, and we obtain 3068 

and 603 participants for the two 
experiments (see demographics and breakdowns in Appx. D). The 
pilot and previous participants are excluded from later experiments. 
The study was approved by the Institutional Review Board (IRB) 
at Northwestern University as exempt human subjects research 
(STU00215415). 

Compensation We pay each participant $4.00 USD for completing 
an experiment. For each forecast, we simulate the winner using a 
random number generator and pay them the reward based on their 
responses. The means of resulting bonuses are $0.98 (� = 0.23) and 
$1.02 (� = 0.24) USD for the two experiments. 

5 MODELING SUBJECTIVE PROBABILITIES 
With participants’ binary responses to the betting questions, we 
use a nonlinear Bayesian multilevel model to infer participants’ 
subjective probabilities of Candidate A winning for this decision-
making task. 

5.1 Model specifcation 
As described in Sec. 3.2, we model subjective probabilities as a linear-
in-probit function of the true probabilities. Because participants 
were asked to choose between a coin fip and a bet of Candidate A 
winning, we presume they make decisions based on the following 
rule: they are more likely to take the bet (�takebet > 0.5) if their 
subjective expected reward is greater than the expected reward of 
a coin fip (reward · �subjective > 50 coins). Here, we use a scaling 
factor � that determines how sensitive people are to diferences in 
rewards, and derive a model formula that satisfes this requirement: 

subjectiveE(taking the bet) > E(fipping the coin)
reward · �subjective > 0.5 · 100 

reward · lpr(�true) > 50 

reward · probit−1 (� + � · probit(�true)) > 50 

reward · probit−1 (� + � · probit(�true)) − 50 > 0 � � 
� · reward · probit−1 (� + � · probit(�true)) − 50 > 0 � > 0 � �

logit(�takebet) = � · reward · probit−1 (� + � · probit(�true)) − 50 > logit(0.5) � > 0 

https://doi.org/10.17605/OSF.IO/KCWXM
https://Prolific.co
https://Prolific.co


the task, the full model formula is: 

one bet reward the true probability of winninga scaling factor intercept slope

the subjective probability of Candidate A winning

the subjective expected reward of one bet the expected reward of a coin flip
line 1
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Built around this core formula representing the decision rule for 

takebet ∼ Bernoulli(�takebet) 

h � i� �
logit(�takebet) = �� · reward · probit−1 � �� � + �� � · probit(�true) − 50 

�� � = �� + �� � 
�� � = �� + �� � � � � � � � 
�� � 0∼ MVN , Σ
�� � 0 

�� ∼ Exponential(1) 
� ∈ {1...2} (two representations) 

� ∈ {1...� } (J participants) 

line 1 We model participants’ decisions as a Bernoulli distribu-
tion, with the probability of taking a bet (�takebet) as a function of 
their decision rule described above. 

line 2 In the logit space, this line is the participants’ decision rule: 
when reward · �subjective > 50, it ensures �takebet > 0.5. In other 
words, participants are more likely to take the bet than not if their 
subjective expected reward is greater than the expected reward of 
a coin fip. Within line 2 , blue indicates model parameters to 
be estimated, orange indicates input to the model (predictors), and 
gray indicates transformed parameters and constants. 

lines 3-5 We expect that both the linear-in-probit intercepts (�s) 
and slopes (�s) vary with diferent representations and participants. 
�� � and �� � are the intercept and slope for participant � with rep-
resentation � . �� and �� (without participant � ) are the intercept 
and slope for an average participant (�� � = 0, �� � = 0) with repre-
sentation � . The posterior medians of this average participant will 
be used to construct corrected distributions. Because diferent par-
ticipants may have personal strategies, we model participant-level 
slopes and intercepts as random efects. The �� � and �� � capture the 
diferences between each participant’s own intercepts and slopes 
compared to the average participant’s for each representation. 

line 6 The non-negative scaling factor � may also vary in difer-
ent representations. As it is a nuisance parameter and we are inter-
ested only in � and � , for simplicity, we do not model participant-
level diferences in � . 

7
We used our Experiment 1 data to simulate Experiment 2 results at various sample 
sizes, and concluded that using the same overall sample size would yield much less 
precise estimates.

8
The analysis of Experiment 1 includes six participants who did not fnish the experi-
ment but at least one forecast. Because we preregistered this analysis and used it in 
Experiment 2, we include these participants in our report. We provide the analysis 
excluding these participants in supplementary materials, which yields almost identical 
results. The analysis of Experiment 2 includes only participants who accomplished 
the experiment. 

priors In the logit space, we center priors for �� � at 0 and �� � 
at 1, indicating no bias in subjective probability. We allow them 
to approach the extreme distorted cases and thus have �� � ∼ 
Normal(0, 1) and �� � ∼ Normal(1, 2) (see Fig. 3 and Appx. A). 
For covariance, we let Σ = diag(�)Ωdiag(�), then � is a vector 
of standard deviations of �� � and �� � , and Ω is their correlation 
matrix. We expect some variance in slopes and intercepts and 
have � ∼ half-Normal(0, 0.5) as priors. We also expect a weak 
correlation between participants’ slopes and intercepts and set a 
Ω ∼ LKJcorr(2) prior. 

Experiment 2 We expect that the two corrections have diferent 
efects on participants’ subjective probabilities in this decision-
making task. Therefore, the model for Experiment 2 replaces repre-
sentations with the interaction between representations and correc-
tions in all lines, i.e., � ∈ {1...4} from the four combinations: {text, 
histogram} × {Normal correction, skew-Normal correction}. The 
priors and other terms are otherwise the same. We preregistered 
the model specifcation and priors for Experiment 2. 

Implementation We implemented these models using R 4.2.0, 
Rstan 2.21.5 [53], CmdStanR 0.5.2 [14], brms 2.17.0 [5], and tidybayes 

3.0.2 [29]. We use the logit approximation of probit [1], which is 
logit

−1 (1.7 ·� +��) = probit−1 (� +��), to help the model converge. 
We inspected the minimal bulk and tail efective sample size (ESS) to 
ensure reliable estimates; and they are 1613 and 2693, both coming 
from the average participant’s � for histograms in Experiment 1. We 
also examined �̂ values (1.0) to ensure model convergence. We pro-
vide code and ftted model fles in supplementary materials (*.Rmd 

and *.rds fles). 

5.2 Derived measures 
We derive three measures from participants’ subjective probabilities 
of Candidate A winning. The frst two are part of the linear-in-probit 

https://doi.org/10.17605/OSF.IO/KCWXM
https://doi.org/10.17605/OSF.IO/KCWXM


             

        
      

           
        

             
          

          
         
              

      
        

      
      

       
      

     
           

       
       

       
           

         

          
         

          
         
          

           
      

  
           

         
          

           
          

           
          

           
           

        
          

       
           

          
        

     

      
   

      
           

        
        

         
         
            

  

         
           

          
          

          
         

            
       

          
        
          

            
      

         
        

        
     

          
          

           
          

           
         

          
          

         
        

            
            

            
        

      
   

        
            

        
        

          
           

  

     
           

          
        

         
       

       
     

Subjective Probability Correction for Uncertainty Representations 

subjective probability function. The third measure describes the 
overall deviation from the true probabilities. 

Intercept (�) This is the estimated intercept of the linear-in-probit 
function. If participants do not systematically under- or over-estimate 
the 0.5 probability, the intercept should be close to 0. If the intercept 
deviates from 0, participants believe a diferent probability is 0.5. 

Slope (�) This is the estimated slope of the linear-in-probit func-
tion. If participants’ subjective probabilities are not distorted, the 
slope should be close to 1. If the slope is larger than 1, participants 
may systematically underestimate small probabilities and overesti-
mate large probabilities (the intercept determines the threshold). 

Integrated absolute error (IAE) The last 
measure combines both the intercept and 
slope to provide an overall estimate of de-
cision quality. This measure integrates the 
diference between subjective and true prob-
abilities in the range of 0 and 1, defned as∫ 
1 |�subjective − �true |��true. It can be in-
0

terpreted as the average bias in subjective 
��

�

IAE

� �
��
��
��
��
�

�����

probabilities. Visually, this measure is the area 
between the linear-in-probit function and the diagonal line � = � , 
as shown in the fgure on the right side. 

Because of our use of a Bayesian modeling approach, the un-
certainty in these measures is quantifed by posterior probability 
distributions from the models. Similar to our corrections, we only 
use the posterior estimates conditional on the average participant 
(i.e., setting participants’ random efects to zero) to calculate these 
measures. The exploration of the scaling factor � is provided as 
Appx. G and in supplementary materials. 

6 RESULTS 
With the models and measures, for each experiment, we frst present 
the modeled subjective probabilities of winning for an average 
participant (Figs. 8a and 9a). We then present posterior distributions 
of the three measures as well as comparisons between the two 
experiments (Figs. 8b-d and 9b-d). We also report the standard 
deviations of random efects in text and provide an exploration of 
participant-level random efects in Appx. F; those results lead to 
similar conclusions but are more difcult to interpret due to the non-
linearity. All the results are reported as medians and 95% quantile 
credible intervals (CIs; Bayesian analog to confdence intervals). 
The analyses of likelihood and surprise questions are provided in 
Appx. E to ensure the construct validity. 

We also conducted two post hoc analyses: (1) calculating the total 
expected rewards as a post hoc alternative measure for decision 
quality and (2) coding participants’ self-reported decision strategies 
based on their free-text responses. 

6.1 Experiment 1: Decision-making with the 
original forecast distributions 

Subjective probability Participants’ subjective probabilities are 
biased (Fig. 8a) when they make decisions based on the election 
forecasts in both text and histogram representations. They underes-
timate small probabilities and overestimate large probabilities. With 

CHI ’23, April 23–28, 2023, Hamburg, Germany 

text, their subjective probabilities have a more distorted S-shape. 
With histograms, their subjective probabilities are less biased for 
large probabilities, e.g., �true > .8: the S-shape is closer to the 
diagonal line. 

Measures The linear-in-probit intercepts (�s; Fig. 8b) for text 
and histograms are similar, and they both deviate from 0 (−0.34 
[−0.44, −0.24]), indicating a non-zero fxed point in the probit 
space. The linear-in-probit slopes (�s; Fig. 8c) also deviate from 
1, but histograms yield smaller deviations (1.58 [1.31, 1.86]) than 
text (2.44 [2.16, 2.74]). Combining them, the integrated absolute 

errors (IAE; Fig. 8d) show that both text and histograms lead to 
substantial biases in average participants’ subjective probabilities 
(0.092 [0.074, 0.11] and 0.13 [0.12, 0.14]). In this decision-making 
task, average participants’ subjective probabilities, on average, are 
about 10 percentage points away from the true probabilities. The 
standard deviations of random intercepts for � and � are 0.62 [0.56, 
0.68] and 1.67 [1.49, 1.86], respectively. 

Summary Together, the results of this experiment suggest that 
there are systematic biases in participants’ subjective probabilities 
in making decisions from probabilistic election forecasts, regardless 
of the representation we chose. 

The results of Experiment 1 also give us the linear-in-probit in-
tercepts and slopes for this decision-making task to derive the cor-
rected distributions. Because our goal is to create a single corrected 
forecast, i.e., not to tailor forecast distributions to each participant, 
our bias corrections for Experiment 2 use the median intercept and 
slope from posterior estimates conditional on an average participant. 
In principle, we could use this model to derive participant-level 
corrections; however, this level of tailoring would be difcult to 
accomplish in a journalistic setting like election forecasting. Here 
we leave participant-level corrections for discussion and future 
work (see Sec. 7.1). Thus, for text, we use the posterior medians 
� = −0.34 and � = 2.44 to derive bias-corrected distributions for Ex-
periment 2; for histogram, we use the posterior medians � = −0.34 
and � = 1.58 to derive bias-corrected distributions. 

6.2 Experiment 2: Decision-making with the 
bias-corrected forecast distributions 

In Experiment 2, we show participants the bias-corrected distribu-
tions in text or as histograms and repeat the same procedure. We 
expect that these corrections will improve participants’ subjective 
probabilities in decision-making, reducing biases and bringing them 
closer to the true probabilities. We preregister three measures: the 
linear-in-probit (1) intercept and (2) slope, as well as (3) integrated 
absolute error. 

Subjective probability Visually, participants’ subjective probabil-
ities look much closer to the true probabilities across all conditions, 
regardless of the representation or correction we chose for the 
experiments (Fig. 9a). In particular, participants improve their un-
derestimation of small probabilities, although it appears that both 
Normal and skew-Normal corrections slightly over-correct large 
probabilities, making large subjective probabilities slightly further 
deviate from the true probabilities. 

https://doi.org/10.17605/OSF.IO/KCWXM
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Experiment 1 • Decision-making with uncertainty representations of election forecasts

h
is

to
g

ra
m

te
xt

(b) Intercept (�) (c) Slope (�) (d) Integrated AE (IAE)(a) Subjective probability
�����������

Display original �
distributions

Display original �
distributions

True probability
�����

over-estimation

under-estimation
median & 95%CI

posterior distribution

The posterior intercept deviates from 0, and the posterior 
slope deviates from 1, indicating biased subjective 
probabilities. The medians and 95% CIs are −0.34 [−0.44,
−0.24] and 2.44 [2.16, 2.74].

The posterior mean of IAE is 
around 13 percentage points. The 
median and 95% CI are 0.13 [0.12, 
0.14]. 

The posterior slope is closer to 1, but both the slope and 
intercept suggest biased subjective probability. The 
medians and 95% CIs are −0.34 [−0.44, −0.24] and 1.58 
[1.31, 1.86].

The posterior mean of IAE is 
around 9 percentage points. The 
median and 95% CI are 0.092 
[0.074, 0.11].  

Figure 8: The main results of Experiment 1. All are posterior estimates from the model. (a) We fnd substantial biases in 
participants’ subjective probabilities. These are evidenced by (b) the intercepts (�s) of the linear-in-probit functions deviating 
from 0 and (c) the slopes (�s) deviating from 1. (d) The integrated absolute errors between subjective and true probabilities are 
0.13 [0.12, 0.14] (text) and 0.092 [0.074, 0.11] (histogram), indicating about 10 percentage points of biases. 

Preregistered measures Both Normal and skew-Normal correc-
tions debias the linear-in-probit intercepts (�s; Fig. 9b) for text 
and histograms, bringing them closer to 0. In particular, the skew-
Normal correction brings the intercepts very close to 0, e.g., −0.032 
[−0.14, 0.081] for histograms; the Normal correction slightly over-
corrects the intercepts, e.g., 0.15 [0.032, 0.27] for histograms. The 
standard deviation of random intercepts for � is 0.69 [0.64, 0.74]. 

Both Normal and skew-Normal corrections debias the slopes 

(�s; Fig. 9c) for text and bring them much closer to 1, e.g., 1.43 
[1.21, 1.66]; neither correction debiases the slopes for histograms 
(though this was already around 1.5 in Experiment 1). The standard 
deviation of random intercepts for � is 1.32 [1.22, 1.43]. 

Combining them, both corrections reduce the integrated abso-
lute errors (IAE; Fig. 9d) and improve decision quality from both 
representations, and the improvement for text is very substantial, 
from more than 10 percentage points to about 5 percentage points 
(i.e., reducing 50% of the biases), suggesting a large improvement. 
Between the two corrections, the skew-Normal correction for text 
makes participants slightly less biased in their decision-making, 
but these two corrections are similar for histograms. 

Summary Both corrections improve participants’ subjective prob-
abilities for text and histograms; they also bring the subjective 
probabilities of the two diferent representations closer to each 
other. These corrections have a bigger impact on text because of 
the larger innate biases found in Experiment 1. Between the two 
corrections, the skew-Normal correction may be slightly more ef-
fective (perhaps due to its preserving of the mode of a forecast 

distribution). But the shift in the mode is subtle (Fig. 5), which may 
explain why the diferences between the two corrections are small. 

6.3 Post hoc analysis: Corroborating the 
improvement in decision quality 

Method Because of our bonus mechanism (see Sec. 4.1), expected 
rewards can also be used to measure participants’ decision quality. 
Given the posterior probability of (i.e., setting participants’ random 
efects to zero) taking a bet, we can calculate the expected reward 
of an average participant’s decision on that bet: 

�takebet · (�true · reward) + (1 − �takebet) · 50 (6) 

We accumulate the average participant’s expected reward for all 
100 bets and report the total expected rewards in Fig. 10. Unlike 
the results above, this measure is not preregistered; we use it as a 
reasonability check. 

Results Both corrections result in a substantial improvement in 
the total expected rewards for the average participant, from 11.31k 
[11.42k, 11.57k] to 11.63k [11.61k, 11.65k] coins depending on rep-
resentation and correction, although the absolute improvement 
(about 300 coins) is small compared to the total expected reward 
under an optimal strategy (11,879 coins). These results are simi-

lar to those of integrated absolute errors of subjective probability. 
This is because participants’ subjective probabilities underlie their 
decisions, and the optimal decision is achieved when participants’ 
subjective probabilities match the true probabilities. 
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Experiment 2 • Decision-making with uncertainty representations of bias-corrected election forecasts   

True probability
�����

(b) Intercept (�) (c) Slope (�) (d) Integrated AE (IAE)(a) Subjective probability
�����������

Experiment 1

median & 95%CI posterior distribution

The IAE is improved from about 
13 to 7 percentage points. The 
median and 95% CI are 0.070 
[0.046, 0.091].  

The intercept is getting closer to 0, and the slope is getting 
closer to 1, indicating less biased subjective probability.  
The medians and 95% CIs are 0.17 [−0.44, −0.24] and 2.44 
[2.16, 2.74].  

The intercept is almost centered at 0, and the slope is 
closer to 1. Both indicate less biased subjective probability. 
The medians and 95% CIs are 0.056 [−0.057, 0.17] and 1.43 
[1.21, 1.66].

The IAE is improved from about 
13 to 5 percentage points. The 
median and 95% CI are 0.054 
[0.030, 0.076].  

The intercept is closer to 0, and the slope does not 
improve, suggesting subjective probability may be less 
biased.  The medians and 95% CIs are 0.15 [0.032, 0.27] 
and 1.49 [1.27, 1.72]. 

The intercept is centered at 1, and the slope does not 
improve, suggesting subjective probability may be less 
biased. The medians and 95% CIs are −0.052 [−0.15, 0.081] 
and 1.54 [1.32, 1.76].  

The IAE is slightly improved to be 
around 6 percentage points. The 
median and 95% CI are 0.064 
[0.045, 0.081].  

The IAE is slightly improved to be 
around 6 percentage points. The 
median and 95% CI are 0.065 
[0.040, 0.087].  

Figure 9: The main results of Experiment 2. All are posterior estimates from the model. (a) When showing bias-corrected 
distributions to participants, visually, we fnd the biases in participants’ subjective probabilities decrease. These are evidenced 
by (b) the intercepts (�s) of the linear-in-probit functions are closer to 0, and (c) the slopes (�s) for text are closer to 1. (d) 
The integrated absolute errors between subjective and true probabilities are also reduced for text (from 0.13 [0.12, 0.14] to 
0.054 [0.030, 0.076]) and slightly for histograms. 

6.4 Post hoc analysis: Coding decision strategies presented by the primary coder using representative examples. This 
proceeded in several rounds until all were satisfed with the code 

We asked participants to report their strategies as free-text re-
book. The primary coder then randomly sampled 200 responses (100 

sponses and performed qualitative coding to gain further insight 
from histogram and 100 from text) and coded them to estimate the 

into this decision-making task. 
prevalence of each strategy. Of these, 33 were too vague to identify Method Because we had over 900 responses, one of us (the primary 
a clear strategy and were removed from the analysis. We coded the 

coder) looked through comprehensible responses and categorized 
remaining 167 responses based on whether the participant used 

them until they exhausted the types of participants’ strategies. 
(1) Candidate A’s win probability, (2) the reward for each option, 

All the authors then discussed and refned the coding scheme as 
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Figure 10: The two corrections also improve the total ex-
pected rewards for an average participant. This alternative 
measure of decision quality corroborates our preregistered 
measure, IAE of subjective probability. 

(3) both, or (4) neither. We also cataloged specifc strategies under 
each category, reporting the results in Table 1. 

Results Around 42% of participants used both the win proba-
bility and the reward in betting. This included participants who 
calculated expected values for each option, participants who de-
scribed making some kind of tradeof between win probability and 
reward, and participants who described using probability and re-
ward, but did not outline a more specifc strategy. Around 47% of 
participants described various strategies using only the win prob-
ability, whether this was by always selecting the option with the 
highest win probability, or through some other probability-based 
decision rule. Around 9% of participants only used the reward in 
their decision-making, by always selecting the option with the high-
est reward. Around 2% of participants did not refer to probability 
or reward at all. 

It is notable that 42% of participants used both probability and re-
wards; i.e., the information that forms the basis of our presumptive 
decision rule: expected value. They might not all have calculated 
an expected value, but it is reasonable to think that many of their 
strategies could approximate this rule. While others might have not 
followed an approximation, the improvements in subjective proba-
bility suggest our corrections have some robustness to variance in 
strategies. However, around 11% of participants did not describe 
using probability at all. They were likely to be unafected by our 
corrections. Similarly, some participants might not have interpreted 
the task correctly (e.g., “I chose the coin fip because it has a greater 
chance of winning”). Both help explain why our corrections are 
imperfect. 

Fumeng Yang, Maryam Hedayati, and Mathew Kay 

7 DISCUSSION 

7.1 Why is the correction imperfect? 
While our correction methods improve subjective probability and 
overall decision quality, it is worth interrogating why the slopes 
of the linear-in-probit function were not completely debiased. One 
explanation is that participants may be using multiple, diferent 
strategies: Kale et al. [27], for example, found evidence that difer-
ent people employ diferent strategies when attempting to make 
decisions from uncertainty visualizations, some of which are better 
matched to the decision task than others. Our qualitative results 
revealed a similar variety of strategies and heuristics, only about 
half of which correspond approximately to our decision rule (and 
even then, many of these not precisely). Other heuristics may not 
respond to changes in the linear-in-probit parameters in the way 
our model expects: e.g., people using a heuristic of always picking 
the highest reward may not change their decisions at all, even if 
the model predicts that someone with their particular linear-in-
probit curve should change. Other cognitive biases (e.g., preferring 
an immediate reward [45]) may also afect decisions in ways not 
captured by the model (a coin fip may sound more tangible than 
a hypothetical election—and we did see some participants always 
take the coin fip).9 

Another ostensible explanation may be that 
individuals focus on diferent visualization properties than the ones 
we corrected for (e.g., left-tailed lose probabilities instead of right-
tailed win probabilities); while we did not see explicit evidence for 
this (participants talked mostly about the reward or the win proba-
bility, not the lose probability), it may be worth investigating more 
directly, perhaps via eye- or mouse-tracking studies. In any case, it 
is clear that some individuals’ strategies will not be impacted by 
our corrections as we expected. 

Whatever the cause, imperfect subjective probability correction 
is a natural result of using a model that simplifes complex human 
behavior to a two-parameter equation. It is notable that even this 
simplifed model is able to produce an efective and robust correc-
tion. Future work could attempt to model the mixture of strategies 
employed within a population to develop more precise corrections, 
or even develop personalized corrections (this could help address 
the variance in IAE across participants; see Appx. F). Our work sets 
a baseline of comparison against which more complicated correc-
tion methods can be judged. 

7.2 Applying corrections in practice 
It is exciting to see that both correction methods improve decision 
quality for both representations. After correction, both represen-
tations elicit very similar performance, and the impact of the cor-
rection on error (reduction on the order of 5 percentage points) is 
large for uncertainty visualization. If this result holds across other 
representations, for tasks where it is possible to apply such correc-
tions, the particular representation used may matter less. This has 
important implications when some representations are harder for 
some people to understand than others, e.g., if working memory 

9
It may be tempting to look to perceptual biases for an explanation as well; e.g., ten-
dencies to underestimate areas according to Stevens’ power law [54]. We think this is 
a less likely explanation, as the mathematical basis of the linear-in-log-odds model 
(and therefore the linear-in-probit approximation) in Stevens’ power law means such 
biases should be accommodated by changes in the parameters of the linear-in-probit 
function; our secondary examination of likelihood results (Appx. E) corroborates this. 
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Table 1: Participants’ betting strategies. 

Category Specifc strategy Examples Est. % 

Probability & reward Using expected values “Compared the EV of Option 2 (probability X potential payof) with EV of 
Option 1 (50)” 
“I multiplied the coins won by the projected chance of victory” 

6% 

Probability & reward A tradeof between probability 
and reward 

“I chose what I thought were the better odds. Except I always picked 1000 
because why not?” 
“I would always hit option 2 if I thought A was going to win or if it was 
350+ to win” 

28% 

Probability & reward Unspecifed strategy using prob-
ability and reward 

“Based upon probability and amount of gamble” 
“I tried to pick the bigger coin amount that had more likelihood of winning” 

8% 

Probability Using win probability “I would choose the ‘safer bet’ ” 
“What I thought had the best odds” 
“If the candidate had better than 70%” 

47% 

Reward Choosing the highest reward “I picked the larger coin amount no matter by who” 
“Everyone wants the higher amount so I took that just in case a miracle 
happened and they did win” 

9% 

Neither Choosing the coin fip “I wanted a 50/50 chance of winning.” 1% 

Neither Choosing at random “I randomly picked” 
“Kind of back and forth to make the odd go either way.” 

2% 

capacity limits some people’s ability to take advantage of some 
representations [6]. 

That said, there are practical issues with applying these cor-
rections. First, the decision task and associated heuristics must 
be unambiguous; in election forecasting, we have assumed peo-
ple are interested in right-tailed (win) probabilities, not left-tailed 
probabilities—and this is largely corroborated by our qualitative 
results. If a task called for people to focus on other aspects of a dis-
tribution (e.g., its variance), a diferent correction would be needed. 
In the election forecasting scenario, because the intercept (�) is 
nonzero, a slightly diferent correction would be applied depending 
on if the viewer is interested in whether Candidate A wins (right-
tailed probability) or loses (left-tailed). One compromise would be to 
pick a correction that is symmetric, even if imperfect: since � in this 
task is relatively small, we could fx it to 0 so that the corrections 
for left- and right-tailed probabilities are equivalent. This would 
amount to multiplying the forecast distribution standard deviation 
by � ≈ 2 (the approximate value of � estimated in Experiment 1); 
and this would essentially attempt to correct for people’s tendency 
to “round to 100%” or “round to 0%” (see Fig. 3a right column, where 
� = 2). In this way, knowledge of domain tasks and the biases at 
play may be used to construct a correction tailored to a particular 
use case; work on guidelines for applying distribution corrections 
in practice may therefore be fruitful. 

Second, distributions other than the Normal may require tailored 
corrections, depending on the task. We provide the closed-form 
Normal correction because Normal distributions are ubiquitous 
in uncertainty quantifcation, and this simpler correction may be 
more accessible to practitioners. For other distributions, if the goal 
is to correct the CDF or CCDF, it is not necessary to know a closed-
form correction nor to tailor the correction to the distribution. 
The generic correction formula in Sec. 3.3 can be applied directly 

to either the parametric CDF or CCDF of a distribution, or an 
approximate CDF or CCDF estimated from a sample (see Appx. H). 
However, if domain-specifc concerns complicate the task—like the 
mode crossing the 50% line in an election forecast—more tailored 
corrections like the skew-Normal correction may be needed. 

Third, it is necessary to elicit the parameters of any correction 
before applying it in practice. At the very least, there are several 
domains of sufcient societal importance that this elicitation exer-
cise is worthwhile: e.g., election forecasts, climate change forecasts, 
and epidemiological modeling (as in the COVID-19 pandemic and 
its associated forecasts). For journalists working in U.S. election 
forecasting, corrections using our parameter estimates should be 
appropriate, as we used U.S. demographically-balanced samples. 
Future research could use our methods to estimate correction pa-
rameters for other domains, which could then be adopted by practi-
tioners. Such eforts would lead to a clearer picture of how and why 
subjective probability varies across domains, yielding an improved 
understanding of people’s decision-making under uncertainty. 

7.3 Ethics of subjective probability correction 
One possible objection to applying these corrections may be that 
adjusting probabilities is not transparent (or worse, amounts to 
lying). We believe this question is not so simple, and rests some-

what on a foundational question of uncertainty communication: 
is the goal to communicate mathematically precise probabilities 
(assuming a forecaster’s probabilities are “true”—which is already 
dubious), or is the goal to induce reasonable subjective probabili-
ties in the viewer? If a viewer’s decision-making process is better 
aligned to forecasts that overstate uncertainty, e.g., by multiplying 
the standard deviation by a factor of ≈ 2, is applying this correction 
unethical? Or if it is ethical to correct color scales to be perceived as 
uniform even when mathematically they are not, is it also ethical to 
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correct probabilities to be acted on more normatively even if those 
probabilities are not displayed exactly as calculated by a forecast? 
And if the answers to these questions difer: why? 

We do not claim to have perfect answers to these questions, and 
suspect that the answers will vary by decision context, audience 
values, etc. Some forecasters appear already to have answered “yes”: 
weather forecasters, for example, may over-predict the probability 
of rain, because their audience is happier when a forecast for rain is 
wrong (they don’t get wet) than when a forecast for no rain is wrong 
(and they get wet) [48]. An understanding of the stakes in a decision, 
the expertise of the decision-maker, and the communication norms 
of a domain should determine whether and how bias corrections 
might be applied. 

These questions do suggest a need for further study and guidance 
in how to report forecasts if a correction is applied. One approach 
may be to apply such corrections transparently: e.g., to experiment 
with showing an uncorrected and corrected distribution together, 
or to include descriptions of the correction and its rationale in text 
even if the uncorrected distribution is not shown. The impact of 
such approaches on decision-making is worth studying: if people 
are told the correction is applied to aid their decision-making, does 
this negate the beneft of the correction? 

Another approach may be to adopt communication strategies 
that have the efect of a bias correction without applying it to the 
distribution representation itself. For example, Padilla et al. [42] 
found that qualitative expressions of low forecaster confdence, 
e.g., labeling a forecast “low confdence”, paired with a forecast 
distribution, had essentially the equivalent efect of increasing the 
standard deviation. If a qualitative expression could be found that 
approximately aligns with the desired increase in standard deviation 
implied by the slope (�) for a domain, this may be an alternative to 
changing the representation itself. Overall, we believe that careful 
consideration of the values of the audience, the decision-making 
context, and further study of approaches to bias correction should 
allow visualization designers to more efectively—and ethically— 
construct uncertainty representations. 

8 CONCLUSION 
We propose a new approach to improve uncertainty communication: 
we can fx uncertainty representations but change the distribution 
being displayed to improve people’s decision quality. Our approach 
corrects biases in subjective probabilities for uncertainty representa-
tions based on models of people’s beliefs. We derive two corrections 
tailored for Normal distributions and show how to estimate the pa-
rameters for these corrections empirically. We also demonstrate that 
the corrections reduce biases in people’s subjective probabilities 
and improve their decision quality. Our approach can be applied to 
any visual representation where the subjective probability function 
is known, and it can be generalized to any univariate probability 
or confdence distribution, giving it broad applicability. That said, 
questions remain about how to tailor the correction to the domain 
tasks (and concordant biases), and how to transparently apply such 
corrections in practice. Overall, our work opens a new avenue for 
subjective probability correction in uncertainty communication, 
providing a promising tool for decision-making under uncertainty. 
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