
How Data Analysts Use a Visualization Grammar in Practice
Xiaoying Pu Matthew Kay

University of California, Merced Northwestern University
Merced, CA, USA Evanston, IL, USA
xpu@umich.edu mjskay@northwestern.edu

Executing plots

Analytical task,
customization

GoG
componentsvs.

Section 5.2

Evaluating analysis

Silent errors
Section 5.3

1. GoG iteration patterns

Ex
ec

-e
va

l lo
op

Vis
spec

Data
wranglingTight coupling

Feedback loop
Section 5.5.1

Section 5.5.2

2. GoG x data wrangling
Incremental and
experimental edits

Informal plot
templates

Section 5.4.1

Section 5.5.1

Figure 1: Overview of our study results on how analysts used the Grammar of Graphics (GoG)-based ggplot2.

ABSTRACT
Visualization grammars, often based on the Grammar of Graphics
(GoG), have much potential for augmenting data analysis in a pro-
gramming environment. However, we do not know how analysts
conceptualize grammar abstractions, or how a visualization gram-
mar works with data analysis in practice. Therefore, we qualitatively
analyzed how experienced analysts (� = 6) from TidyTuesday, a
social data project, wrangled and visualized data using GoG-based
ggplot2 without given tasks in R Markdown. Though participants’
analysis and customization needs could mismatch with GoG compo-
nent design, their analysis processes aligned with the goal of GoG to
expedite visualization iteration. We also found a feedback loop and
tight coupling between visualization and data transformation code,
explaining both participants’ productivity and their errors. From
these results, we discuss how future visualization grammars can
become more practical for analysts and how visualization grammar
and analysis tools can better integrate within a programming (i.e.,
computational notebook) environment.

CCS CONCEPTS
• Human-centered computing → Empirical studies in visual-
ization; Visualization theory, concepts and paradigms.

KEYWORDS
Visualization grammar, TidyTuesday, computational notebook

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9421-5/23/04. . . $15.00
https://doi.org/10.1145/3544548.3580837

ACM Reference Format:
Xiaoying Pu and Matthew Kay. 2023. How Data Analysts Use a Visualization
Grammar in Practice. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems (CHI ’23), April 23–28, 2023, Hamburg, Ger-
many. ACM, New York, NY, USA, 22 pages. https://doi.org/10.1145/3544548.
3580837

1 INTRODUCTION
Creating visualizations is a signifcant part of data analysts’ work.
Through writing code in computational notebooks, analysts can
interleave visualization with analyses to explore data, generate
hypotheses, and evaluate modeling results. Given the utility of
visualizations, analysts need a way to easily and reliably specify
visualizations in their data work. One solution is to use visualization
grammars, formalisms that create a wide range of visualizations by
combinations of grammar components. Building from the original
Grammar of Graphics (GoG) [70], visualization grammars have
proliferated in the past decade (in literature as reviewed by Mc-
Nutt [38] and in major scripting languages). Popular visualization
grammars include ggplot2 [66] in the R language and the Vega
ecosystem [55–57] in Javascript.

In theory, GoG-based visualization grammars can be benefcial.
The Grammar of Graphics is intended to be expressive, using a com-
bination of components to describe a wide range of visualizations
with simple and elegant specifcations [70]. When evaluated with
usability heuristics (i.e. the cognitive dimensions of notations [6]),
GoG-based grammars have been found to promote iteration and
encourage the exploration of visualization designs [48, 57].

Despite the popularity and theoretical benefts of visualization
grammars, we know little about whether or how analysts take ad-
vantage of these grammars in practice [38, 49], especially given
the potential tension between GoG design intention and analysts’
needs. Understanding how analysts use visualization grammars can
be crucial to improving grammar designs. Since GoG is designed
for expressiveness, learning from analysts’ conceptualizations and
usage patterns can make grammars more aligned with analysts’

https://doi.org/10.1145/3544548.3580837
https://doi.org/10.1145/3544548.3580837
https://doi.org/10.1145/3544548.3580837
mailto:permissions@acm.org
mailto:mjskay@northwestern.edu
mailto:xpu@umich.edu

CHI ’23, April 23–28, 2023, Hamburg, Germany Pu and Kay

tasks and analysis less error-prone. Contextualizing grammar use
within data analysis can lead to grammar design more integrated
into analysis workfows. Thus far in the literature, when assessing
a new grammar or system building on a grammar, researchers have
asked study participants to recreate visualizations [32, 44], but recre-
ation does not tell us how analysts explore and iterate on analysis
and visualizations. When study participants use a custom interface
(e.g. Voyager 2 [74]), their exploration can be constrained by what
the interface supports, compared to the full array of analyses they
would have access to in a programming environment. In this paper,
we directly study how real-world analysts use GoG-based ggplot2
to wrangle and plot data for analyses in computational notebooks.
We answer the following research questions:

RQ1. What are the analysts’ conceptualization and usage patterns
of the Grammar of Graphics (GoG) [65, 70]? We interpret
analysts’ use of ggplot2 in terms of the GoG abstractions
for generalizability.

RQ2. What is the interplay between a GoG-based visualization
grammar and programming-based data wrangling in an anal-
ysis environment? Our other focus is on data wrangling, a
signifcant part of the visualization process.

The #TidyTuesday R community provided us with an oppor-
tunity to answer the above questions. #TidyTuesday is a “weekly
social data project”, where participants explore, wrangle, and visu-
alize weekly datasets in the R language and post their process and
results on social media [41, 58]. We collected #TidyTuesday record-
ings from six (� = 6) participants with intermediate to advanced
ggplot2 experience, followed up with retrospective interviews, and
analyzed this rich data set with refexive thematic analysis. Summa-
rized in Figure 1, we used an execution-evaluation loop [1] to explain
participants’ use of a visualization grammar in data analysis:

• executing
customization needs are sometimes mismatched with the
GoG design. For example, participants who wanted to apply
custom colors, positions, and angles faced difculties because
GoG only facilitates the mapping of data, not customizations,
onto visual elements.

• Participants made hard-to-evaluate silent errors [37], where
their data wrangling and visualization specifcations implied
diferent data semantics, producing plausible-looking plots
without explicit errors.

• When viewing participants’ analysis processes as an execution-
evaluation loop, participants iterated and explored visual-
ization alternatives visualizations as GoG was designed for,
and they also made informal plot templates that encapsu-
lated their visualization and wrangling code. Between GoG
visualization and data wrangling specifcations, we identi-
fed a feedback loop enabled by the modular design of GoG:
plotting outputs inform subsequent data wrangling, and vice
versa. There is also a tight coupling, where GoG specifcation
and analysis need to be kept consistent to avoid errors.

When creating () plots, participants’ analysis and

Our fndings can inform future visualization grammar designs:
we ofer suggestions for making grammars more practical for ana-
lysts’ needs by supporting plot templates and customizations. We

also discuss ways to help analysts evaluate and integrate visual-
ization and analysis specifcations in the computational notebook
programming environment.

2 RELATED WORK

2.1 The Grammar of Graphics and ggplot2
The Grammar of Graphics (GoG) is an infuential formalism for
specifying statistical graphics [70]. The grammar consists of six
types of components, including DATA and ELEMENT, and concise
grammar rules, such as one for relating data attributes to visual
attributes. GoG is powerful because it describes a wide range of
visualizations (i.e., being expressive [36]) through combinations of
components. This is in contrast to using visualization templates [72]
like in Google Charts and Charts.js,1 where we might need to start
over to change from a scatterplot to a bar chart. GoG inspired many
visualization grammars in multiple languages. McNutt provides an
in-depth, literature-oriented survey and analysis of 57 visualization
grammars (broadly defned as JSON-style DSLs) [38]. In practice,
GoG-inspired grammars include ggplot2 [66] in R, Vega-Lite [55]
in Javascript, Seaborn,2 Altair (Vega-Lite frontend) [62], and plot-
nine3 in Python, and Gadfy.jl, Algebra of Graphics in Julia.4

We studied how analysts used visualization grammars through
ggplot2 partly because its syntax directly corresponds to the un-
derlying grammar components. ggplot2 implements the Layered
Grammar of Graphics, a re-parametrization of GoG proposed by
Wickham [65]. We introduce the syntax of ggplot2 with a snippet
from participant 3 (P3) in our study, see Figure 2. Each ggplot2
visualization consists of a default layer (ggplot(), line 3). The an-
alyst can add (+) layers by instantiating geometries (geom_point,
line 5) or statistical transformations (e.g., density estimate). Geome-
tries are also known as marks in Vega-Lite [55]. Aesthetics (a.k.a.
encoding channels) are visual properties of the geometries that can
vary with data variables, such as x-axis position and color. aes()
(line 4) establish the aesthetic mapping (a.k.a. encoding) from data
variables to aesthetics; here a variable about pumpkin size (ott,
“over-the-top”) is mapped onto the x-axis position aesthetic of the
point geometry. Note that alpha and size in geom_point() are
not part of an aesthetic mapping but hard-coded arguments not in
the dataset pumpkins. We discuss how our fndings may generalize
to other GoG-based grammars in Section 6.4.

2.2 Evaluating the benefts of visualization
grammars

Visualization grammars are associated with many benefts. Claims
about being expressive [36] can be demonstrated by enumerating
the types of visualizations a grammar can specify, as seen in Vega-
Lite [55], ATOM [45], Canis [22], and Nebula [15]. Several stud-
ies have used the Cognitive Dimensions of Notations [6], a set of
heuristics, to evaluate the usability of a grammar (e.g. Vega [57],
Nebula [15], the Probabilistic Grammar of Graphics [48]). These

1Google charts: https://developers.google.com/chart; Charts.js: https://www.chartjs.
org
2Seaborn with the “next-generation interface”, see https://seaborn.pydata.org/nextgen/
3https://plotnine.readthedocs.io/en/stable/
4Gadfy.jl: http://gadfyjl.org/. Algebra of Graphics: http://juliaplots.org/
AlgebraOfGraphics.jl/stable/

https://developers.google.com/chart
https://www.chartjs.org
https://www.chartjs.org
https://seaborn.pydata.org/nextgen/
https://plotnine.readthedocs.io/en/stable/
http://gadflyjl.org/
http://juliaplots.org/AlgebraOfGraphics.jl/stable/
http://juliaplots.org/AlgebraOfGraphics.jl/stable/
https://Charts.js
https://Gadfly.jl

How Data Analysts Use a Visualization Grammar in Practice CHI ’23, April 23–28, 2023, Hamburg, Germany

pumpkins %>%
 filter(ott < 1e3, ott > 10) %>%
 ggplot(
 aes(x = ott, y = weight_lbs)) +
 geom_point(alpha = 0.1, size = 1.1)

The dataset & its
columns as variables

1
2
3
4
5

dplyr filter:
data wrangling

“pipes into”

ggplot2
grammar
components

Aesthetic mapping
Aesthetic
Geometry
Statistic

aes()
x,y
geom_*()
stat_*()

Encoding
Encoding channel
Mark
Transform

Vega-Lite equiv.ggplot2

ggplot2 syntax
translation

Figure 2: Left: example R code chunk from P3, showing a dataset pumpkins, data wrangling using the filter() function from
the dplyr R package [69], and ggplot2 specifcation. The results from data wrangling is “piped into” ggplot2 by the %>% operator.
Right: equivalences between the ggplot2 and Vega-Lite [55] syntax for reader’s reference.

dimensions imply that if a grammar evaluates favorably, it can pro-
mote the iteration of visualization specifcation and the exploration
of the visualization design space, as argued in Pu & Kay [48].

Beyond heuristics, user studies have the potential to further
evaluate expressiveness and how grammars promote exploration
and iteration. However, existing literature has not studied these
benefts directly due to task design and participant expertise. For
study task designs, asking participants to recreate pre-specifed
visualizations with Gemini [32] or Vega-Lite [44] does not capture
how analysts would have explored and iterated on visualization
designs. Completing given visual analysis tasks in Voyager [74]
or answering data questions in ggplot2 [43] does not necessarily
refect how analysts would have explored data and visualization
designs on their own. Another barrier to capturing iteration and
exploration in a study can be the participants’ expertise: evaluating
a grammar with new users can be premature [25] because they
need tutorials and may not take full advantage of the benefts of a
grammar. In our study, we improve the evaluation of visualization
grammars by studying visualization and analysis processes done
without prescribed tasks, and by recruiting analysts experienced
with ggplot2 as participants.

2.3 Signifcance of the analysis context for
understanding visualization specifcation

In descriptive models, data wrangling and analysis have been con-
sidered an integral part of the visualization process (not specifc
to using visualization grammars). For example, the visualization
reference model by Card et al. includes a step for “raw data trans-
forms” [12, Chapter 1]. As an extension to the reference model,
Chi’s visualization state model for operators allows multiple analy-
sis pipelines and adopts a state-transition (data-operator) abstrac-
tion [17]. Munzner’s nested model focuses on the abstraction from
domain problem to generic data operations [42]. Through a sense-
making lens, Grolemund and Wickham further considered visual-
ization a form of data transformation [26]. These models provide
a theoretical motivation for including data analysis as part of the
visualization specifcation process.

In data science practice, visualizations are specifed in the con-
text of data analysis. As an analysis medium, computational note-
books are documents where analysts can interleave analysis code,
documentation, and visualizations, often used for exploratory data
analysis (EDA) [61]. To illustrate, Figure 2 shows a code chunk from

P3’s R Markdown notebook [78] that contains both data wrangling
(filter) and visualization specifcation. Other notebook environ-
ments include Jupyter notebook [47] and Observable.5 As visualiza-
tion grammars in common scripting languages (e.g. Python, R, Julia)
get more adoption, we need a better understanding of how visual-
ization specifcations (with grammars) integrate with data analysis
in notebooks. Wood proposed litvis, a notebook environment for
integrating writing visualization code with documenting design
expositions [75], though the focus is not on analysis. As Battle et al.
pointed out, there is currently little research on how visualization
grammars incorporate into analysts’ implementation workfows [3].
Chattopadhyay et al. identifed visualization-related pain points in
notebook use, including customizing the plots and interfacing be-
tween data exploration and visualization tools [13]; however, they
did not analyze specifc visualization grammars or libraries. From
a sample of Stack Overfow posts, Battle et al. tallied the broader
toolsets D3 (a visualization “kernel”) [7] users employ [3], such as
other JavaScript libraries, R/python, and Excel, but this dataset con-
tained little description about analysts’ workfow process. In this
study, we pinpointed how analysts use a visualization grammar (i.e.
ggplot2) during data analysis in R Markdown. We incorporated
the analysis workfow information from participant recordings and
formulated answers about how ggplot2, or GoG in general, works
together with data analysis.

3 STUDY
The #TidyTuesday community provides an opportunity to study
how analysts wrangle and visualize data in a practical setting. We
collected existing and new recordings of participants completing
#TidyTuesday projects at their own pace, and we followed up
with retrospective interviews. Our goal is to answer rq1 about
the conceptualization and use of GoG and rq2 about the interplay
between visualization grammar and data analysis. Before recruiting
started, the IRB at the University of Michigan determined the study
to be exempt (HUM00201007).

3.1 Reasons to recruit from #TidyTuesday
#TidyTuesday is a community-based, “social data project in R”
running since 2018 [41]. It provides a new dataset each week, and

5https://observablehq.com

https://observablehq.com

CHI ’23, April 23–28, 2023, Hamburg, Germany Pu and Kay

participants wrangle and visualize the data following their inter-
ests. As the guidelines6 of #TidyTuesday encourage, participants
often share their visualizations, source code, even videos and ani-
mations of their creation process on social media. #TidyTuesday is
popular—the hashtag has been tweeted more than 22,000 times as of
November, 2022 [41]. We chose to recruit from the #TidyTuesday
community for the following reasons:

• Shared goal and convention: according to Shrestha et al.,
#TidyTuesday is a connected community with the shared
goal of improving their analysis and visualization skills [58].
From our observation, #TidyTuesday participants tend to
wrangle and visualize data for their weekly datasets as self-
contained projects, which helped us avoid giving task in-
structions. Participants also mostly use ggplot2, a grammar
we aimed to study.

• Culture of sharing: #TidyTuesday participants post their
visualizations, even recordings of their process, on social
media. We collected these recordings as part of our study.

• Variety of expertise: analysts from novices to experts par-
ticipate in #TidyTuesday albeit in diferent roles [58]. Com-
pared to recruiting from college classrooms, #TidyTuesday
participants who are data science professionals might bring
their practical experiences and expertise. We recruited peo-
ple who successfully completed #TidyTuesday projects—
they self-identifed as intermediate to expert-level ggplot2
users and had relevant industry experience or academic train-
ing, see Table 1.

3.2 Participants
We recruited in two phases between September and November 2021.
In Phase 1, we contacted Twitter, Youtube, and Twitch users who
posted recordings of their data analysis with the #TidyTuesday
hashtag. Three out of 13 potential participants joined the study; the
inclusion criteria are:

(1)
session with iterations on > 3 ggplot2 visualizations.

(2) R source code is available or shown in the recording.
(3) For better recall during the interview, the recording is no

more than a month old.7

(4) The participant does not reside in the EU or UK for GDPR
compliance.

The recording is a self-contained, unedited data analysis

After exhausting the frst participant pool, we recruited with
a survey (Phase 2). All Phase 2 participants created new record-
ings for our study. We distributed the survey in a public Slack
channel and on Twitter under #TidyTuesday and #RStat hashtags.
Recruiting continued until we gathered enough data to answer our
research questions and observe similar patterns in participants’
recordings [10]. Three participated among 24 survey respondents.

In total, six (� = 6) participants completed the study, their demo-
graphics summarized in Table 1. Phase 1 and Phase 2 participants
may difer in their profciency and motivation, but both groups
met the inclusion criteria and contributed to the richness of the

6https://github.com/rfordatascience/tidytuesday#readme
7Russell and Chi provide an example review delay of 1-6 weeks [53]. With a maximum
six-week delay in mind, we looked for videos recorded at most four weeks ago and
factored in two weeks for scheduling the interview.

results. During interviews, participants self-reported their ggplot2
experience level (all intermediate to advanced). Phase 2 participants
received $25 for making recordings for this study, and everyone
received $25 for their respective interview.8

3.3 Recording task
Phase 1 participants (P1, P2, P3) recorded and posted their analysis
process online without the knowledge of our study.9 For Phase 2
participants (P4, P6, P7), we asked them to record a video as if
they were creating a new #TidyTuesday submission while thinking
out loud. We expected that the survey would reach people who
understood what a #TidyTuesday submission entails—wrangling
data and creating plots; all participants met our expectation and the
inclusion criteria. Applicable to all participants, we did not specify
which dataset to work on, what data questions to answer, or what
visualizations to create. Prior work has found that task questions
can afect participants’ process and visualization choices [24], so
by holding back specifc instructions, we hoped to capture a wide
variety of data analysis and visualization processes.

3.4 Retrospective interview
The frst author conducted a retrospective, semi-structured inter-
view with each participant via Zoom. We scheduled the interviews
within 3.3 weeks on average after each participant’s recording date.
The time delay was for us to analyze the recordings and write tar-
geted questions. According to Russell and Chi, 3.3 weeks is within
the acceptable range of review delay [53]. At the beginning of each
interview, we asked the participant to confrm their consent to be
recorded (video of screenshare and audio).

There are two parts to each interview: 1) general questions to
elicit experiences and opinions about ggplot2 and the Grammar
of Graphics, and 2) targeted questions that asked participants to
clarify and explain their decisions and analysis patterns. We en-
couraged participants to use their own words to describe analysis
and visualization concepts. For the second part, we followed the
retrospective cued recall protocol [53]. As we asked participants
questions specifc to each GIF or video, we showed slides with the
visualizations and the corresponding R source code. The visuals
served as memory cues to reconstruct the context of the recording
quickly. Questions were ordered chronologically, in the order of
the recording. For validation, we asked two recall questions per
participant, for example, “Could you describe what you did next?”.
All participants answered correctly, if not immediately. Even if par-
ticipants had blurred memory, the interviews still revealed what
participants would have done in similar situations.

4 ANALYSIS
Combining the participant recordings and interviews, we used
refexive thematic analysis [8, 9] to fnd rq1 participants’ concep-
tualizations and use of the Grammar of Graphics; and rq2 the
interplay between visualization grammar and data transformation

8P5 was interrupted during their recording and chose not to fnish. We did not include
P5 in the analysis, but they still received $25.
9Unlike other participants’ videos, P1’s recording was a GIF without think-aloud audio
or a history of code edits. We reconstructed P1’s code by using our ggplot2 knowledge
and asking clarifying questions during the interview.

https://github.com/rfordatascience/tidytuesday#readme

How Data Analysts Use a Visualization Grammar in Practice CHI ’23, April 23–28, 2023, Hamburg, Germany

Education ggplot2 experience Industry Job title Format Phase

P1 Master Intermediate HigherEd/Gov Data scientist GIF 1
P2 PhD Expert Tech/Analytics Data scientist (55 m.) 1
P3 PhD Adv. intermediate Software Software engineer (37 m.) 1
P4 Bachelor Fairly experienced Financial services Business analyst (57 m.) 2
P6 (PhD) Experienced HigherEd (biostat) PhD student (66 m.) 2
P7 (Bachelor) Intermediate HigherEd (HCI) Undergrad. student (100 m.) 2

Table 1: Participant demographics and the formats of their recordings. Education level in parentheses is the level each participant
was working towards. ggplot2 experience was self-described during the interviews. : a video recording of � minutes.

Phase 1 Phase 2

Codes from
recordings

Search on Twitter,
YouTube, Twitch

13 existing recordings

3 existing

Recruitment; inclusion criteria

1. TidyTuesday recording collection

Recruitment survey
on Twitter, Slack

24 survey responses

3 new recordings

2. Retrospective interviews (6)

Interview
questions

Update

Interview
transcript

Annotate

3. Synthesis

Codes from
interviews

Segmented
edit logs

Interplay of GoG
and wrangling

How analysts
use GoG

Grammar of
Graphics (GoG)+

Figure 3: The three steps of our study and thematic analysis. Data, codes, and themes are bolded.

in a data project. Figure 3 summarizes our analysis process in the
context of the study design.

4.1 Recording edit logs and segmentation
We derived codes and conceptualized themes from the #TidyTuesday
recordings (Figure 3.2). First, we reconstructed the recordings through
a log of code edits and other interactions, shown in Figure 5. The
types of code edit are: data wrangling (dplyr functions [69]) edits, vi-
sualization (ggplot2) edits, console output, errors and interactions
such as googling and reading the R documentation. For example, if a
participant runs their code twice by adding an aesthetic mapping in
their code and then changing its arguments, we count this process
as two visualization edits. We reconstructed P1’s analysis process
in R based on the GIF keyframes and P1’s fnal R script (which
included all data wrangling). During the interview, we confrmed
our reconstruction with P1. Since all participants did think-aloud
during video recordings, we also selectively transcribed quotes
when participants explained their edits.

We arranged each participant’s edit log into segments. Similar to
visualization construction cycles in Grammel et al. [24], we defne
each segment to capture how a participant created and refned a
visualization or dataframe. A segment starts when a participant
started a new analysis objective [4], a new plot (ggplot() call), or
switched to a diferent dataframe or variable. The segment ends
when the participant fnished iterating on the plot or dataframe.
Segmentation helps us structure our qualitative analysis, and it

captures how individual plots are created—including the data wran-
gling that precedes the plot and the iterations on the plot design.

4.2 Thematic analysis
We used refexive thematic analysis [8] to analyze our data. The
frst author derived the initial codes, either semantic or latent, from
the edit logs and think-aloud quotes from the recordings, as well as
the transcribed interviews. In Figure 4, for example, the frst author
assigned a semantic code to describe the filter() data edit P3 made.
Latent codes are from when the frst author interpreted participants’
common behavioral patterns, mistakes, or conceptualizations, such
as “confusion about how color mapping works: data vs. aesthetic
space”. We created 219 (� = 36.50, �� = 20.34 per participant) initial
codes from the recordings and 422 (� = 70.33, �� = 19.69) from the
interviews. To incorporate diferent perspectives on interpreting
the data, the frst author discussed code assignments with other
authors, which included reviewing latent codes in the context of
the raw data (i.e., participants’ R code and quotes).

Then, we combined codes from the recordings and interviews
to collaboratively generate inductive and deductive themes in an
afnity diagram. We intended the themes to capture “clusters of
meaning” with a coherent narrative, as advised by Braun et al. [10].
In particular, inductive themes were bottom-up, from common
meanings in the codes, such as “participants liked ggplot2 for
the Tidyverse”. Deductive themes were informed by theory: 1) the
components of the Grammar of Graphics, and 2) the hypothesis

CHI ’23, April 23–28, 2023, Hamburg, Germany Pu and Kay

+ aes(x, y)
+ geom_point(alpha,

size)
+ filter() + labs(x, y)

Vis output leads
to data op
(filtering)

"This is very
useful because ...
some bad data"

"Let's make it
more clear"

[Quote from recording think- aloud]

[Vis edit] [Data edit] [Code]

pumpkins %>%
 ggplot(aes(ott, weight_lbs)) +
 geom_point(alpha = 0.1, size = 1.1)

pumpkins %>%
 filter(ott < 1e3, ott > 10) %>%
 ggplot(aes(ott, weight_lbs)) +
 geom_point(alpha = 0.1, size = 1.1)+
 labs(x = "...", y = "...")

Figure 4: How we coded participant recordings on a virtual whiteboard, showing two consecutive screenshots from P3’s RStudio
IDE interface. Colored stickies notes contain think-aloud quotes, visualization or data edits, and a thematic analysis code.

that GoG helps iterative visualization designs. After two to three
passes, all authors contributed to adding, removing, and fnalizing
the themes, which make up the titles in Section 5.

5 RESULTS

5.1 Overview of participant recordings
The six participants completed data projects with diferent foci.
P1 made a lollipop chart (Figure 8), “data art” in their own words.
P2, P3, and P6 recorded similar exploratory data analysis (EDA)
processes where they explored the relationships among several vari-
ables through wrangling and plotting. P2 and P3 additionally tuned
machine learning models. P4 and P7 each created a communicative
visualization that showed one aspect of the data they explored. As
an example of participants’ analysis process, Figure 5 shows the edit
log from P4 divided into segments (defned in Section 4.1). Other
edit logs are available in Supplemental Materials.

To roughly assess how expressive participants’ data and visual-
ization specifcations were, we tallied the average number of code
edits across all participants with video recordings. We also contex-
tualized the tally by analyzing a GitHub corpus of all R code fles
(R, Rmd, Qmd) containing the #TidyTuesday library import [41],
with � = 3649 fles from 975 unique contributors. Shown in Fig-
ure 6, our participants used roughly the same set of data wrangling
functions as the broader code corpus. Our participants also used
a variety of geometry (14) and scale (9) functions, while the code
corpus contained even more unique geometries, themes, and sta-
tistical transformations as expected from the larger sample size.
The average edit per fle was higher in participants’ edit logs; one
explanation is that the code corpus contained the fnal versions
of the code and did not capture addition, change, and deletion ed-
its. Judging by the tallies, our participants’ analysis code could be
typical of the #TidyTuesday code corpus.

5.2 Execution: conceptualization of GoG
components

Even though participants successfully created (executed) visualiza-
tions with ggplot2, their tasks and needs did not always directly
correspond to how Grammar of Graphics components are designed.

5.2.1 Data space vs. aesthetic space. When participants customized
their plots, they had difculties specifying the data component in
the Layered Grammar of Graphics [65], either making mistakes or
fnding customization tedious. Customizations included colors (P1),
relative sizes (P1, P4), and locations of visual elements (P7).

To interpret participants’ difculties, we use the distinction of
data space and aesthetic space [66, Chapter 15]. The data space con-
tains input data with domain meanings, for example, “types of bee
colony stressors”. In contrast, the aesthetic space contains values
describing aesthetics, such as the color hex value #a62d3b. Partici-
pants specifed customizations in the data and aesthetic spaces in
these ways:

• Hard-coding values in the data space (Figure 7.2). Partici-
pants hard-coded values to adjust the relative sizing of visual
elements (P1), position annotations (P7), and shrink the size
of dots to avoid overlaps (P4). With no support from the gram-
mar, participants needed to guess what data space values
could achieve their desired output. P1 expressed frustration
with this “back-and-forth” process.

• (Mis)-using aesthetic space values in the data space. P1 wished
to apply a custom color palette. When they frst assigned
hex values including "#a62d3b" to the color aesthetic, the
color did not change because "#a62d3b" was treated as a
value in the data space,10 not a color in the aesthetic space,
see Figure 7.3.

• Specifying values in the aesthetic space via a custom scale
function. To fx the color palette problem above, P1 changed
the mapping to aes(color = year) and introduced the color

10In ggplot2, categorical values in the data space all use the same default colors
palette [66, Chapter 11.3]

How Data Analysts Use a Visualization Grammar in Practice CHI ’23, April 23–28, 2023, Hamburg, Germany

1. Import data; overview

2. Aggregate top 5
countries by rating

3. Aggregate rating
by continent

P4’s full edit log in segments. Data on chocolate ratings by country
Edit and interaction type
d data wrangling (dplyr) edit

c console print output

v visualization (ggplot2) edit

i interaction (Google, documentation, …)

e error in R

Figure 5: P4’s full edit log from their #TidyTuesday video recording. One square is one edit or interaction. Squares are arranged
from left to right in chronological order, grouped by segments.

Edit type Edit Mean #/file
Data
wrangling

group_by 6.8
mutate 5.6
filter 4.2
select 2.8
count 2.2
summarize 2.0

ggplot fn Mean #/file # unique
geom 4.49 105
aes 4.44 -
theme 1.44 104
facet 0.65 13
scale 0.04 9
stat 0.04 23

dplyr fn Mean #/file
mutate 3.30
filter 3.30
group_by 1.57
select 1.14
count 0.96
arrange 0.71

Edit type Edit Mean #/file # unique
Vis geom 8.0 14
vis aes 4.6 -
vis scale 2.2 9
vis facet 1.8 3
vis theme 1.8 4
vis stat 1.6 2

Data
wrangling
(dplyr)

Vis
(ggplot2)

Participant edit log #TidyTuesday corpus (N = 3649)

Top 6

Figure 6: Top data and visualization edit types by average counts per participant with video recordings. Variants of a grammar
component, such as geom_bar and geom_col, are merged into the base function, in this case geom. We also provide average counts
from a #TidyTuesday code corpus (N = 3649), which is static and does not capture code edits such as changing parameters.

Data Space Aesthetic Space

stressor
data variable

-0.8
 hard-coded

value
x (position)

default colorsscale func. !“#a62d3b”
*misused

default colors
default scale

year
2022,2023.. custom colors

scale(“# ”)

Data Space Aesthetic Space

①

②

③
✔④

#a62d3b
!

Figure 7: Data space and aesthetic space. 1: mapping a data variable stressor in data space to the color aesthetic; all participants
specifed such mapping without incident. 2: hard-coding values in the data space to place a text annotation (P7). 3: misusing
aesthetic space value (hex code) in the data space (P1). 4: P1’s fx to use a custom palette—the year variable is mapped onto the
color aesthetic with a custom scale function, the range of which is the custom color palette.

CHI ’23, April 23–28, 2023, Hamburg, Germany Pu and Kay

Analyst’s comparison taskLayered GoG components

Juxtaposition

Superposition

...

Data

Layers

Scale
Coord
Facet

Defaults

Mapping

Geom
Stat
Position

Color

Figure 9: Correspondence between P3’s comparison task and
GoG components. Color (a type of aesthetic) and facet are
not the same type of component in the Layered Grammar of
Graphics [65]. Line charts are reproduced from Gleicher [23].

Figure 8: P1’s fnal visualization as a lollipop chart.

values (in the aesthetic space) through a scale() function11

(Figure 7.4). The scale function notes the custom mapping
from color hex values to ���� , and transforms the ���� data
into the corresponding hex values when the plot builds.

Compared to customizing plots, all participants specifed within
the data space by data column/variable names without incident.
For example, P6 used x = stressor to map the stressor column
name onto the �-axis as part of a bar chart, see Figure 7.1. We hy-
pothesize that customization was challenging because it fell outside
the GoG norm of mapping names in data space onto aesthetics.
For customizations, participants’ frst intuition (i.e. using aesthetic
space color value in an aesthetic mapping) might not comply with
GoG rules. Since GoG is not designed for generating data to achieve
custom plot appearance, participants needed to do extra work (i.e.
using a custom scale function and “back-and-forth” hard-coding)
to introduce customization data into the rest of the GoG abstrac-
tion. We discuss how a visualization grammar may better support
customization in Section 6.

5.2.2 Aesthetic vs. faceting. Aesthetics (also called visual chan-
nels [55]) are visual properties of geometries that can vary with
data, such as the x-axis position or color of a point. Participants
chose aesthetics based on their tasks, which included comparing dis-
crete categories and assessing correlations in the dataset. However,
participants’ tasks and approaches did not always align with the
abstractions of GoG. With the task of comparisons, P3 considered
color and faceting to be alternatives. When asked how they would
explore more variables with the same plot, P3 thought both the
color aesthetic and faceting12 were options, calling them “efects”
that can “highlight diferences in that relationship, or relationship
versus no relationship”. What P3 described was the task of mak-
ing comparisons. In GoG, it is natural to consider color vs. alpha
as alternatives—they are both aesthetics while color vs. faceting
are not. However, in terms of comparative visualization design,

11P1 used scale_color_manual(), see https://ggplot2.tidyverse.org/reference/scale_
manual.html
12Faceting in ggplot2 splits a plot into a small multiples by a variable [66].

ggplot2
geometries

Analysts’
plot types

geom_area Area plot1:1

+

geom_beeswarm

stat_dots

stat_halfeye

geom_boxplot

“Dots”

Rain cloud plot

Box plot

N→1

N:1

geom_point Scatterplot

Bubble plot

1:N

P2, P7

P4

P4

P3, P7

P2, P3, P7

P7

...

...

Figure 10: A subset of the mappings between geometries and
the plot types described by participants.

faceting corresponds to “juxtaposition” and color aesthetic “super-
position” [23]. Figure 9 shows our interpretation—P3’s conceptual-
ization matched the task of comparison instead of the organization
of GoG components.

The mismatch between GoG abstractions and analysts’ tasks does
not necessarily mean that GoG components are ill-equipped for
analysts in practice. However, making comparisons is one task for
which the grammar design does not communicate task-appropriate
alternatives; therefore, analysts need to translate their task to the
choice of GoG components.

https://ggplot2.tidyverse.org/reference/scale_manual.html
https://ggplot2.tidyverse.org/reference/scale_manual.html

How Data Analysts Use a Visualization Grammar in Practice CHI ’23, April 23–28, 2023, Hamburg, Germany

5.2.3 Geometry through plot types. Geometries are geometric shapes
in visualizations, such as points and lines. Participants used geome-
tries in code but sometimes talked about and made choices based on
plot types, like box plots and line charts. Across participants, they
used 18 diferent geometries in the ggplot2 grammar13 and men-
tioned nine plot types; the correspondence between plot types and
geometries is often one-to-one (1:1) but not always, see Figure 10.

Since participants had both geometries and plot types in their
vocabulary, we may ask which concept is closer to the participants’
needs. Section 5.4 will discuss how geometries worked well as part
of participants’ iteration process, but when seeking help to fnd and
choose components (geometries), participants preferred plot types
with visual examples. For instance, P4 searched for “histogram” and
“rain cloud plot”, P6 looked up “United States map”, and P7 visited
gallery websites that listed by plot types. They all browsed pages
with example plots. Refecting on their search process, P6 found it
helpful to “look for an example visualization that’s similar to what I
have an idea of”, suggesting that they were motivated by the visual
outcome of the plot. P4, P6, and P7 did not look up specifc geome-
tries, which could be due to a discoverability challenge—ggplot2
grammar contains many geometries, and reading documentation
without visuals can be “a steep learning curve” (P7).

Plot type as a concept is excluded from GoG because it can only
express as many plots as there are type names [70, Chapter 1.1].
The GoG design is about combining diferent components like
geometries and aesthetics to achieve expressiveness. Almost to the
contrary, participants were motivated by achieving visual output—
they expanded their use of geometries and increased expressiveness
by looking up plot types. Bako et al. [2] also echo the signifcance
of plot types in D3, a visualization toolkit without explicit notion
of “graphical marks” (geometries) [7]. In Bako et al., “standard” plot
types such as bar and line charts made up the majority (80%) of
their online code corpus, and users implemented a given plot type
with similar specifcations. It is hard to quantify whether using plot
types limited our participants’ expressiveness. Here we highlight
the tension among the GoG design, participants’ visually-oriented
goals, and the discoverability of the grammar components.

5.3 Evaluation: silent errors
As participants wrangled and visualized data, they evaluated whether
the analyses achieved what they intended. Most participants en-
countered R error messages that explicitly pointed out problems.
In contrast, we also observed harder-to-evaluate silent errors [37],
where problematic wrangling and visualization specifcations suc-
cessfully produced plausible outputs without explicit errors. Silent
errors can be common in visualization specifcations—Battle et al.
found that D3 users also struggled with “unexpected behaviors
rather than explicit errors” [3]. McNutt et al. named “silent and
signifcant” errors visualization mirages, visualizations that can
mislead inattentive readers about the data [37].

13This count includes stat_dots and stat_halfeye. Statistical transformation in
ggplot2 transforms the data (usually summarization). In ggplot2 implementation,
stat_* creates layers with the namesake statistical transformation and default geome-
tries. We don’t report stat as a separate category since participants didn’t explicitly
specify custom stat within their geom calls, and stat_dots and stat_halfeye were
used in the same way as geometries.

We observed two types of silent errors. For the frst type, par-
ticipants noticed the error because the visual output did not meet
their expectations. With diferent datasets, P6 and P7 wrangled
and plotted to show the top-� categories (e.g. top-5) in their data
over time. They caught the silent errors because the plots showed
an excess number of categories, see Figure 11.6. We will explain
their mismatched data wrangling and plot specifcations in Sec-
tion 5.5.2. To fx the errors, P6 aggregated data and P7 manually
fltered out categories to reduce the number of categories shown.
Their fxes were workarounds, presumably because identifying the
root cause in the specifcation code was challenging; we discuss
potential solutions in Section 6.2.

With the second type of silent errors, participants did not notice
their plots were problematic at all. P6 and P7 created visualization
mirages [37]— Table 2 shows how P6 and P7’s fnal plots may give
the readers the wrong impression of the underlying data, such as
missing data or a perfectly linear trend. In these silent errors, the
visualization grammar in part enabled visualization mirages. Some
participants might have relied on “visual hints” (P7) to evaluate
their analysis. Of a silent error that they did notice, P7 said:

[T]he only time I realize [the error] is when it shows
up in this way because otherwise, I would not have
realized what was wrong with the [data] processing...

Since the visualization grammar successfully assembled plots, the
plots might have validated the analyses. Beyond evaluating analysis
with the visualization outputs, participants had few strategies to
notice data errors if the plots appeared plausible—P6 said that their
collaborators could judge based on prior knowledge. Without such
priors, which can happen during data exploration, analysts risk
overlooking the silent errors when using visualization grammars.

5.4 Execution-evaluation: Iterating with the
Grammar of Graphics

To answer rq1 about how analysts conceptualize and use GoG,
we consider not only stand-alone edits on GoG components (Sec-
tion 5.2) but also a cycle of execution and evaluation—how and
why participants wrangled data, specifed visualizations, and eval-
uated their analyses as a process. According to Wickham, using a
GoG-based library should enable users to “iteratively update a plot,
changing a single feature at a time” [65]. We identifed incremental
and experimental iteration patterns, which were consistent with
the design intention of GoG. On the other hand, participants also
reused GoG specifcations as plot templates, showing how par-
ticipants circumvented specifying and iterating GoG components
directly and still achieved their analytical tasks.

5.4.1 Incremental and experimental edits during iteration. We ob-
served an incremental pattern in editing aesthetics, geometries,
and plot types. For aesthetic edits, P2 and P3 followed a similar
editing pattern: they created scatterplots with x and y aesthetics
frst and then added color or alpha aesthetic for clarity. After each
edit, P2 and P3 rendered the resulting plot to evaluate. For geometry
edits, P2 and P3 layered more geometries on their scatterplots for
visual inference (P2 added a linear ft line, P3 splines). P4 had an
analogy for the layering of geometries: “I feel like they’re Photo-
shop layers”. To change from one plot type to the next, P2 made two

CHI ’23, April 23–28, 2023, Hamburg, Germany Pu and Kay

Quarter 1: Data not plotted
Quarter 2: Actual missing data 0

200

400

1900 1925 1950 1975 2000 2025
decade

count

category
Card Game

Dice

Fantasy

Party Game

Wargame

P6’s fnal plot implies that there were no data for the frst quarter in 2019 P7’s fnal plot without customizations. Highlighted: the "dice" category had
(highlighted), but only second quarter data were missing. First quarter data count of zero between 1972 and 2012. The straight line erroneously implies that
were not plotted because a line needs two endpoints. there is an upward trend.

Table 2: P6 and P7’s fnal plots showed visualization mirages.

edits to turn a bar chart into a scatterplot: edits to the y aesthetic
mapping and geometry, see Figure 12. In P2’s case, they said during
the recording that they wanted to see the correlation between two
variables with a "scatterplot", in addition to the initial bar chart that
only tallied one variable. Their two edits saved them the trouble of
writing a scatterplot from scratch. Even though P2 reasoned with
plot types (“scatterplot”) that are not part of the GoG, they iterated
as GoG was designed for.

These edits above were incremental in that the edits built up to
the fnal plots. In comparison, some edits are experimental—they
were part of the exploration and not refected in the fnal plot. P1
often took some geometries of to focus on one part of the plot,
only to put them back soon after. P7 experimented with geometries,
swapping fve (line, area, point, boxplot, density_ridges) in and out
while keeping the aesthetic mappings the same, see Figure 12. They
iterated through so many geometries because they wanted to afrm
their choice of geometry/plot type. Commenting on their trying out
the boxplot, P7 said, “now I know [the boxplot] makes no sense and
I need to see that”. In addition to editing plot designs, experimental
edits can also help understand data. To see how rankings change for
top songs over time, P2 started with a line chart for the top-ranked
song and then used faceting to display two and then nine top songs.
Their use of faceting supported their need to understand the data
through a small number of examples and concrete thinking. Even
though the experimental edits were eventually overwritten, they
helped participants design plots and understand data concretely.

5.4.2 GoG anti-patern: plot templates. Participants did not always
make incremental and experimental edits (Section 5.4.1) enabled by
GoG design. We defne plot templates as code chunks participants
reused, which could include both visualization and data wrangling
specifcations. Participants (P2, P4, P6, P7) copied plot templates
and added a few edits to create plots similar to what they had made

or found online. Despite the convenience, templates were not fool-
proof. P2 copied and pasted a template with a bar chart, only to
miss one variable when updating the template. They quickly fxed
the error because they noticed that the bars were unexpectedly
out of order. P2 was not satisfed with using copying and pasting
because “it [needing to change multiple things] pulls me farther
from the data”. As a solution, P2 said that they would encapsulate
what we call templates with convenience functions. Explaining
why they used templates, P6 said that “it’s just easier to use code
that I already know what’s going to happen”. In our interpretation,
plot templates encapsulate a unit of analysis and apply plot types
from Section 5.2.3 to new situations.

5.5 Execution-evaluation: GoG and data
wrangling

To answer rq2 about how GoG works alongside data wrangling,
we expand the execution-evaluation perspective to include data
wrangling edits. As participants interleaved their data wrangling
and visualization in R Markdown notebooks, we found that visu-
alization specifcation and data wrangling form a feedback loop,
a fexible process where one informs the other. There was also a
tight coupling between visualization and wrangling code, which
can explain the silent errors in Section 5.3.

5.5.1 Vis-analysis feedback loop. In a feedback loop between data
wrangling and visualization specifcations, we found that 1) the
results of data wrangling informed participants’ decisions on plot-
ting, and 2) the results of plotting helped participants progress in
data wrangling.

Participants used their understanding of the data to determine
how to visualize them. With data wrangling code written, partici-
pants often printed the results to console and gained an understand-
ing of the properties of their data, such as data types, dimensions,

How Data Analysts Use a Visualization Grammar in Practice CHI ’23, April 23–28, 2023, Hamburg, Germany

df1 %>%
 count(category) %>%
 slice_max(order_by = n, n = 10) %>%
 left_join(df, by = "category") %>%
 count(category, year)

df2 %>%
 group_by(year, category) %>%
 count(category) %>%
 slice_max(order_by = n, n = 5) %>%
 count(category, year)

(top) category

(top) category | year

P2 aggregated by

P7 aggregated by

✔ P2’s plot: top 10 categories over time!

"

position.stack(year * (count_category1
 + ...count_categoryN))
color(category1 + ... + categoryN)

P2 & P7’s GoG algebraic expression
#

Data wrangling Visualization+

RANK() OVER (PARTITION BY `year`
 ORDER BY `n` DESC)

RANK() OVER (ORDER BY `n` DESC)

P7’s plot had > 5 category levels✗

Result

Conditional

To match P7’s data ops, we can
change P7’s algebraic expression to:
position(category / year * count)

Plot that matches P7’s data ops:
top categories each year, over
multiple years

$
✔

Conditional

%

&

'

->

No conditional

No conditional

Figure 11: How P2 and P7’s data wrangling matched or not matched the visualizations they created. In 7, we only show three
years in the facets for simplicity.

and simple aggregates like counts and unique values. As an ex-
ample of data informing visualization specifcations, P2 avoided
mapping a variable for song names onto the color aesthetic because
P2 “already knew there were hundreds of songs”. In another in-
stance, P4 rejected the beeswarm plot they saw on a tutorial because
they found that the data variable had “very specifc levels” (being
discrete) through data aggregation functions. Given their under-
standing of the data, P4 reasoned that the layout of the beeswarm
(jittered points implying continuous values) “would be misleading”.

In the other direction, participants decided what to change about
the data once they saw a plot output. Participants removed outliers
(P3) and fltered to top entries (P2, P3, P4, P6, P7) in response to see-
ing their plot outputs. P4 reasoned that “nobody would understand”
too many levels of categorical data in a plot. Figure 13 shows an
example from P2’s edit log, where they added filter() function
based on visualization output.

The feedback loop was productive in that participants made
data-informed visualizations and visualization-informed wrangling.
Refecting on the role of GoG, we highlight the GoG’s capacity to

add and edit modular components and still produce a visualization.
The data wrangling participants wrote was in the form of analy-
sis pipelines made up of modular dplyr data operations such as
filter() [69]. Though not its express design goal, the modularity
of GoG components worked fexibly with data wrangling and thus
contributed to the feedback loop.

5.5.2 Tight coupling. In some workfows, data wrangling is done
separately before visualization specifcation [30]. For example, P1
described a process at work, where they exported data from R into
Tableau to create plots. In a programming setting with visualization
grammar, however, visualization and data wrangling specifcations
can interleave and express the same meanings such as data aggre-
gation. Therefore, the two parts of the specifcations need to be
consistent to prevent errors, a constraint we call tight coupling.

The constraints from tight coupling are in contrast to the fexi-
bility and productivity of the feedback loop in Section 5.5.1. Since
GoG ofers options to express data transformation within the GoG
specifcation, participants needed to keep visualization and data

CHI ’23, April 23–28, 2023, Hamburg, Germany Pu and Kay

∆ aes(x), + geom_col
∆ head, - mutate

∆ geom_line, ∆ aes(color)+ geom_text, ...
- head

Bar chart

Scatter plot

Incremental edits
P2, part of segment 3

Area chart
+ geom_area, + aes(x, y, fill)

∆ aes(y), ∆ geom_point

∆ geom_boxplot

∆ mutate

Line chart

Box plot
+ aes(size)

Bubble chart

∆ geom_line, ∆ aes(color)
Line chart

Experimental edits
P7, part of segment 4

vis
data

+
∆
-

add
change
delete

∆ geom_density_ridges
Density plot

Error

Legend

∆ geom_point
Scatter plot

Figure 12: Two excerpts from the edit logs to demonstrate incremental and experimental edits.

P2, part of segment 4
Top performers each decade

+ geom_area, + aes
+ filter

+ facet, + scale
∆ count

+ group_by, + summarize, ...

+ scale, ∆ aes, + labs

vis
data

+
∆
-

add
change
delete

[Feedback loop]
Vis informs wrangling & vice versa

[Tight coupling]
Need consistent vis & wrangling

Figure 13: Excerpt from P2’s edits, demonstrating the feed-
back loop and tight coupling between visualization and data
wrangling. The full edit log is in Supplementary Materials.

wrangling specifcations consistent. As an example (Figure 13), P2
intended to smooth out a count over time, changing data aggrega-
tion (count()) from “by year” to “by every fve years”. Executing
their code, P2 produced an area plot showing counts infated about
fve times. To keep the visualization specifcation consistent with
the updated data wrangling, P2 needed to change the data variable �
to �/5 in the aesthetic mapping so that the plot still showed annual
counts after smoothing.

Breaking the coupling and having inconsistent specifcations
can lead to the silent errors described in Section 5.3. To explain, we
introduce the fact that GoG [70, Chapter 5] and the data wrangling
tool (dplyr [69]) share the same roots in relational algebra. Since
analysts can edit GoG and data wrangling separately (feedback
loop), the underlying algebra representation can go out of sync. We

compare P2 and P7’s code and plots in Figure 11.14 ggplot2 specif-
cations were translated into GoG algebra expressions [70, Chapter
5]. Figure 11-1 shows P2’s code, which found the top categories by
count, and counted the (top) categories for each year. In compari-
son, P7 group_by() the ���� variable frst, making category count
conditional on ���� (Figure 11-2). There can be diferent top cate-
gories for each year. We argue that P2’s visualization matched their
wrangling but P7’s did not. Figure 11-3 shows that the visualiza-
tion specifcation contains a cross operator (∗) in the GoG algebra,
implying ���� and ������� being independent, which was the case
with their wrangling code. P7’s visualization algebra expression is
the same, but their �������� is conditional on ���� , and therefore
P7’s visualization did not match their analysis. In other words, P7’s
visualization did not convey the conditional from the analysis. To
synchronize P7’s visualization with analysis, Figure 11-4 shows one
potential visualization specifcation, using a nesting operator (/)
that expresses the meaning of conditional. In this case, the nesting
operator translates to faceting by ���� , and each facet only contains
the top categories for that year.

Participants needed to negotiate and disentangle the tight cou-
pling, since the visualization and data wrangling specifcations
cannot communicate with each other and maintain consistency, a
problem Wu et al. call the semantic gap [77]. The semantic gap, in
our context, means that the wrangling code does not know how
the data is plotted, and the visualization specifcation has no access
to the wrangling history of the data. But successfully maintained
or not, tight coupling is not immediately visible to participants,
therefore leading to silent errors. We discuss how to bring more

14For ease of reading, we translated P2 an P7’s fct_lump() calls into data op-
eration functions (verbs) that are closer to SQL syntax. fct_lump() “lumps all
[factor/categorical variable] levels”; documentation: https://forcats.tidyverse.org/
reference/fct_lump.html. SQL translations determined by the dbplyr package, see
https://dbplyr.tidyverse.org/articles/sql-translation.html

https://forcats.tidyverse.org/reference/fct_lump.html
https://forcats.tidyverse.org/reference/fct_lump.html
https://dbplyr.tidyverse.org/articles/sql-translation.html

How Data Analysts Use a Visualization Grammar in Practice CHI ’23, April 23–28, 2023, Hamburg, Germany

consistency and transparency to coordinate visualization and data
wrangling specifcations in Section 6.2.2.

5.5.3 Participants liked ggplot2 for the Tidyverse. Since not all par-
ticipants would know visualization grammars (the framing of our
analysis), we directly asked them about preferences for the ggplot2
library. Participants’ answers were as much about ggplot2’s in-
tegration with data analysis as about the quality of visualizations
it creates. Since the participants were likely biased, they found
ggplot2 “intuitive” (P2), “makes so much sense” (P3), customizable
(P1), layer-able (P4), and nice-looking (P6). Despite the praise for
ggplot2 as a visualization library, we were struck by how much
participants (P1, P2, P6, P7) talked about the synergy between gg-
plot and their data analysis, mostly enabled by the dplyr [69] and
Tidyverse [68] packages.15 P2 told the story of a “big realization”,
where they realized the plyr package (predecessor of dplyr) and
ggplot2 were linked by the tidy data format [68]. The convenience
of transforming data and plotting made P2 switch to using ggplot2.
Other participants gave similar reasons: ggplot2 ft into P6’s job
with “a lot of data cleaning and preparation”, and it “integrates well”
with P6’s projects. P1 thought ggplot2 gave them more control of
the data. Participants’ subjective preferences for ggplot2 corrobo-
rate our fndings of the vis-analysis feedback loop in Section 5.5.1.

6 DISCUSSION AND DESIGN IMPLICATIONS

6.1 Practical visualization grammars for data
analysts

6.1.1 Supporting plot templates. At its core, ggplot2 is an imple-
mentation of the layered GoG without explicit components for plot
types [65]. However, there can be a disconnect between the moti-
vation for the grammar design and how it is used. Our participants
talked about visualizations in terms of plot types (Section 5.2.3), and
they were also able to code-switch and edit the GoG abstractions to
achieve their goals such as copying a plot or changing plot types. In
efect, participants encapsulated their both visualization and data
wrangling specifcations into plot templates. Our fndings suggest
that if plot templates are based on a visualization grammar, data
analysts can take advantage of the plot templates as well as the
grammar itself (Section 5.4.2).

Interests exist in creating plot templates for analysts based on
GoG-style grammars. The ggplot2 API already implements conve-
nience geometries, such as geom_jitter, a shortcut for geom_point
with jittered positions. Outside of ggplot2, Ivy and Encodable are
two recent template-based contributions. Ivy is a visualization edi-
tor that can create a plot template from any visualization grammars
based on JSON [39]. However, the Ivy interface is Polestar/Tableau-
like [60, 73] and analysts cannot encapsulate data wrangling in
Ivy templates, except data transformations within Vega-Lite. En-
codable is a confgurable grammar for plot “components” (i.e. tem-
plates) [71] with user-defned “component-specifc channels” (i.e.
aesthetics). Compared to Encodable templates, the plot templates
our participants used are more informal, with no error checks, and

15dplyr is part of the Tidyverse collection of packages that “share an underlying
design philosophy, grammar, and data structures”, see http://www.tidyverse.org/.

they are rendered only with ggplot2. We propose a design wish-
list for supporting plot templates in a data analysis environment,
covering defnition, presentation, and use:

•
template in a programming/computational notebook envi-
ronment. Our participants only made informal plot templates
by copying and pasting code chunks. Bako et al. suggests
that to help D3 users, templates could be extracted from
users’ implementation patterns from an existing corpus [2].
Lee et al. considered boilerplate template code cumbersome,
motivating them to build an always-on visualization recom-
mender in Jupyter notebooks [33]. Regardless of how plot
templates should be extracted or introduced, they should
integrate well with the rest of the analysis workfow, which
Battle et al. recommend in the context of D3 implementation
challenges [3].

• Based on how our participants sought templates online, plot
templates should be visual, meaning the analysts can preview
a concrete instance of a template. Battle et al. also outlined
the importance of “meaningful code components” (in D3)—
users may otherwise be unable to relate part of a template
to the visual output [3].

• Plot templates should be editable—analysts may beneft from
code-switching and moving between editing the abstractions
of GoG and using plot templates. Templates should also
reduce the opportunities for slips and mistakes during edits.

We need more research on how to defne or generate a plot

6.1.2 Supporting customizations in the aesthetic space. Participants
customized their plots by creating new data, building special plot
types, applying custom color palettes, and adding annotations. Be-
yond our study, literature and anecdotal evidence also support the
need for customizations. In a study about Tableau, Heer et al. found
that “formatting” (changing sizes and styling) was a common cate-
gory of actions “performed in succession” in interaction logs [27].
Hadley Wickham, the creator of ggplot2, stated that “theming is
unimportant early on [in the development of ggplot2] but critical
in the long run” [49].

To systematically describe customization in GoG, we used the
concepts of data space vs. aesthetic space. Grammar of Graphics
uses scale functions to map from the data space (domain) to the
aesthetic space (range). Therefore, changes in the data space, like
fltering or binning, will be updated to the aesthetic space.

The GoG design leads to two types of difculties around cus-
tomization we observed. First, analysts can make conceptual slips,
confusing aesthetic space specifcation as one in the data space (e.g.
P1 with the custom color palette). Granted, to customize colors and
other aesthetics, analysts can use the identity scale function16 or a
scale function with a custom color range as P1 did (see Figure 16 in
the Appendix for code in ggplot2 and Vega-Lite). We speculate that
the slips are possible because analysts might expect the aesthetic
space values (like color hex values) to just work like data space
values. Another reason might be that the scale functions are usually
not explicitly specifed—many visualization libraries, ggplot2 and
Vega-Lite included, provide good defaults and therefore analysts
might not be conceptually familiar with data vs. aesthetic spaces

16Available in ggplot2 as I() and in Vega-Lite as .scale(null)

http://www.tidyverse.org/

CHI ’23, April 23–28, 2023, Hamburg, Germany Pu and Kay

and scale functions. Addressing such difculty with customization
may entail more transparency into visualization library internals—
if analysts can peak into the data being plotted before and after the
scale computation, they may have a better mental model to identify
the scale function they need.

Second, since there are no inverse scale functions to map aes-
thetic space values back to the data space, participants needed to
make “back-and-forth” edits in the data space to achieve the desired
appearance of a plot with the abstractions of GoG alone. For exam-
ple, if an analyst wants to add a text label in the bottom left corner
of a plot, they need to translate “bottom left” into values in the
data space, e.g., year = 1900, see Figure 15 in the Appendix. Worst
still, if the analyst changes the data space values (like by fltering),
the analyst needs to manually update label positions, e.g., year =
1950 to keep the label in the same relative position. Without an
automatic two-way mapping between the data space and aesthetic
space, it can be tedious to update in the data space and keep a plot
looking the way the analyst wants.

Outside GoG, there are escape hatches in visualization libraries
that allow analysts to specify in the aesthetic space directly. In the
R language, the low-level graphics library grid exposes physical
positions like inches and “native units”, which are relative positions
between 0 and 1. For example, (0, 0) is the coordinate for the “bot-
tom left” corner of a viewport [46, Chapter 4.5]. However, analysts
cannot access native units in ggplot2 unless they program custom
components. Similarly, Vega-Lite supports specifcation by pixel
positions17 and relative height/width (e.g., 0.1 * width), but these
are arguments passed to marks, not part of the GoG abstractions.

We need systematic and practical solutions to help data ana-
lysts customize grammar-based plots. Analogous to the aesthetic
mappings (mapping data variables to aesthetics), we can design
similar APIs to support translating aesthetic space defnitions to
data space values. Such mapping should alleviate analysts’ burden
of trial and error, e.g. P1’s back-and-forth edits. One step towards
this goal, ggrepel is a ggplot2 extension that detects collision
of text labels and repel ones that overlap.18 With ggrepel, the
aesthetic space instruction is efectively “no overlap”. Outside of
ggplot2, we may borrow ideas from authoring systems for cus-
tom charts, where chart designers could start from visual marks or
hand-drawn shapes in the aesthetic space. Then, the data space in-
formation can be bound to those marks in stand-alone systems such
as Lyra [54], Data Illustrator [34] and Charticulator [51]. Hempel
et al. used direct manipulation of graphical output to augment text-
based programming and specify a recursive fractal pattern [28]. In
a programming environment such as a computational notebook,
direct manipulation of marks might not be feasible, but it is worth
investigating how analysts can specify in the aesthetic space along-
side the GoG abstractions while keeping the aesthetic space and
data space in sync.

6.2 Helping analysts evaluate data wrangling
Visualization can be viewed as a type of data transformation [26].
Participants made silent errors and failed to identify the problems in

17For example, vl.markText("x": 5), 5 is in pixels. With Vega-Lite Javascript API
https://vega.github.io/vega-lite-api/.
18https://ggrepel.slowkow.com

their analyses because of the tight coupling between data wrangling
and visualization specifcations (Section 5.5.2). Here we propose
two areas of research that may help analysts evaluate the results of
data wrangling:

6.2.1 Maintaining the consistency between visualization and data
wrangling specifications. In our study, silent errors could have been
avoided if analysts maintained the consistency between the data
wrangling and plot specifcations (Section 5.5.2). Instead of solely re-
lying on analysts, we suggest that visualization grammars validate
the consistency as well. Grammar of Graphics exposes two ways to
wrangle data within a specifcation: the data and statistics compo-
nents. Depending on the implementation, visualization grammars
support data wrangling with various degrees of expressiveness:
ggplot2 allows arbitrary R functions, while Vega-Lite supports a
predefned list that covers common wrangling operations,19 such
as pivots and joins (see Table 3 in the Appendix). With Vega-Lite’s
pre-defned list of operations, for example, it is possible to have a
linter in a grammar implementation to check for consistency. With
examples in Vega-Lite, McNutt et al. have proposed a “metamorphic
visualization linter”; this linter verifes that data changes refects
proportionally in visualization output [37]. By varying the input
data, such a linter may notice that the highlighted line from P7 in
Table 2 does not change as expected. Alternatively, a linter can lever-
age and verify using the shared algebraic representation between
data transformation and visualization as seen in recent works in
databases and visualization [16, 35, 76, 77]. Ideally, a consistency-
aware implementation can identify and explain the mismatch to
analysts; VizLinter, a Vega-Lite linter that checks for problems in
encodings and marks, implements similar explanations [14].

An alternative approach is to introduce atomic primitives for spe-
cifc tasks. In visualization grammars, such primitives can replace
otherwise multi-step, error-prone operations and reduce opportu-
nities for errors. For example, the Probabilistic Grammar of Graph-
ics makes probability expressions, such as � (�|�), primitives [48].
This design avoids the pre-computation of conditional probabili-
ties and circumvents errors in plot specifcation. Another example
is autoplot(), a generic function in ggplot2 used by P2 and P3.
When called on a model tuning object, autoplot() dispatches the
corresponding method to produce a ggplot2 object. Since the plot
is determined from the modeling workfow without analyst input,
there is little concern for consistency. Compared to the algebraic
approach, however, creating new primitives is less generalizable
and hinges on understanding analysts’ particular tasks and goals.

6.2.2 Increasing transparency and visibility. Visualization gram-
mars should support the interpretation and critical thinking around
data analyses. In our study, making plots is a major way that the
participants understood their wrangled data. When our participants
did not notice silent errors in their plots or apply their prior knowl-
edge, it was difcult to recognize problems in the data manipulation.
McNutt et al. has suggested tests to catch silent errors from plot
specifcation and data wrangling [37]. Besides error detection, visu-
alization tools may help analysts interpret analysis pipelines. Recent
studies have taken a variety of approaches, such as explaining the
analysis pipelines with animations (Datamations [50]), comparing

19https://vega.github.io/vega-lite/docs/transform.html

https://vega.github.io/vega-lite-api/
https://ggrepel.slowkow.com
https://vega.github.io/vega-lite/docs/transform.html

How Data Analysts Use a Visualization Grammar in Practice CHI ’23, April 23–28, 2023, Hamburg, Germany

results of alternative data manipulations (DITL [63]) and showing
thumbnails of variable distributions inline with code [29].

Trust is involved in evaluating a visualization output. The fact
that a plot rendered without error might give analysts more trust in
the output, validating the analysis in general. We do not yet have
good evidence for this form of trust (cf. [18]), but more transparency
and visibility, especially in visualization format, may give analysts
more opportunities to spot problematic analysis.

6.3 Degree of vis-analysis integration
We argue that to understand a visualization grammar, we need
to look at where it’s used—in data analysis that includes not only
wrangling but also modeling. We can imagine a continuum of how
well a visualization grammar integrates with data analysis, see Fig-
ure 14. On it, there are visualization grammars and systems for a
specifc task, such as CAST for creating animations [21]. They are
low on data-analysis integration, assuming cleaned data as input.
For Tableau-like20 systems, usually for exploratory visual analysis
(EVA), there are fxed set of data operations (fltering, etc.) enabled
through interface widgets; analysts are known to copy and paste re-
sults from notebooks into Tableau-like interfaces [13], presumably
because some analyses are not well-supported within such inter-
faces. On the far end, there is the R Tidyverse (ggplot2 included)
ecosystem, which our participants used to program their analyses.
Similar ecosystems exist in other languages. For example, JavaScript
ecosystem contains JSON-based visualization grammars [38], data
libraries like Arquero,21 and Observable notebooks. Granted, the vi-
sualization grammars and systems on this continuum serve various
purposes, and not every analyst can or need to specify arbitrary
analysis through programming.

Our focus is on the right end of the continuum: we need more
research into how to support visualization and analysis specifca-
tions in computational notebooks, an environment that can aford a
high degree of vis-analysis integration. There is a substantial need
for the vis-analysis integration [19, 30]—data analysts could fnd it
desirable to rapidly explore, transform, model, and visualize data in
the same programming environment. A computational notebook
environment (R Markdown) gave our participants full access to
the analysis capacities in R and led to our fndings on the feed-
back loop and tight coupling between visualization and wrangling
specifcations. With notebooks getting wider adoption [52], this
environment can give analysts more agency and write expressive
code for analysis and plotting. One implication can be that analysts
do not have to rely on visualization designers to create task abstrac-
tions (e.g. [11]) and monolithic systems. In other words, a notebook
environment with vis-analysis integration can be an opportunity
to introduce visualization research into practical use [5].

On the fip side, analysts who write code can make mistakes, and
they can use support. With a relatively small set of notebook-related
contributions in visualization (e.g. litvis [75]), we can look to the
data science literature. For example, there is the idea of a fuid in-
terface, where interacting with a table (mage [31]) or visualization

20The Tableau commercial software can pull results from R and Python scripts through
client-server connections, but this setup still separates the scripting and visualization
https://www.tableau.com/about/blog/2013/10/tableau-81-and-r-25327
21A relation algebra-based data querying and transformation library, see uwdata.github.
io/arquero

GUI (B2 [77]) can turn into an update in the analysis code.22 There
is the idea of sticky notes, where the analyst can drag a notebook
cell onto a dashboard like a sticky note [64]. More recently, the
integration between visualization and analysis has been made more
explicit. Data analysis provenance can now inform visualization
recommendations within the notebook [20, 33], instead of similar-
ity between visualization specifcations alone (e.g. [79]). We may
borrow the diferent modes of interactions and integration, which
consider writing code and interacting with the GUI simultaneously.
We are excited about the outlook in this area of research: what can
visualization contributions look like in computational notebooks or
other environments with this high degree of visualization-analysis
integration? And what can we learn and enable analysts to do?

6.4 Limitations and generalizability
Our study participants can be biased in favor of ggplot2 because
of the recruitment protocol—they were within the #TidyTuesday
community. However, the positive bias is necessary for participants
to be profcient enough to complete data wrangling and plotting
tasks, because we were explicitly interested in experienced ana-
lysts, not novices. Another issue is whether participants’ use of
ggplot2 was realistic. It was realistic in that participants were
data professionals or students and used ggplot2 in context of their
#TidyTuesday projects. When asked, participants stated that their
goals for participating #TidyTuesday were to hone skills or help
others, corroborating the fndings in Shrestha et al. [58]. On the
other hand, participants were motivated by their interests instead of
specifc domain question when analyzing the #TidyTuesday data.
Their approaches might difer with problems they had more prior
knowledge in. We mitigated this concern by asking about partici-
pants’ general preferences and approaches during interviews.

6.4.1 Generalizing to Vega-Lite. Since all our participants created
visualizations with ggplot2, we assess the generalizability of our
fndings in the context another GoG-based grammar, Vega-Lite [55].
Vega-Lite is similarly popular in practice (1.1M monthly downloads
vs. ggplot2’s 2.9M23), and there is a vibrant research ecosystem
around Vega-Lite [38, Figure 8].

We can assume generalizability from the close correspondence
between ggplot2 and Vega-Lite syntax and Grammar of Graphics
concepts, shown in Figure 2. We frame our results in Section 5
around the shared GoG concepts, and what our participants did in
ggplot2 can be closely replicated in Vega-Lite (code examples in
the Appendix). However, replicability does not necessarily translate
to an identical usage pattern.

We speculate that how a visualization grammar handles data
transformation can afect how analysts use it. Though ggplot2
and Vega-Lite enable data transformation through the same set of
GoG components (Table 3 in the Appendix), Vega-Lite supports
pre-defned data operations, more limited compared to ggplot2.
22Commercial notebook tools such as Hex and Deep Note have supported specifying
Vega/Vega-Lite with no-code interfaces; though users can export or update Vega/Vega-
Lite specifcations as code, chart cells do not synchronize with analyses outside of
visualization specifcations. See https://learn.hex.tech/docs/logic-cell-types/display-
cells/chart-cells and https://deepnote.com/docs/chart-blocks
23Vega-Lite download count on Node Package Manager (npm): https://npm-stat.com/
charts.html?package=vega-lite&from=2022-10-28&to=2022-11-28; ggplot2 download
count on the Comprehensive R Archive Network (CRAN): https://cranlogs.r-pkg.org.
As of November 2022.

https://www.tableau.com/about/blog/2013/10/tableau-81-and-r-25327
uwdata.github.io/arquero
uwdata.github.io/arquero
https://learn.hex.tech/docs/logic-cell-types/display-cells/chart-cells
https://learn.hex.tech/docs/logic-cell-types/display-cells/chart-cells
https://deepnote.com/docs/chart-blocks
https://npm-stat.com/charts.html?package=vega-lite&from=2022-10-28&to=2022-11-28
https://npm-stat.com/charts.html?package=vega-lite&from=2022-10-28&to=2022-11-28
https://cranlogs.r-pkg.org

CHI ’23, April 23–28, 2023, Hamburg, Germany Pu and Kay

Degree of
vis-analysis
integration(Data already

cleaned)
Analysis via

widgets
Any analysis,
n datasets

Specialized
vis system

Tableau-like
EVA interface

Computational
notebooks

Figure 14: Continuum of vis-analysis integration for visualization tools. Towards the right end, computational notebooks, with
visualization grammars and data wrangling libraries, ofer a high degree of integration.

Vega-Lite’s transformations may be sufcient for many use cases,
or analysts may be more inclined to wrangle data with other tools
before specifying plots, changing the tight coupling described in
Section 5.5.2. In addition, interactions, such as selecting and brush-
ing on a visualization, can be considered data transformations [77],
but we did not observe such interactions with our participants.
Vega-Lite supports a wide range of interactions natively [55], while
ggplot2 visualizations can become interactive with Shiny apps or
Plotly [59]. With Vega-Lite, analysts might be more likely to replace
a part of their data analysis code with interactions such as brushing
and selecting, adding new dimensions to our fndings.

Beyond the design choices of visualization grammars, we should
consider the grammar ecosystems. First, the extensibility of a vi-
sualization grammar can determine how expressive analysts can
be with plotting. Our participants (P4 and P7) used ggplot2 com-
ponents from community contributors,24 not part of the core li-
brary. ggplot2 is extensible because it uses an prototype-based
system [67]; user-created components (custom geometries, scales,
etc.) are plain functions, compatible with the rest of ggplot2. In
comparison, Vega-Lite has no similar user-facing extension mecha-
nism. Extending Vega, what Vega-Lite synthesizes to [55], can lead
to specifcations not reusable by other people.25 If our participants
had used Vega-Lite, their visualizations could have been diferent.
Second, factors other than language features can infuence how ana-
lysts use visualization grammars. A programming languages survey
has suggested that “domain specialization” and “developer experi-
ence” are signifcant factors in language adoption [40]. Analysts
often use ggplot2 in tandem with statistical modeling packages
in R, while Vega-Lite often works with Javascript or Python (via
the Altair API [62]). A future study with Vega-Lite/Altair may help
answer whether analysts have diferent analytical tasks or norms
beyond the R ecosystem.

7 CONCLUSION
We conducted a qualitative study to understand how data ana-
lysts conceptualize and use a GoG-based visualization grammar
(i.e. ggplot2), and to characterize how the grammar works along-
side data wrangling specifcations. Our participants were inter-
mediate to advanced analysts who recorded how they completed
#TidyTuesday data projects involving data wrangling and ggplot2

24The components were geom_density_ridges for ridgeline plots and stat_dots for
dotplots. A gallery of ggplot2 extensions: https://exts.ggplot2.tidyverse.org/gallery/
25Explained in Vega Documentation: https://vega.github.io/vega-lite/ecosystem.html

visualizations in R Markdown, without prescribed tasks. We found
that when participants created (executed) visualizations, their needs
for analytical tasks and customization directed their use of GoG
components. Despite specifying valid plots, participants sometimes
made hard-to-evaluate silent errors. Viewing the analysis process as
an execution-evaluation loop, we identifed incremental and exper-
imental visualization iteration patterns consistent with GoG design
intentions. Between visualization specifcation and data wrangling,
we found a feedback loop that informs iteration, while the tight
coupling between visualization and wrangling constrains it. Based
on our fndings, we discuss design implications for future visualiza-
tion grammars used in computational notebooks, a programming
environment we believe can facilitate vis-analysis integration. Our
recommendations focus on making the grammar more practical for
analysts by incorporating plot types and other customizations, in
addition to helping analysts maintain consistency between visual-
ization and data wrangling specifcations.

ACKNOWLEDGMENTS
We thank Eytan Adar, Mark Guzdial, Cyrus Omar, Priti Shah, Arvind
Satyanarayan, and the organizers of VIS 2021 Doctoral Colloquium
for general feedback, and Gabi Marcu for advice on qualitative
methods. This project is funded by the National Science Foundation,
Award Number 1910431.

REFERENCES
[1] D Abowd. 1991. Formal Aspects of Human-Computer Interaction. (June 1991),

237.
[2] Hannah Bako, Alisha Varma, Anuoluwapo Faboro, Mahreen Haider, Favour

Nerrise, Bissaka Kenah, and Leilani Battle. 2022. Streamlining Visualization
Authoring in D3 Through User-Driven Templates. , 16–20 pages.

[3] Leilani Battle, Danni Feng, and Kelli Webber. 2022. Exploring D3 Implementation
Challenges on Stack Overfow. In IEEE VIS 2022. Oklahoma City, OK.

[4] Leilani Battle and Alvitta Ottley. 2022. A Programmatic Defnition of Visualiza-
tion Tasks, Insights, and Objectives. https://doi.org/10.48550/arXiv.2206.04767
arXiv:2206.04767 [cs]

[5] Enrico Bertini. 2022. Building (Easy-To-Adopt) Software While Doing Visualiza-
tion Research. https://flwd.substack.com/p/building-easy-to-adopt-software-
while

[6] A. F. Blackwell, C. Britton, A. Cox, T. R. G. Green, C. Gurr, G. Kadoda, M. S. Kutar,
M. Loomes, C. L. Nehaniv, M. Petre, C. Roast, C. Roe, A. Wong, and R. M. Young.
2001. Cognitive Dimensions of Notations: Design Tools for Cognitive Technology.
In Cognitive Technology: Instruments of Mind, Meurig Beynon, Chrystopher L.
Nehaniv, and Kerstin Dautenhahn (Eds.). Springer Berlin Heidelberg, 325–341.

[7] M. Bostock, V. Ogievetsky, and J. Heer. 2011. D3 Data-Driven Documents. IEEE
Transactions on Visualization and Computer Graphics 17, 12 (Dec. 2011), 2301–2309.
https://doi.org/10.1109/TVCG.2011.185

[8] Virginia Braun and Victoria Clarke. 2006. Using Thematic Analysis in Psychology.
Qualitative Research in Psychology 3, 2 (Jan. 2006), 77–101. https://doi.org/10.

https://exts.ggplot2.tidyverse.org/gallery/
https://vega.github.io/vega-lite/ecosystem.html
https://doi.org/10.48550/arXiv.2206.04767
https://arxiv.org/abs/2206.04767
https://filwd.substack.com/p/building-easy-to-adopt-software-while
https://filwd.substack.com/p/building-easy-to-adopt-software-while
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa

How Data Analysts Use a Visualization Grammar in Practice CHI ’23, April 23–28, 2023, Hamburg, Germany

1191/1478088706qp063oa
[9] Virginia Braun and Victoria Clarke. 2019. Refecting on Refexive Thematic

Analysis. Qualitative Research in Sport, Exercise and Health 11, 4 (Aug. 2019),
589–597. https://doi.org/10.1080/2159676X.2019.1628806

[10] Virginia Braun, Victoria Clarke, Nikki Hayfeld, and Gareth Terry. 2019. Thematic
Analysis. In Handbook of Research Methods in Health Social Sciences, Pranee
Liamputtong (Ed.). Springer, Singapore, 843–860. https://doi.org/10.1007/978-
981-10-5251-4_103

[11] M. Brehmer and T. Munzner. 2013. A Multi-Level Typology of Abstract Visual-
ization Tasks. IEEE Transactions on Visualization and Computer Graphics 19, 12
(Dec. 2013), 2376–2385. https://doi.org/10.1109/TVCG.2013.124

[12] Mackinlay Card. 1999. Readings in Information Visualization: Using Vision to
Think. Morgan Kaufmann.

[13] Souti Chattopadhyay, Ishita Prasad, Austin Z. Henley, Anita Sarma, and Titus
Barik. 2020. What’s Wrong with Computational Notebooks? Pain Points, Needs,
and Design Opportunities. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. ACM, Honolulu HI USA, 1–12. https://doi.org/10.
1145/3313831.3376729

[14] Qing Chen, Fuling Sun, Xinyue Xu, Zui Chen, Jiazhe Wang, and Nan Cao. 2022.
VizLinter: A Linter and Fixer Framework for Data Visualization. IEEE Transactions
on Visualization and Computer Graphics 28, 1 (Jan. 2022), 206–216. https://doi.
org/10.1109/TVCG.2021.3114804

[15] Ran Chen, Xinhuan Shu, Jiahui Chen, Di Weng, Junxiu Tang, Siwei Fu, and Yingcai
Wu. 2021. Nebula: A Coordinating Grammar of Graphics. IEEE Transactions on
Visualization and Computer Graphics (2021), 1–1. https://doi.org/10.1109/TVCG.
2021.3076222

[16] Yiru Chen and Eugene Wu. 2022. PI2: End-to-end Interactive Visualization
Interface Generation from Queries. (2022), 15. https://doi.org/doi.org/10.1145/
3514221.3526166

[17] Ed Huai-Hsin Chi and J.T. Riedl. 1998. An Operator Interaction Framework for Vi-
sualization Systems. In Proceedings IEEE Symposium on Information Visualization
(Cat. No.98TB100258). 63–70. https://doi.org/10.1109/INFVIS.1998.729560

[18] Pierre Dragicevic and Yvonne Jansen. 2018. Blinded with Science or Informed by
Charts? A Replication Study. IEEE Transactions on Visualization and Computer
Graphics 24, 1 (Jan. 2018), 781–790. https://doi.org/10.1109/TVCG.2017.2744298

[19] Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani. 2020.
Wrex: A Unifed Programming-by-Example Interaction for Synthesizing Readable
Code for Data Scientists. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. ACM, Honolulu HI USA, 1–12. https://doi.org/10.
1145/3313831.3376442

[20] Will Epperson, Doris Jung-Lin Lee, Leijie Wang, Kunal Agarwal, Aditya G
Parameswaran, Dominik Moritz, and Adam Perer. 2022. Leveraging Analysis
History for Improved In Situ Visualization Recommendation. Computer Graphics
Forum (2022), 11.

[21] Tong Ge, Bongshin Lee, and Yunhai Wang. 2021. CAST: Authoring Data-Driven
Chart Animations. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems (CHI ’21). Association for Computing Machinery, New York,
NY, USA, 1–15. https://doi.org/10.1145/3411764.3445452

[22] T. Ge, Y. Zhao, B. Lee, D. Ren, B. Chen, and Y. Wang. 2020. Canis: A High-Level
Language for Data-Driven Chart Animations. Computer Graphics Forum 39, 3
(June 2020), 607–617. https://doi.org/10.1111/cgf.14005

[23] M. Gleicher. 2018. Considerations for Visualizing Comparison. IEEE Transactions
on Visualization and Computer Graphics 24, 1 (Jan. 2018), 413–423. https://doi.
org/10.1109/TVCG.2017.2744199

[24] L Grammel, M Tory, and M Storey. 2010. How Information Visualization Novices
Construct Visualizations. IEEE Transactions on Visualization and Computer Graph-
ics 16, 6 (Nov. 2010), 943–952. https://doi.org/10.1109/TVCG.2010.164

[25] Saul Greenberg and Bill Buxton. 2008. Usability Evaluation Considered Harmful
(Some of the Time). In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 111–120.

[26] Garrett Grolemund and Hadley Wickham. 2014. A Cognitive Interpretation
of Data Analysis. International Statistical Review 82, 2 (2014), 184–204. https:
//doi.org/10.1111/insr.12028

[27] Jefrey Heer, Jock Mackinlay, Chris Stolte, and Maneesh Agrawala. 2008. Graphi-
cal Histories for Visualization: Supporting Analysis, Communication, and Eval-
uation. IEEE transactions on visualization and computer graphics 14, 6 (2008),
1189–1196.

[28] Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-
Directed Programming for SVG. In Proceedings of the 32nd Annual ACM Sym-
posium on User Interface Software and Technology (UIST ’19). Association for
Computing Machinery, New York, NY, USA, 281–292. https://doi.org/10.1145/
3332165.3347925

[29] Jane Hofswell, Arvind Satyanarayan, and Jefrey Heer. 2018. Augmenting Code
with In Situ Visualizations to Aid Program Understanding. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems. ACM, Montreal
QC Canada, 1–12. https://doi.org/10.1145/3173574.3174106

[30] Sean Kandel, Jefrey Heer, Catherine Plaisant, Jessie Kennedy, Frank van Ham,
Nathalie Henry Riche, Chris Weaver, Bongshin Lee, Dominique Brodbeck, and

Paolo Buono. 2011. Research Directions in Data Wrangling: Visualizations and
Transformations for Usable and Credible Data. Information Visualization 10, 4
(Oct. 2011), 271–288. https://doi.org/10.1177/1473871611415994

[31] Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit Wong-
suphasawat, and Kayur Patel. 2020. Mage: Fluid Moves Between Code and
Graphical Work in Computational Notebooks. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology. ACM, Virtual Event
USA, 140–151. https://doi.org/10.1145/3379337.3415842

[32] Younghoon Kim and Jefrey Heer. 2020. Gemini: A grammar and recommender
system for animated transitions in statistical graphics. IEEE Transactions on
Visualization and Computer Graphics 27, 2 (2020), 485–494.

[33] Doris Jung-Lin Lee, Dixin Tang, Kunal Agarwal, Thyne Boonmark, Caitlyn Chen,
Jake Kang, Ujjaini Mukhopadhyay, Jerry Song, Micah Yong, Marti A. Hearst, and
Aditya G. Parameswaran. 2021. Lux: Always-on Visualization Recommendations
for Exploratory Dataframe Workfows. Proceedings of the VLDB Endowment 15, 3
(Nov. 2021), 727–738. https://doi.org/10.14778/3494124.3494151

[34] Zhicheng Liu, John Thompson, Alan Wilson, Mira Dontcheva, James Delorey, Sam
Grigg, Bernard Kerr, and John Stasko. 2018. Data Illustrator: Augmenting Vector
Design Tools with Lazy Data Binding for Expressive Visualization Authoring. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–13.
https://doi.org/10.1145/3173574.3173697

[35] Yuyu Luo, Nan Tang, Guoliang Li, Chengliang Chai, Wenbo Li, and Xuedi Qin.
2021. Synthesizing Natural Language to Visualization (NL2VIS) Benchmarks
from NL2SQL Benchmarks. In Proceedings of the 2021 International Conference on
Management of Data. ACM, Virtual Event China, 1235–1247. https://doi.org/10.
1145/3448016.3457261

[36] Jock Mackinlay. 1986. Automating the Design of Graphical Presentations of
Relational Information. ACM Transactions on Graphics (TOG) 5, 2 (April 1986),
110–141. https://doi.org/10.1145/22949.22950

[37] Andrew McNutt, Gordon Kindlmann, and Michael Correll. 2020. Surfacing
visualization mirages. (2020), 1–16.

[38] Andrew M McNutt. 1912. No Grammar to Rule Them All: A Survey of JSON-style
DSLs for Visualization. IEEE Transactions on Visualization and Computer Graphics
(1912).

[39] Andrew M McNutt and Ravi Chugh. 2021. Integrated visualization editing via
parameterized declarative templates. (2021), 1–14.

[40] Leo A. Meyerovich and Ariel S. Rabkin. 2013. Empirical Analysis of Program-
ming Language Adoption. In Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages & Applications
(OOPSLA ’13). Association for Computing Machinery, New York, NY, USA, 1–18.
https://doi.org/10.1145/2509136.2509515

[41] Thomas Mock. 2022. Tidy Tuesday: A Weekly Data Project Aimed at the R
Ecosystem. https://www.tidytuesday.com

[42] Tamara Munzner. 2009. A Nested Model for Visualization Design and Validation.
IEEE Transactions on Visualization and Computer Graphics 15, 6 (2009), 921–928.
https://doi.org/10.1109/TVCG.2009.111

[43] Leslie Myint, Aboozar Hadavand, Leah Jager, and Jefrey Leek. 2020. Comparison
of Beginning R Students’ Perceptions of Peer-Made Plots Created in Two Plotting
Systems: A Randomized Experiment. Journal of Statistics Education 28, 1 (Jan.
2020), 98–108. https://doi.org/10.1080/10691898.2019.1695554

[44] Bahare Naimipour, Mark Guzdial, and Tamara Shreiner. 2020. Engaging Pre-
Service Teachers in Front-End Design: Developing Technology for a Social Studies
Classroom. In 2020 IEEE Frontiers in Education Conference (FIE). IEEE, Uppsala,
1–9. https://doi.org/10.1109/FIE44824.2020.9273908

[45] Deokgun Park, Steven Mark Drucker, Roland Fernandez, and Niklas Elmqvist.
2017. ATOM: A Grammar for Unit Visualizations. IEEE Transactions on Visualiza-
tion and Computer Graphics 2626, c (2017). https://doi.org/10.1109/TVCG.2017.
2785807

[46] Roger D. Peng, Sean Kross, and Brooke Anderson. 2020. Mastering Software
Development in R.

[47] Jefrey M. Perkel. 2018. Why Jupyter Is Data Scientists’ Computational Notebook
of Choice. Nature 563, 7729 (Oct. 2018), 145–146. https://doi.org/10.1038/d41586-
018-07196-1

[48] Xiaoying Pu and Matthew Kay. 2020. A Probabilistic Grammar of Graphics. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems.
ACM, Honolulu HI USA, 1–13. https://doi.org/10.1145/3313831.3376466

[49] Xiaoying Pu, Matthew Kay, Steven M. Drucker, Jefrey Heer, Dominik Moritz, and
Arvind Satyanarayan. 2021. Special Interest Group on Visualization Grammars.
In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing
Systems (CHI EA ’21). Association for Computing Machinery, New York, NY, USA,
1–3. https://doi.org/10.1145/3411763.3450406

[50] Xiaoying Pu, Sean Kross, Jake M. Hofman, and Daniel G. Goldstein. 2021.
Datamations: Animated Explanations of Data Analysis Pipelines. In Proceed-
ings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI
’21). Association for Computing Machinery, New York, NY, USA, 1–14. https:
//doi.org/10.1145/3411764.3445063

https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1080/2159676X.2019.1628806
https://doi.org/10.1007/978-981-10-5251-4_103
https://doi.org/10.1007/978-981-10-5251-4_103
https://doi.org/10.1109/TVCG.2013.124
https://doi.org/10.1145/3313831.3376729
https://doi.org/10.1145/3313831.3376729
https://doi.org/10.1109/TVCG.2021.3114804
https://doi.org/10.1109/TVCG.2021.3114804
https://doi.org/10.1109/TVCG.2021.3076222
https://doi.org/10.1109/TVCG.2021.3076222
https://doi.org/doi.org/10.1145/3514221.3526166
https://doi.org/doi.org/10.1145/3514221.3526166
https://doi.org/10.1109/INFVIS.1998.729560
https://doi.org/10.1109/TVCG.2017.2744298
https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1145/3411764.3445452
https://doi.org/10.1111/cgf.14005
https://doi.org/10.1109/TVCG.2017.2744199
https://doi.org/10.1109/TVCG.2017.2744199
https://doi.org/10.1109/TVCG.2010.164
https://doi.org/10.1111/insr.12028
https://doi.org/10.1111/insr.12028
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/3173574.3174106
https://doi.org/10.1177/1473871611415994
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.14778/3494124.3494151
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1145/3448016.3457261
https://doi.org/10.1145/3448016.3457261
https://doi.org/10.1145/22949.22950
https://doi.org/10.1145/2509136.2509515
https://www.tidytuesday.com
https://doi.org/10.1109/TVCG.2009.111
https://doi.org/10.1080/10691898.2019.1695554
https://doi.org/10.1109/FIE44824.2020.9273908
https://doi.org/10.1109/TVCG.2017.2785807
https://doi.org/10.1109/TVCG.2017.2785807
https://doi.org/10.1038/d41586-018-07196-1
https://doi.org/10.1038/d41586-018-07196-1
https://doi.org/10.1145/3313831.3376466
https://doi.org/10.1145/3411763.3450406
https://doi.org/10.1145/3411764.3445063
https://doi.org/10.1145/3411764.3445063

CHI ’23, April 23–28, 2023, Hamburg, Germany Pu and Kay

[51] D. Ren, B. Lee, and M. Brehmer. 2019. Charticulator: Interactive Construction
of Bespoke Chart Layouts. IEEE Transactions on Visualization and Computer
Graphics 25, 1 (Jan. 2019), 789–799. https://doi.org/10.1109/TVCG.2018.2865158

[52] Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Exploration and Expla-
nation in Computational Notebooks. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems - CHI ’18. ACM Press, Montreal QC,
Canada, 1–12. https://doi.org/10.1145/3173574.3173606

[53] Daniel M Russell and Ed H Chi. 2014. Looking Back: Retrospective Study Methods
for HCI. In Ways of Knowing in HCI. Springer, 373–393.

[54] Arvind Satyanarayan and Jefrey Heer. 2014. Lyra: An Interactive Visualization
Design Environment. Computer Graphics Forum 33, 3 (2014), 351–360. https:
//doi.org/10.1111/cgf.12391

[55] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jefrey Heer.
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (2017), 341–350. https://doi.org/10.
1109/TVCG.2016.2599030

[56] Arvind Satyanarayan, Ryan Russell, Jane Hofswell, and Jefrey Heer. 2016. Reac-
tive Vega: A Streaming Datafow Architecture for Declarative Interactive Visu-
alization. IEEE Transactions on Visualization and Computer Graphics 22, 1 (Jan.
2016), 659–668. https://doi.org/10.1109/TVCG.2015.2467091

[57] Arvind Satyanarayan, Kanit Wongsuphasawat, and Jefrey Heer. 2014. Declarative
Interaction Design for Data Visualization. In Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology (UIST ’14). ACM, New York,
NY, USA, 669–678. https://doi.org/10.1145/2642918.2647360

[58] Nischal Shrestha, Titus Barik, and Chris Parnin. 2021. Remote, but Connected:
How #TidyTuesday Provides an Online Community of Practice for Data Scientists.
Proceedings of the ACM on Human-Computer Interaction 5, CSCW1 (April 2021),
1–31. https://doi.org/10.1145/3449126

[59] Carson Sievert. 2020. Interactive web-based data visualization with R, plotly, and
shiny. CRC Press.

[60] C. Stolte, D. Tang, and P. Hanrahan. 2002. Polaris: A System for Query, Analysis,
and Visualization of Multidimensional Relational Databases. IEEE Transactions
on Visualization and Computer Graphics 8, 1 (Jan. 2002), 52–65. https://doi.org/
10.1109/2945.981851

[61] John W Tukey. 1977. Exploratory Data Analysis. Addison-Wesley Pub. Co.,
Reading, Mass.

[62] Jacob VanderPlas, Brian Granger, Jefrey Heer, Dominik Moritz, Kanit Wong-
suphasawat, Arvind Satyanarayan, Eitan Lees, Ilia Timofeev, Ben Welsh, and Scott
Sievert. 2018. Altair: Interactive Statistical Visualizations for Python. Journal of
Open Source Software 3, 32 (Dec. 2018), 1057. https://doi.org/10.21105/joss.01057

[63] April Yi Wang, Will Epperson, Robert A DeLine, and Steven M. Drucker. 2022.
Dif in the Loop: Supporting Data Comparison in Exploratory Data Analysis. In
CHI Conference on Human Factors in Computing Systems. ACM, New Orleans LA
USA, 1–10. https://doi.org/10.1145/3491102.3502123

[64] Zijie J Wang, Katie Dai, and W Keith Edwards. 2022. StickyLand: Breaking the
Linear Presentation of Computational Notebooks. (2022), 1–7.

[65] Hadley Wickham. 2010. A Layered Grammar of Graphics. Journal of Computa-
tional and Graphical Statistics 19, 1 (2010), 3–28. https://doi.org/10.1198/jcgs.
2009.07098

[66] Hadley Wickham. 2016. Ggplot2: Elegant Graphics for Data Analysis. springer.
[67] Hadley Wickham. 2019. Advanced R (second edition ed.). CRC Press/Taylor and

Francis Group, Boca Raton.
[68] Hadley Wickham, Mara Averick, Jennifer Bryan, Winston Chang, Lucy McGowan,

Romain François, Garrett Grolemund, Alex Hayes, Lionel Henry, Jim Hester,
Max Kuhn, Thomas Pedersen, Evan Miller, Stephan Bache, Kirill Müller, Jeroen
Ooms, David Robinson, Dana Seidel, Vitalie Spinu, Kohske Takahashi, Davis
Vaughan, Claus Wilke, Kara Woo, and Hiroaki Yutani. 2019. Welcome to the
Tidyverse. Journal of Open Source Software 4, 43 (Nov. 2019), 1686. https:
//doi.org/10.21105/joss.01686

[69] Hadley Wickham, Romain François, Lionel Henry, and Kirill Müller. 2020. Dplyr:
A Grammar of Data Manipulation. RStudio.

[70] Leland Wilkinson. 2005. The Grammar of Graphics. Springer-Verlag, New York.
[71] Krist Wongsuphasawat. 2020. Encodable: Confgurable grammar for visualization

components. In 2020 IEEE Visualization Conference (VIS). IEEE, 131–135.
[72] Krist Wongsuphasawat. 2020. Navigating the Wide World of Data Visualization

Libraries. https://medium.com/nightingale/navigating-the-wide-world-of-web-
based-data-visualization-libraries-798ea9f536e7

[73] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill
Howe, and Jefrey Heer. 2016. Voyager: Exploratory Analysis via Faceted Brows-
ing of Visualization Recommendations. IEEE Transactions on Visualization and
Computer Graphics 22, 1 (Jan. 2016), 649–658. https://doi.org/10.1109/TVCG.
2015.2467191

[74] Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley Chang, Felix Ouk,
Anushka Anand, Jock Mackinlay, Bill Howe, and Jefrey Heer. 2017. Voyager
2: Augmenting Visual Analysis with Partial View Specifcations. In Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems (CHI ’17).
Association for Computing Machinery, New York, NY, USA, 2648–2659. https:
//doi.org/10.1145/3025453.3025768

[75] Jo Wood, Alexander Kachkaev, and Jason Dykes. 2018. Design Exposition with
Literate Visualization. IEEE Transactions on Visualization and Computer Graphics
(2018), 1–1. https://doi.org/10.1109/TVCG.2018.2864836

[76] Aoyu Wu, Wai Tong, Haotian Li, Dominik Moritz, Yong Wang, and Huamin Qu.
2022. ComputableViz: Mathematical Operators as a Formalism for Visualisation
Processing and Analysis. In CHI Conference on Human Factors in Computing
Systems (CHI ’22). Association for Computing Machinery, New York, NY, USA,
1–15. https://doi.org/10.1145/3491102.3517618

[77] Yifan Wu, Joseph M. Hellerstein, and Arvind Satyanarayan. 2020. B2: Bridging
Code and Interactive Visualization in Computational Notebooks. In Proceedings
of the 33rd Annual ACM Symposium on User Interface Software and Technology.
ACM, Virtual Event USA, 152–165. https://doi.org/10.1145/3379337.3415851

[78] Yihui Xie, J. J. Allaire, and Garrett Grolemund. 2019. R Markdown: The Defnitive
Guide. CRC Press, Taylor and Francis Group, Boca Raton.

[79] Jian Zhao, Mingming Fan, and Mi Feng. 2020. ChartSeer: Interactive Steering
Exploratory Visual Analysis with Machine Intelligence. IEEE Transactions on
Visualization and Computer Graphics (2020), 1–1. https://doi.org/10.1109/TVCG.
2020.3018724

A GENERALIZING GGPLOT2 FINDINGS TO
VEGA-LITE

We demonstrate on how generalizable our fndings might be to
another GoG-based visualization library, Vega-Lite. Table 3 shows
the same two options to transform data in ggplot2 and Vega-Lite.
In Figures 15, 16 and 17, we show that our participants’ ggplot2
specifcation and analyses can be directly rewritten in Vega-Lite
with similar GoG components and syntaxes.

https://doi.org/10.1109/TVCG.2018.2865158
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1145/2642918.2647360
https://doi.org/10.1145/3449126
https://doi.org/10.1109/2945.981851
https://doi.org/10.1109/2945.981851
https://doi.org/10.21105/joss.01057
https://doi.org/10.1145/3491102.3502123
https://doi.org/10.1198/jcgs.2009.07098
https://doi.org/10.1198/jcgs.2009.07098
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.01686
https://medium.com/nightingale/navigating-the-wide-world-of-web-based-data-visualization-libraries-798ea9f536e7
https://medium.com/nightingale/navigating-the-wide-world-of-web-based-data-visualization-libraries-798ea9f536e7
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1109/TVCG.2018.2864836
https://doi.org/10.1145/3491102.3517618
https://doi.org/10.1145/3379337.3415851
https://doi.org/10.1109/TVCG.2020.3018724
https://doi.org/10.1109/TVCG.2020.3018724

How Data Analysts Use a Visualization Grammar in Practice CHI ’23, April 23–28, 2023, Hamburg, Germany

GoG component related to data ggplot2, see book [66, Chpt. 5 & 21] Vega-Lite, see documentation: https://vega.github.io/vega-lite/
transformation docs/transform.html

Statistics/transformation Example: stat_density() .transform(vl.density("density"))
Out-of-the-box statistical transformations can execute count, Also called “view-level” transform. There is a pre-defned list
density, and other common wrangling operations. Analysts can of supported transformations (see documentation), including
write custom stats, but doing so requires knowledge of ggplot2 many common operators such as pivot and join.
internals and object-oriented programming.

Data, inside aesthetic Example: aes(x = sort(var)) .encode(vl.x().field("var").sort())
mapping/encoding Analysts can apply arbitrary function to the data variable/col- Also called “feld-level” or “inline” transform, including aggre-

umn specifed in aesthetic mapping, such as taking the absolute gate, bin, sort, stack, and timeUnit operators. The data grouping
value, or casting strings to a discrete variable type (factor in R). is inferred from unaggregated felds, if applicable.

Table 3: Comparing options of data transformation in ggplot2 and Vega-Lite. Both ggplot2 and Vega-Lite allow data transfor-
mation through the GoG data and statistics components.

https://vega.github.io/vega-lite/docs/transform.html
https://vega.github.io/vega-lite/docs/transform.html
https://vega.github.io/vega-lite/docs/transform.html

CHI ’23, April 23–28, 2023, Hamburg, Germany Pu and Kay

Output

vl.data(categories)
 .layer(
 vl.markLine()
 .encode(
 vl.x().fieldQ("decade"),
 vl.y().fieldQ("count"),
 vl.color().field("category")
),
 vl.markText({align: "left"})
 .encode(
 vl.x().datum(-0.8),
 vl.y().datum(17),
 vl.text().datum("Annotation")
)
)
.render()

Output

vl.data(categories)
 .layer(
 vl.markLine()
 .encode(
 vl.x().fieldQ("decade"),
 vl.y().fieldQ("count"),
 vl.color().field("category")
),
 vl.markText({
 dx: -165,
 dy: 140
 })
 .encode(
 vl.text().datum("Annotation")
)
)
.render()

Specification ggplot(categories) +
 geom_line(
 aes(
 x = decade,
 y = count,
 color = category)) +
 geom_text(
 aes(
 x = -0.8,
 y = 17,
 label = "Annotation"),
 position = position_nudge(x = 1900),
 hjust = "left")

Vega-Liteggplot2
ggplot(categories) +
 geom_line(
 aes(
 x = decade,
 y = count,
 color = category)) +
 geom_text(
 aes(
 x = -0.8,
 y = 17,
 label = "Annotation"),
 hjust = "left")

Specification

// Hard-coded data values

// Vega-Lite: dx, dy offsets in pixels;
no explicit x, y encodings needed

1. Problematic specification: P7 pasted an annotation from another project
data
aesthetic mapping/encoding
geometry/mark
scale

Legend (ggplot2/Vega-Lite)
Customization with text annotation position
Code example from P7, mentioned in Sections 5.2.1 and 6.1.2

// For correspondance between ggplot2
and Vega-Lite, we write Vega-Lite
specifications with its Javascript API
instead of the JSON form.

// ggplot2: offset specified in data
space (x = 1900)

// Text pushed the lines to the side

2. Fix we provide: “nudging” annotation in the data space (possible in ggplot2 and Vega-Lite), or use pixel offsets (Vega-Lite)

Figure 15: P7’s code example about placing a text annotation, reproduced in Vega-Lite syntax. The two versions of the code show
similar syntax, suggesting that our fndings might generalize to users of Vega-Lite, another GoG-based visualization library.
Vega-Lite allows for ofsets in pixel units, which are arguments only available for the text mark, not part of the GoG encodings.

How Data Analysts Use a Visualization Grammar in Practice CHI ’23, April 23–28, 2023, Hamburg, Germany

1. Problematic specification: using aesthetic space values (hex codes) as data space values

Output

ggplot(inferred_year_segment) +
 geom_segment(
 aes(
 x = x, xend = x + 10,
 y = 0, yend = 0,
 color = I(Year_colors)),
 size = 3)

vl.data(inferred_year_segment)
 .layer(
 vl.markLine({ "strokeWidth": 10 })
 .encode(
 vl.x().fieldQ("x"),
 vl.y().fieldQ("y"),
 vl.color()
 .field("yearColor")
 .scale(null)
)
)
 .render()

Specification

Output

vl.data(inferred_year_segment)
 .layer(
 vl.markLine({ "strokeWidth": 10 })
 .encode(
 vl.x().fieldQ("x"),
 vl.y().fieldQ("y"),
 vl.color().field("yearColor")
)
)
 .render()

Output

vl.data(inferred_year_segment)
 .layer(
 vl.markLine({ "strokeWidth": 10 })
 .encode(
 vl.x().fieldQ("x"),
 vl.y().fieldQ("y"),
 vl.color()
 .fieldN("year")
 .scale({range: yearColor})
)
)
 .render()

Specification ggplot(inferred_year_segment) +
 geom_segment(
 aes(
 x = x, xend = x + 10,
 y = 0, yend = 0,
 color = year),
 size = 3) +
 scale_color_manual(
 values = Year_colors)

Vega-Liteggplot2
ggplot(inferred_year_segment) +
 geom_segment(
 aes(
 x = x, xend = x + 10,
 y = 0, yend = 0,
 color = Year_colors),
 size = 3)

Specification

data
aesthetic mapping/encoding
geometry/mark
scale

Legend (ggplot2/Vega-Lite)

// Vega-Lite does not support
arithmetics (x + 10) or array of
colors (Year_colors) within encode();
otherwise this is a direct
translation.

Customization with colors

// For correspondance between ggplot2
and Vega-Lite, we write Vega-Lite
specifications with its Javascript API
instead of the JSON form.

Code example from P1, mentioned in Sections 5.2.1 and 6.1.2

2. P1’s corrected specification: using custom scale function

3. Alternative specification we provide: using the identity (null) scale function

// In ggplot2 and Vega-Lite (GoG in
general), a scale function maps data
space values (domain) into the
aesthetic space (range). Here the
range of the color scale is changed
from the defaults to a custom array
yearColor

// The domain and range are the same
for the identity/null scale function,
both in the aesthetic space.

// ggplot2 and Vega-Lite outputs still
have the default color palette; color
hex codes are treated as a
categorical/discrete variable.

Figure 16: P1’s code example about applying a custom color palette, reproduced in Vega-Lite syntax. The two versions of the
code use the same GoG components and have similar syntax, suggesting that our fndings might generalize to users of Vega-Lite,
another GoG-based visualization library.

CHI ’23, April 23–28, 2023, Hamburg, Germany Pu and Kay

Output

vl.markArea()
 .data(categories)
 .transform(
 vl.groupby(
 [“decade", "boardgamecategory"])
 .aggregate(
 vl.count().as("n")),
 vl.groupby("decade")
 .window(
 vl.rank().as("rank"))
 .sort(vl.field("n")
 .order("descending")),
 vl.filter('datum.rank <= 5')
)
 .encode(
 vl.x().fieldQ("decade"),
 vl.y().fieldQ("n").aggregate("sum"),
 vl.color().field("boardgamecategory")
)
 .render()

Output

vl.markArea()
 .data(categories)
 .transform(
 vl.groupby("boardgamecategory")
 .join([{op: "count", as: "n"}]),
 vl.window(
 vl.dense_rank().as("rank"))
 .sort(
 vl.field("n").order("descending")),
 vl.filter('datum.rank <= 5')
)
.encode(
 vl.x().fieldQ("decade")
 vl.y().fieldQ("n").aggregate(“count”),
 vl.color().field("boardgamecategory")
)
 .render()

Specification categories %>%
 group_by(boardgamecategory) %>%
 count(name=“n”) %>%
 ungroup() %>%
 mutate(rank = min_rank(-n)) %>%
 filter(rank <= 5) %>%
 select(boardgamecategory) %>%
 left_join(
 categories %>% group_by(
 decade, boardgamecategory) %>%
 count(),
 by = "boardgamecategory") %>%
 mutate(boardgamecategory =
 fct_drop(boardgamecategory)) %>%
 complete(decade, boardgamecategory,
 fill = list(n = 0)) %>%
 ggplot() +
 geom_area(
 aes(
 x = decade,
 y = n,
 fill = boardgamecategory)
)

Vega-Liteggplot2 + dplyr
categories %>%
 group_by(decade, boardgamecategory) %>%
 count(name = “n”) %>%
 group_by(decade) %>%
 mutate(rank = min_rank(-n)) %>%
 filter(rank <= 5) %>%
 ungroup() %>%
 mutate(boardgamecategory =
 fct_drop(boardgamecategory)) %>%
 complete(decade, boardgamecategory,
 fill = list(n = 0)) %>%
 ggplot() +
 geom_area(
 aes(
 x = decade,
 y = n,
 fill = boardgamecategory)
)

Specification

// Too many boardgame categories

1. Problematic: data transformation implies top categories conditional on decade, while visualization spec does not.
data
aesthetic mapping/encoding
geometry/mark
data transformation

Legend (ggplot2/Vega-Lite)
Silent error example
Code example mentioned in Sections 5.3

// For correspondance between ggplot2
and Vega-Lite, we write Vega-Lite
specifications with its Javascript API
instead of the JSON form.

2. Fix we provide: get top 5 boardgame category without conditional on “decade”

// Top 5 categories overall

// Added the join

// Without grouping by “decade”

Figure 17: P6/P7’s code example about silent error, reproduced in Vega-Lite syntax. The two versions of the code share similar
syntax and produce the same data operations, suggesting that our fndings might generalize to users of Vega-Lite, another
GoG-based visualization library. All our participants wrangled data outside ggplot2 specifcations using dplyr in R, while
Vega-Lite provides its own data transformation functions.

	Abstract
	1 Introduction
	2 Related Work
	2.1 The Grammar of Graphics and ggplot2
	2.2 Evaluating the benefits of visualization grammars
	2.3 Significance of the analysis context for understanding visualization specification

	3 Study
	3.1 Reasons to recruit from #TidyTuesday
	3.2 Participants
	3.3 Recording task
	3.4 Retrospective interview

	4 Analysis
	4.1 Recording edit logs and segmentation
	4.2 Thematic analysis

	5 Results
	5.1 Overview of participant recordings
	5.2 Execution: conceptualization of GoG components
	5.3 Evaluation: silent errors
	5.4 Execution-evaluation: Iterating with the Grammar of Graphics
	5.5 Execution-evaluation: GoG and data wrangling

	6 Discussion and design implications
	6.1 Practical visualization grammars for data analysts
	6.2 Helping analysts evaluate data wrangling
	6.3 Degree of vis-analysis integration
	6.4 Limitations and generalizability

	7 Conclusion
	Acknowledgments
	References
	A Generalizing ggplot2 findings to Vega-Lite

