
VMC: A Grammar for Visualizing Statistical Model Checks

Ziyang Guo, Alex Kale, Matthew Kay, Jessica Hullman

Fig. 1: Example model check visualizations authored with VMC, using data from [46]. From left to right: checks on the density curves of
the distributions of model predictions and observed data from (A) response variable to (B) distributional parameter; follow-up checks
conditional on the quantitative predictor, where VMC is used to specify (C) Hypothetical Outcome Plots and (D) a line + ribbon plot; (E) a
facet check stratifying the random effects and (F) a multilevel check; more checks for the random effects specified by VMC, including
(G) raincloud plots and (H) multiple-interval plots; and residual checks specified by VMC, including (I) residual plots revealing the
heteroskedasticity of the model and (J) Q-Q plots, validating the normality of residuals.

Abstract—Visualizations play a critical role in validating and improving statistical models. However, the design space of model check
visualizations is not well understood, making it difficult for authors to explore and specify effective graphical model checks. VMC defines
a model check visualization using four components: (1) samples of distributions of checkable quantities generated from the model,
including predictive distributions for new data and distributions of model parameters; (2) transformations on observed data to facilitate
comparison; (3) visual representations of distributions; and (4) layouts to facilitate comparing model samples and observed data. We
contribute an implementation of VMC as an R package. We validate VMC by reproducing a set of canonical model check examples, and
show how using VMC to generate model checks reduces the edit distance between visualizations relative to existing visualization toolkits.
The findings of an interview study with three expert modelers who used VMC highlight challenges and opportunities for encouraging
exploration of correct, effective model check visualizations.

Index Terms—Model checking and evaluation; Uncertainty visualization; Grammar of Graphics

1 INTRODUCTION

• Ziyang Guo is with Northwestern University. E-mail:
ziyang.guo@northwestern.edu.

• Alex Kale is with University of Chicago. E-mail: kalea@uchicago.edu.
• Matthew Kay is with Northwestern University. E-mail:

mjskay@northwestern.edu.
• Jessica Hullman is with Northwestern University. E-mail:

jhullman@northwestern.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

Visualizations play a critical yet undervalued role for checking expec-
tations in statistical modeling workflow. A rigorous statistical anal-
ysis often includes numerical or graphical checks of how well the
model fits the data and performs for the purpose for which it is de-
veloped [13, 15, 16]. Experienced statisticians view numerical and
graphical checks as serving complementary roles, and often use them
in tandem. For example, it is well-known that while a high R-squared
value in a regression model can suggest a good fit, a residual plot
might reveal heteroskedasticity or other issues not evident from the
R-squared value alone [34]. Model check visualizations also play a
powerful role in communicating and helping validate visually-based
inferences [15, 22], which can be strengthened by integrating function-
ality for generating model check visualizations in exploratory visual

data analysis tools [24, 28].
Graphical model checks (model checks hereafter) extend far beyond

well-known examples like residual plots, and can take many different
forms. For example, they can juxtapose the model predictions and
observed data side by side. They can directly encode the difference
between the two such as in residuals (Figure 1I, J). The visual repre-
sentations used in model check visualizations also vary widely. They
can use different mark types to represent the model and observed data,
such as raincloud plot in Figure 1G. They can be animated to reveal the
uncertainty in model distributions, such as hypothetical outcome plots
in Figure 1C.

A lack of graphical tools for composing or exploring visualizations
for model checking restricts the potential for these visualizations to
improve statistical practices. Expert modelers tend to rely on their
previous experience to guide their design choices. For example, some
analysts may only think of residual plots to check assumptions of
heteroskedasticity or density estimates to check for systematic discrep-
ancies between model predictions and observed data [13, 16]. Others
may gravitate toward other views based on their training (e.g., Bayesian
workflow [18]). Reliance on prior experience alone can restrict explo-
ration of model check visualization designs and employment of new
techniques for displaying uncertainty [30] or comparative layouts [19].

One way to scale effective visual model checking to more scenar-
ios is to make it easier to generate a space of possible model check
visualizations in statistical workflow. Most current methods for spec-
ifying model checks either are too low-level to effectively support
high-level tasks in model checks or have limited flexibility to explore
diverse design choices. For example, the Grammar of Graphics (e.g.,
ggplot2 [50] and Vega-Lite [45]) specify a visualization as a set
of layers comprised of data, geometries, aesthetics, statistical trans-
formations, scales, and guides. However, low-level representations
can lead to problems like representational viscosity, hidden dependen-
cies, and error-proneness [6] when applied to designing model check
visualizations. For example, switching from a posterior predictive
check on a density estimate (Fig. 1A) to a residual plot (Fig. 1I) using
ggplot2 requires changes to data, aesthetics, scales and geometry.
On the other hand, task-oriented approaches like bayesplot [12, 13]
and performance [34] only support fixed visualizations for specific
tasks, discouraging further exploration. This trade-off between simplic-
ity and expressiveness motivates careful development of appropriate
abstractions for model check visualization.

We contribute VMC, a high-level declarative grammar for generating
model check visualizations. VMC categorizes design choices in model
check visualizations via four components: sampling specification, data
transformation, visual representation(s), and comparative layout. VMC
improves the state-of-the-art in graphical model check specification in
two ways: (1) it allows users to explore a wide range of model checks
through relatively small changes to a specification as opposed to more
substantial code restructuring, and (2) it simplifies the specification of
model checks by defining a small number of semantically-meaningful
design components tailored to model checking.

We implement VMC as a package in the popular statistical program-
ming language R. By reproducing a range of model check techniques
that occur in the statistical literature [16], we demonstrate how (1)
the design space specified by the components of VMC covers canonical
examples of model checks used in statistics and (2) the abstractions
employed by VMC can reduce edit distance between model check vi-
sualization specifications compared to existing general purpose and
specialized graphics libraries, e.g., ggplot2 and bayesplot. We fur-
ther contribute the results of a semi-structured interview study in which
three expert modelers applied VMC to a model of their choice. We find
that VMC (1) aligns with participants’ understanding and practice of
model checks and (2) encourages exploration of new model checks.

2 RELATED WORK

2.1 Visualizations as Model Checks
Model checking is a fundamental part of statistical workflow [7, 8, 16].
Among forms of checks, visualizations that enable graphical checking
has long been viewed as an important complement to quantitative

statistical checks [9, 13, 48]. For example, modelers use residual plots
to check model assumptions like heteroskedasticity [8] and scatter plots
to check for multimodality [2]. Gabry et al. [13] summarizes the usage
of graphical checks in each step of the Bayesian statistical workflow
and implements these canonical checking examples in an R graphical
tool, bayesplot.

Model checks are designed to facilitate the comparison between
observed data and predictions under the model. The best model check
visualizations are said to reduce this task to detecting deviation from
symmetry, for which the human visual system is well-optimized [15].
Because model checks are inherently visual, they are hard to theorize,
though statisticians have identified properties expected of a good model
check. For example, Li et al. [33] suggest a model check should be well-
calibrated, computationally efficient, and easy-to-use. We develop VMC
to address obstructions to the last property when it comes to existing
libraries for constructing model checks.

More broadly, some prior work has explored the idea of strengthen-
ing the connection between visualization and statistical model checking.
Early work in statistical graphics emphasized the value of trellis plots
for checking for main effects and interactions between variables in
plots of observed data [5]. Gelman proposed a theoretical formulation
of visualizations as model checks to help bridge seemingly opposed
traditions of exploratory and confirmatory data analysis [14, 15]. Other
authors have similarly proposed an analogy of a visualization as a
statistical test, and contributed graphical tools like the line-up to facili-
tate graphical statistical inference [21, 37, 51]. Hullman and Gelman
compare statistical perspectives on the analogy between visualizations
and statistical modeling, likening the examination of visualization to
posterior predictive checking in a Bayesian workflow and deriving
design implications of this view for interactive visual analysis software
[23, 24]. Kale et al. [28] realize a version of this vision in EVM, a
Tableau-style visualization tool that incorporates lightweight specifica-
tion and graphical checking of models to help users express and check
their provisional interpretations of data in exploratory visual analysis.
While generatlly associated with traditional statistical modeling, visual
model checking also plays a role in machine learning pipelines, where
the goals of a VIS4ML system often hinge on the ability of the system
user to identify forms of model misfit [47]. The diversity of applica-
tions for model checking emphasize the need for tools and theory to
be agnostic to the specific goals and form of the model. Despite its
importance as a statistical tool, there is little practical guidance on how
to evaluate or construct model check visualizations [24, 39].

2.1.1 Visualizations for comparison
Model checks are a particular type of visualization-aided comparison.
Gleicher et al. [19] discuss the challenges in designing visualizations
for aiding comparison and propose a taxonomy for comparison tech-
niques in visualizations, which informs the comparative layout com-
ponent of our grammar. Elsewhere, canonical work in visualization
highlights the value of faceting data for checking implicit models [5].
Our work extends understanding of visual comparison by focusing
specifically on the design space for facilitating comparison between
model predictions and observed data.

2.2 Visualization Grammars
Visualization grammars can provide a more rigorous basis for gener-
ating visualizations over chart-type typologies, as well as a principled
way of generating a search space of visualizations for visualization
recommenders to act on. For example, the Grammar of Graphics (im-
plemented by ggplot2) [52] specification uses layered components to
encode visual representation layers, scales for aesthetic attributes, a
coordinate system to map the position on the plot, and facets to partition
data into subsets. Some visualization grammars target more specific
domains. For example, ggdist [30] and PGoG [42] provide a particular
formalism for specifying uncertainty visualizations as an extension to
ggplot2, and IEMA [4] provides a formalism to specifying explanatory
model analysis.

However, existing visualization grammars are not optimized for
specifying model checks. Constructing model checks usually involves

techniques like extracting samples from the model, visualizing the
samples in visual representation, and comparing model predictions
and observed data in layouts. However, as discussed by literature [43],
existing visualization grammars such as ggplot2, can lead to specific
errors such as mismatched data and visualization due to the lack of tight
couplings between data transformation and visualization code and the
difficulty of keeping these in sync. Model check libraries like bayesplot
[13] provide users a quick API to define a model check visualization
by generating fixed plots for certain model check tasks, e.g., a density
plot for posterior predictive checks and residual plots for checking
heteroskedasticity. However, they are not meant to provide a systematic
understanding of what constitutes a model check that users can rely on
to explore or invent designs.

3 DESIGN OBJECTIVES

Drawing on the aforementioned prior work on model checking work-
flow, we derived four design objectives for a model check visualization
grammar.
O1 Expressiveness. To scale the benefits of model checking to many
scenarios, a model check visualization grammar should be able to ex-
press as many model check design strategies as possible, incorporating
different visualization techniques. One way to enable visualization
flexibility is to componentize data preparation and visual specification
separately. Data preparation components should support varying meth-
ods to access the model and observed data. The visual aspects of a
grammar should control how to render the model and observed data
(e.g., represent the model by lines and observed data by points) and
how to lay them out to facilitate comparison (e.g., aligning the plot for
the model and the plot for the observed data spatially or overlaying
them in one same coordinate system).
O2 Correctness Following other task-oriented visualization gram-
mars [42], a model check visualization grammar should support gen-
eration of “correct” examples only. In the context of model check
visualization, correctness corresponds to specifications of visualization
that are a function of both model predictions and observed data. Prior
work on visualization grammars suggest that one way to avoid genera-
tion of incorrect examples is for the visualization grammar to tightly
couple the data and visualization specifications, as mismatch between
them can lead to errors [43]. Maintaining this synchronization can be
particularly complex in the case of model check visualizations, which
requires keeping two different data pipelines (for observed data and
model predictions) and their corresponding representations in sync.
O3 Closeness to the experts’ language A model check visualization
grammar should use abstractions that resemble language experts use
in specifying model checks, including both to describe the relevant
data processes and to specify the visualization. Ideally, a grammar will
enable specifying the data corresponding to a desired model check vi-
sualization at a high level corresponding to major distinctions between
methods experts care about but with sufficient control over crucial
details like sampling methods that experts may care about. For visual
choices, possible specifications should correspond to the space of com-
binations of meaningful variations in design choices observed in expert
model checking workflow.
O4 Exploration. Following other grammars that facilitate exploration,
a grammar should be component reusable [20], coherent and system-
atic [10]. For component reusability, the components of the specifica-
tion of a model check visualization grammar should be independent of
one another such that changing one component does not necessarily re-
quire changing others. To be coherent and systematic, the specification
of a model check visualization grammar should be hierarchical and the
components should control different parts of model check visualization
in a systematic way.

4 VMC: GRAMMAR FOR MODEL CHECKS

VMC is a declarative grammar designed to support concisely and flexibly
specifying model check visualizations. VMC allows users to specify the
data preparation and visual design of model check visualizations inde-
pendently (O1 and O4) with tailored components for common model
checking tasks (O3). A single VMC specification defines how to generate

samples from the model (Sampling_spec), transform the observed
data (Data_transformation), visualize the model samples and the
observed data (Visual_representation) and set up comparison be-
tween the model and the observed data (Comparative_layout). VMC
takes an input model and a set of observed data to be compared. The
formal specification of VMC is shown in Figure 2.

4.1 Sampling Specification
The first step to specifying a model check visualization is to define a
way to access the fitted model. We build the Sampling_spec compo-
nent of VMC to control how to sample from the model. We designed
VMC’s Sampling_spec to be robust to model types and various sam-
pling methods in model checks to fulfill the objective of expressiveness
(O1). At the meantime, it should also have arguments to succinctly
express conceptually distinct sample generation options to maintain
closeness to experts’ language (O3) and facilitate exploration (O4).
The Sampling_spec component of VMC covers varieties of sampling
methods with three arguments: (1) the quantity to be generated from
the model, (2) the data set of predictor values, and (3) the number of
draws.

There are many different model-defined quantities that can be useful
to check in model check visualizations [14, 44, 49]. For example,
in Bayesian data analysis [14], modelers frequently sample from the
posterior distribution of the model parameters in addition to drawing
from the posterior predictive distribution. The quantities that are being
checked also vary with the choice of link functions. For example,
modelers often check the link-scale predictions of the logarithm of the
odds ratio in logistic regression models [36].
Sampling_spec formalizes the quantities within a statistical model

by combining link functions with the response variable and distribu-
tional parameters, if applicable. For example, in the model shown in
Equation 1, the quantities included by Sampling_spec are y, l(y),
τ1, . . . ,τM and l1(τ1), . . . , lM(τM). The definition of quantities within
Sampling_spec is designed to balance expressiveness and redun-
dancy; we aimed for Sampling_spec to express as many model quan-
tities as possible while ensuring that it only includes quantities that are
checkable.

A checkable quantity is one for which there exists a method for
comparing it with observed data. Distributional parameters often cor-
respond to statistics computed on the observed data, such as µ in
a Gaussian distribution corresponding to the mean of the observed
data and σ corresponding to the standard deviation of observed data.
There will however be cases where we cannot check arbitrary quan-
tities generated under the model against observed data. For example,
consider a scenario where an author wants to check α in the model:
y ∼ Normal(µ,φ),µ = α +βx. To compare with α in the model re-
quires prior information on the true data generating process of the
response variable y. However, uncertainty about the true data generat-
ing process is typically why explanatory models are used in the first
place.

l (y)∼ p(l (y)| τ1, . . . ,τm, . . . ,τM)

lm (τm) = fm(θ , x)
(1)

response variable

link function

model parameters

independent variables

distributional parameters

link function

4.2 Data Transformation
Given the varieties of data transformations that can be applied in model
check visualizations [13, 14, 17], we define Data_transformation
as a function that takes in a data set of observed data and outputs a
data set with the same format as the input data. For example, instead
of the original empirical distribution of the observed data, modelers
may want to compare the model to certain statistics computed on the

VMC_Spec �� Model, Data, Sampling_spec, Data_transformation,
Visual_representation, Comparative_layout

Model �� function(<Predictors>) �� <Response_var>
Data �� <Predictors, Response_var>[]
Predictors �� <Any>[]
Response_var �� <Any>

Sampling_spec �� Quantity, Predictor_values, Ndraws
Quantity �� y | mu | sigma | phi | ���
Predictor_values �� <Predictors>[]
Ndraws �� <Number>

Data_transformation �� function(<Data>) �� <Data>

Visual_representation �� <Target, Mark, Group_samples?>[]

Target �� model | data
Mark �� densityline | slab | violin | histogram | interval |

gradient | heatmap | quantiledots | line | point|���
Group_samples �� collapsing | individulizing | animating |

Aggregation
Aggregation �� function(��Response_var>[]>) ��

<Response_var>

Comparative_layout �� superposition | juxtaposition |
nest_juxtaposition | Explicit_encoding

Explicit_encoding �� residual | Q-Q | detrended_Q-Q |
Customized_encoding

Customized_encoding �� function(<Samples, Data>) ��
<Samples>

Samples �� <Predictors, Response_var, Draw_id>[]
Draw_id �� <Number>

Notation
“a �� b, c”: a is defined as a tuple of b and c, “a?”: a is an optional argument, “���”: extensible argument,
“<Abc>”: data type, “a|b|c”: either one of a, b, or c, “<A, B>[]”: a list of a tuple of A and B

Fig. 2: The formal specification of VMC including the four main components: Sampling_spec, Data_transformation, Visual_representation and
Comparative_layout.

observed data, e.g., mean or median [14]. Some transformations on
the observed data are meant to help test a hypothesis, e.g., whether
the model’s predictive distribution captures the mean or median of the
observed data. Others are performed to ensure comparability of the
model quantity and observed data. For example, when model samples
are generated from the distribution of the σ parameter in a Gaussian
regression model, the model quantity is on a variance scale. In this case,
the observed data should first be transformed to its standard deviation.

4.3 Visual Representation
Effective visual representations—those that can enable the analyst to
identify discrepancies between model predictions and observed data—
are critical to the utility of model checking in a statistical workflow. The
third component of VMC, Visual_representation, is used to specify
the visual representations of the model and observed data separately.
It enables specifying a list of visual representations to compose a
model check visualization. Authors can specify more than one visual
representation for model predictions and observed data. For each
visual representation for model predictions, in addition to the mark
type, they can specify the method to use to group the samples in that
representation.

4.3.1 Choice of mark type
Drawing on research on visualizing distributional information [30, 42],
we observe that visualizations of uncertainty can be distinguished based
on whether they use the area or extent of a mark to encode distributional
information (e.g., a confidence interval or range), a visual variable such
as color to encode probability, or a discrete (countable) representation
in which distinct marks are used to visually compose a distribution.
VMC defines three categories for marks:

EXTENT : densityline,slab,violin,histogram, interval, ...
VISUAL VARIABLE : gradient,heatmap, ...

COUNTABLE : quantiledots, line,point, ...

In practice, the choice of mark type for visually representing distri-
bution in model checks may be driven by the audience of the model
checks and specific model checking tasks. For example, if the audience
is broader than just experts, the authors may opt for a mark type from
the countable category, e.g., quantile dotplots [31], since countable
visual representations appear to outperform continuous equivalents like
error bars or densities for some tasks for lay audiences [11, 25, 26, 41].
(The meaning of collapsing and individualizing in these specifications
is described in section 4.3.2.)

Visual_representation←
[(model,quantiledots,

collapsing),
(data,quantiledots)]

model
obs

The choice of mark type can also depend on the specific task the
model check is designed for. For example, the author may prefer a mark
type based on intervals if they want to check calibration (i.e., whether
the model predictions capture the expectation of observed data) or
heteroskedasticity (i.e., whether the variance of residuals is constant).

Visual_representation←
[(model, interval,

collapsing)),
(data, interval)]

model
obs

If they want to check the shape of the distribution, they may prefer
densities.

Visual_representation←
[(model,densityline,

individualizing)),
(data,densityline)]

model
obs

They may also want to show more complex information about the
model predictions and observed data, leading them to adopt hybrid
mark types. For example, statisticians have used raincloud plots [1], a
combination of several chart types, to visualize the raw observed data,
the distribution of the model predictions as density, and key summary
statistics at the same time.
Visual_representation←

[(model,slab,
collapsing)),
(model, interval,

collapsing)),
(data,quantiledots)]

model
obs

4.3.2 Grouping samples
By sampling from the model, we yield multiple sets of model samples
for visualizing. Different approaches to grouping these samples prior
to applying visual marks produce different visual formats that may
differ in how well they support various tasks. We summarise four ways
of grouping samples into visual marks observed in model checking
practice.

First, one common approach is to collapse all samples into one visual
mark. Consider the example of a line ribbon plot in Figure 1D: there
is only one mark (line + ribbons for multiple confidence intervals),
which is calculated from the data of all the samples. Another way
is to use individual marks for each of the samples. For example, in
the posterior predictive check in Figure 1A, each of the light red line
represents the density estimate of one sample. Hypothetical outcome

line+ribbon point+interval dots

−
−−−
−
−−

−−
−−
−−
−−
−−

−−−

−−
−−−
−−
−−− −

−

gradient

−
−−−
−
−−

−−
−−
−−
−−
−−

−−−

−−
−−−
−−
−−− −

−

−
−−−
−

−−

−−
−−
−−
−−
−−

−−
−

−−
−−−
−
−−
−− −

−

violinpoint line tile

Fig. 3: A subset of visual representations that VMC can specify. Not
shown: Animation (HOPs) can be applied upon any.
plots (HOPs) [26] animate one mark of one sample at each time frame,
e.g., Figure 1C. Finally, sometimes modelers may want to plot the
distribution of aggregate statistics of each sample (e.g., a histogram of
sample means [14]).
Visual_representation uses Grouping_samples to control

how to group the model samples into the visual marks. VMC supports
grouping samples using four options: collapsing, individualizing, ani-
mating, and aggregating. Let q(i) = [q(i)1 , . . . ,q(i)n] be a sample from the
model on a set of observed values of predictors, x = [x1, . . . ,xn], where
n is the number of instances. There are r samples total: q(1), . . . ,q(r).
Using collapsing will visualize all samples in one visual mark, i.e.,
the visual mark takes as input q(1), . . . ,q(r). Using individualizing and
animating are both specified to visualize samples in separate visual
marks: individualizing overlays all marks in one coordinate system
while animating shows each visual mark in one time frame. Thus, when
using individualizing or animating, there are r visual marks with each
of them takes input as q(i). Using aggregating will aggregate statistics
of each sample and then use one mark for the aggregated statistics. De-
noting the aggregating function as π : Rn→R, when using aggregating,
the visual mark takes as input π(q(1)), . . . , π(q(r)).

4.4 Comparative layout
The final necessary decision in visualizing a model check is to specify a
comparative layout to facilitate checking the alignment of data observa-
tions and model predictions. We summarise four classes of comparative
layouts from the visual comparison literature [5, 19, 27, 40] : superpo-
sition, juxtaposition, nested juxtaposition, and explicit encoding. Our
grammar makes these options entities of the same type (comparative
layout), which is notably different from the grammar of graphics, where
researchers have noted a mismatch between author’s comparison tasks
and Grammar of Graphics components [43]. We represent the choices
of comparative layouts directly in Comparative_layout, to better
match model check visualization authors’ tasks. Juxtaposition and
superposition do not require changes to the visual representations of
model predictions and observed data, but organize the layout to make
them spatially aligned [38].

Visual_representation←
[(model, lineribbon,

collapsing),
(data, lineribbon)]

Comparative_layout←
juxtaposition

obs model

Visual_representation←
[(model,histagram,

collapsing),
(data,histagram)]

Comparative_layout←
superposition

model
obs

Nested juxtaposition is a variant of juxtaposition, where the distributions
of model predictions and observed data are placed side by side but
within the coordinate system of the plot.
Visual_representation←

[(model,pointinterval,
collapsing),
(data,pointinterval)]

Comparative_layout←
nested_juxtaposition

model
obs

To use explicit encoding requires calculating a transformation on the
model predictions and observed data [19]. Explicit encoding is often
used to facilitate checking specific assumptions of a model, such as
heteroskedasticity, linearity, and normality of errors (Fig. 1I and J).
Visual_representation←

[(model, lineribbon,
collapsing)]

Comparative_layout←
Explicit_encoding

Explicit_encoding←
residual

model

An effective comparative layout renders differences between model
predictions and observed data visually salient. Which layout works best
will depend on the specific circumstances. Superposition facilitates
comparisons since the visual representations of model predictions and
observed data are plotted along the same axes, but also introduces over-
lap that may result in loss of information on the part of the viewer. For
example, when using a visual representation that encodes uncertainty
information with opacity, a superposition layout will blend the opacity
for model predictions and observed data. Juxtaposition avoids overlap
but requires visuo-spatial working memory and eye movements to en-
able comparison. Nested juxtaposition is helpful for detecting local
differences because it places the information being compared close in
space on a common, aligned scale. It can avoid the shortcomings of
superposition and juxtaposition, but sometimes requires more work to
create. For example, creating a nested juxtaposition for a model check
that is conditional on a continuous variable can be complicated; the
author might need to cut the continuous axis into several segments and
intermittently place the segments of model predictions and observed
data. Explicit encoding presents the comparison directly, avoiding in-
formation loss, but also introduces abstraction by changing the unit. For
example, Q-Q plots show the relationship between model predictions
and observed data by plotting the quantiles of model predictions against
the quantiles of observed data.

5 A WALK-THROUGH EXAMPLE: AIR QUALITY

We use the data from Shaddick et al. [46] and models from Gabry
et al. [13] to demonstrate VMC’s usage in a statistical workflow. The
focus is PM2.5, representing exposure to air pollution from particu-
late matter measuring less than 2.5 µm in diameter, that is linked to
a number of poor health outcomes. Direct measurements of PM2.5
rely on a sparse network of ground monitors with heterogeneous spa-
tial coverage. To obtain estimates of PM2.5 concentration with high
spatial resolution, direct measurements are supplemented with high
resolution estimates from satellite data. By calibrating the satellite
estimations using the ground monitor data, the goal is to obtain high-
resolution, high-precision estimates of PM2.5. We start with a simple
linear regression:

log(PM2.5)∼Normal(µ,σ)

µ =α +β log(satellite)
log(σ)∼Normal(0,1)

(2)

After fitting the model, we use VMC to check the model’s predictions
against the correlation between the observed PM2.5 and satellite es-
timates. We start by checking the overall distribution of the model

predictions of PM2.5 compared with the observed PM2.5. We set
the Quantity in Sampling_spec as y, which generates Figure 1A.
With separate Sampling_spec and Visual_representation com-
ponents in VMC, we can also flexibly check on different posterior dis-
tributions (e.g., Figure 1B) and use different visual representations of
model distribution and observed distribution. This initial model check
visualization provides a good starting point by revealing the misalign-
ment between the shape of the distribution of predicted PM2.5 and
observed PM2.5, where skewness in the observed data is not captured
by the model.

Next we explore causes of this skewness to improve the initial
model. We look at the marginal effects of the predictor to PM2.5.
VMC supports this step with various visual formats. First, we set Mark
in Visual_representation as point for both the model distribution
and observed distribution. We use Group_samples to animate the sam-
ples (Hypothetical Outcome plots [26]), which gives a view of what
individual samples from the model distribution look like (Figure 1C).
Using points reveals the original model predictions clearly but makes
it hard to perceive the uncertainty directly, so we use a different Mark,
line + ribbons (Figure 1D) to display the uncertainty intervals.

We continue to explore other visualizations by cycling through com-
ponents of VMC, including trying different Comparative_layouts to
compare the model predictions and observed data such as juxtapo-
sition, and trying different faceting options to explicitly show how
observed data is clustered (Figure 1E). When faceting by the regions,
the marginal effects of PM2.5 to satellite estimates have noticeable
clusters in different regions (Figure 1E). In response, we update the
model by adding submodels of regions.

log(PM2.5)r ∼Normal(µr,σ)

µr =αr +βrlog(satellite)
σ ∼Normal(0,1)

(3)

After fitting the new model, we check it, first by generating a canonical
check used for multilevel models (Figure 1F). We also check how the
submodels perform by specifying model checks that are conditional
on the regions (Figure 1G and H). To do this, first, we set the Mark
to encode uncertainty, e.g., halfeye for model distribution and dots
for observed distribution in a raincloud plot (Figure 1G). Then, we
adjust Comparative_layout to nest_juxtaposition to reduce vi-
sual overlap. Finally, to verify that this change improved the model,
we return to our initial model check where we identified skewness
(Figure 4A) and facet by regions this time. We validate that the density
curves of the model predictions converge to the curve of the observed
data well, but wonder how the overall density of all samples looks
compared with the observed data. VMC’s design of Group_sample
in Visual_representation supports flexible operations on model
samples such as collapsing all the samples from the model prediction
into one density curve (Figure 4C).

Next, we look more deeply into the assumptions of the model. We
first check the residuals. By using VMC, we can do this quickly with
Explicit_encoding in Comparative_layout component, where
we specify a function encoding the comparison as the difference be-
tween model predictions and observed data (Figure 1I). Then we check
the normality of the residuals by specifying a Q-Q plot (Figure 1J).
Through VMC, we only need to change the encoding function set in
Explicit_encoding. Looking at the residual plot, we validate that
the variance of residuals is constant along the conditional variable. In
the Q-Q plot, however, we observe further misalignment, where the
residuals do not follow the standard normal distribution, motivating
further changes to the model spec. The goal behind VMC is to make
it easier for the analyst to focus on the modeling task at hand in such
scenarios, with the grammar facilitating less tedious construction of
checks.

6 IMPLEMENTATION IN R
We implement VMC in the R language as a package, provided
in Supplemental Materials. The specification of VMC follows
conventions popularized by the widely-used ggplot2 package

Fig. 4: The model check examples for updated model.

and outputs a ggplot specification to generate the model check
plot. To start specifying a model check plot, the user is-
sues a statement called mcplot() and then follows it with state-
ments specifying the four requisite components of VMC: mc_draw()
for Sampling_spec; mc_observation_transformation() for
Data_transformation; mc_model_*() and mc_obs_*() for
Visual_representation(where * stands for different mark types,
e.g., mc_model_slab() for using slab for model predictions); and
mc_layout_*() for Comparative_layout(where * stands for dif-
ferent layers, e.g., mc_model_superposition() for using superposi-
tion). The implementation of VMC also supports other supplementary
components, e.g., mc_condition_on() to define the conditional vari-
able used in the check and mc_gglayer() to append a ggplot2 layer
to the output specification.

7 REPRODUCING REAL-WORLD EXAMPLES

To validate the expressiveness of VMC as a visualization grammar, we
collected and reproduced 27 model check visualization examples from
statistics and visualization literature [11, 14, 15, 16, 24, 28, 53, 54]
that cover a description of model check techniques from a popular
Bayesian statistics textbook [16]1. They highlight four model check
techniques: replicated or external checks, to make predictions under
the fitted data or future data, choosing model quantities, to check the
aspect of the model we want, marginal predictive checks, to check the
joint predictive distribution, and residual checks, to check the errors the
model makes. We evaluate the syntax design of VMC by comparing it
with ggplot2 [50] and bayesplot [13] (a task-oriented R package for
model check of Bayesian models) while reproducing these examples.
We used an example Beta regression model in reproducing these model
check visualizations 2. Across all the examples we implemented to
compare APIs, there were an average of 30% fewer lines of code with
VMC than with ggplot2.

Replicated or external checks. VMC supports replicated or
external checks using the Predictor_values argument in the
Sampling_spec component. Figure 1A shows a replicated check
generated by VMC, which presents the kernel density estimate of the
observed data (blue curve), with density estimates for samples from
the posterior predictive distribution (orange, lighter lines). Figure 5A
provides the full VMC specification for an external check where the user
is creating a model check with a “raincloud” plot. The specifications of
VMC are more concise than their ggplot2 and bayesplot counterparts.
With VMC, users need only specify one argument to input a new data set
to predict on. In contrast, with ggplot2 or bayesplot, since there is
no grammar specification on how the data is generated from the model,
users need to manually define the extract function using fitted or new
data set and tidy the prediction’s data format.

Choosing model quantities. VMC’s Sampling_spec component
enables various model quantities to be presented in model checks.
Consider the previous example of the kernel density estimates check.

1We reproduce these examples using the implementation of VMC in R.
2See the full specification of the example Beta regression model and the

reproduced examples with their corresponding R code (using VMC, ggplot2,
and bayesplot respectively) in Supplemental Materials

Fig. 5: (A) Raincloud plots are constructed by two visual representation layers for model predictions and one for the observed data. (B) A line +
ribbon plot is a combination of a line showing the mean of predictions and ribbons showing the prediction intervals. (C) HOPs uses animation to
combine the samples from the model.

We can specify the Quantity argument in Sampling_spec as µ (i.e.,
parameter µ in the beta regression model) (Figure 1B). Figure 5B shows
a more concrete example with code in R. To align the scale of observed
data with that of the model quantity µ , we apply a transformation on the
observed data. The VMC specification for choosing the model quantity
is, once again, more concise than the corresponding ggplot2 and
bayesplot example. When exploring the possible choices of model
quantity, VMC allows users to consider the quantities as one entity, rather
than a data processing step prior to plotting as when using ggplot2
and bayesplot. This helps keep data processing and visualization
consistent, potentially avoiding errors [43].

Marginal predictive checks VMC supports marginal predictive
checks through flexible specification of visual representations and
comparative layouts. For example, Figure 5C shows how VMC repro-
duces a canonical example of marginal checks introduced by Gelman
[15] and combined with HOPs by Hullman and Gelman [24]. Be-
sides conditioning on the independent variables on the x-axis, VMC
also enables grouping marginal checks by color, rows and columns
(i.e., faceting) Figure 1E and F. To check the marginal effects in the
model, VMC requires a shorter edit distance to switch between con-
ditional variables compared with ggplot2. In VMC specification, the
conditional variables are specified by a component separated from the
visual representation components, so to change the conditional variable
only requires changing one component. This abstraction makes VMC
closer to experts’ language (O3), reducing the complexity compared to
ggplot2.

Residual checks VMC can specify various residual checks with var-
ious tasks. For example, Figure 1I checks the heteroskedasticity by
showing the residual values with a scatter plot and Figure 1J checks the
normality of residuals with a Q-Q plot. Residual checks can be used
to check other assumptions of the model, e.g., for a linear relationship
between residuals and values of the response variable (see the example
from Gelman [15] in Supplementary materials). VMC specification sepa-
rates the Comparative_layout from the other components, enabling
users to focus on the data transformations required for the residual
checks. In ggplot2, however, the users need to consider the changes
in geometries and aesthetics to incorporate with the changes in the data
transformations. While bayesplot supports residual checks directly,
there is some overhead when switching between different model checks,
as code cannot easily be reused across different model checks.

8 OBSERVATIONAL INTERVIEW STUDY OF VMC

To understand how data analysts specify visualizations and interact
with VMC, we conducted an interview-based study of its use by three
experienced modelers. We aimed to answer the following research
questions:
RQ1: Does the grammar capture core aspects of experienced analysts’
understanding and practices of model check visualization?
RQ2: What aspects of the grammar’s construction do participants find
most useful, and what challenges or trade-offs do they face in using it?
RQ3: Can the grammar help experienced modelers explore novel (to
them) model check visualizations, and what features encourage this?

8.1 Participants
We recruited three experienced statistical modelers who were comfort-
able working with generative models via social media posts. All three
participants had obtained Ph.D. degrees in quantitative disciplines, and
regularly conducted statistical analysis as part of their research. Two of
three participants (P1 and P2) had more than 4 years of professional
experience with statistical modeling, while the other one (P3) had over
2 years. Two of three participants (P2 and P3) teach bachelor- and
graduate-level statistics, including the practice of model checking. All
three participants reported having used ggplot2 and bayesplot to
generate the model check visualizations. We compensated the partici-
pants with a $60 Visa Gift card for a one hour session.

8.2 Study Design
Before the session, each participant filled out a background question-
naire. We asked them to bring a model from their current work to apply
VMC to. The session started with the participant describing their typical
graphical model checking practices, followed by describing the model
they brought to the session, including data, modeling goals, and model
fitting and selection process. Participants then completed a a brief VMC
tutorial where they were asked to examine and run example code in an
R notebook. These examples included 19 model check visualizations
specified using VMC on an example multilevel Gaussian model.

In the first part of the tutorial, the examples demonstrated variations
supported by the components of VMC by reproducing canonical model
check visualizations in literature, including the examples from the statis-
tical textbook [14]. The second part demonstrated the expressiveness of

VMC by incorporating visualization techniques that have not been widely
used in current model check practices. For example, we included exam-
ples of using VMC to display uncertainty information by animation (i.e.,
HOPs) and the nested juxtaposition comparative layout. Participants
were asked to experiment with new combinations of these components
as they went through the tutorial, and to think aloud while navigating
these tutorial examples. This portion of the study lasted approximately
20 minutes. After the tutorial, participants were asked to create model
check visualizations for the model they brought, for approximately 20
more minutes. As they used the grammar, we occasionally prompted
them with questions about their perceptions of the grammar, including
about whether the visualizations were useful to them and how they
conceived of aspects of the grammar specification. Each session ended
with an exit interview (20 minutes) that asked participants to reflect on
their process of using VMC and how they see VMC interfacing with their
typical workflow. 3

8.3 Results
We summarize observations from participants’ usage of VMC and the
exit interviews.

8.3.1 RQ1: Alignment with Participants’ Model Check Under-
standing and Practice

In stepping through examples we provided in the tutorial, participants
commented on how they recognized visualizations they commonly
used. For example, P1 stated that “this [posterior predictive check]
is usually the first thing I do...” and “this [Q-Q] plot is exact what I
would do on my model”, and P2 stated that “this [line+ribbon plot]
is very nice. I like this. This is something that I usually kind of do
on my own.” All the participants noted that the options included in
VMC largely capture visualization variations that would interest them in
practice. For example, when going through the examples that checked
distributional parameters in the model, P1 stated that mc_draw and
mc_observation_transformation are both interfaces that capture
his practices of checking on different aspects of the model – “I like this.
So I can change between all the parameters that the model estimates”.

Moreover, two of the three participants (P1 and P2) found that VMC
also included some model check visualizations that they had never
thought about before. P1 remarked that the raincloud plot (Figure 5A)
displaying the uncertainty information in model predictions and ob-
served data was new to him, saying “I like this [violin plot]. I’ve never
done anything like this before.” The participants were also impressed
by the animation over samples supported by the grouping sampling
argument. P1 said “this [animation] is really cool. Initially I can’t see
the [model] draws within the Q-Q plot but now it’s over the animation”.

The Comparative_layout component in particular drew interest,
leading to comments about how combining different layouts and vi-
sual representation could produce additional effective examples. For
example, P1 found that juxtaposition can avoid visual clutter in some
cases. He said “I think I like this one [juxtaposition] better [than su-
perposition], because it was pretty hard to see when the observed data
was right on top of the the model [predictions]”. When P2 saw our
examples using nested juxtaposition, he was pleasantly surprised by
its alternative to superposition–“this [nested juxtaposition] is great.
It separates those bars [confidence intervals] from one another, but
doesn’t overlay them together.”

Participants’ perspectives on the direct comparison VMC encouraged
between the model and the observed data in visualizations at times
varied from that assumed in developing the grammar. For example,
when adopting VMC to their own model, P2 created a model check
visualization where the model quantity and the quantity in the observed
data were not perfectly aligned. The model samples were generated
from the posterior predictive distribution and the observed data were
transformed using the mean function. Because we defined VMC such
that quantities in model samples and observed data should be on the
same scale, this use falls outside the scope of our correctness objective
(O2). These observations were useful for identifying how such usage

3See Supplementary Materials for interview questions and the R document.

can potentially be useful in scenarios like hypothesis testing on certain
statistics. On the other hand, if comparability is not strictly ensured,
additional actions on the visual front are necessary. For instance, when
transforming the observed data by standard deviation function, specific
visual techniques should be used to clarify that the observed data is
now represented on the variance scale.

8.3.2 RQ2: Usability of the Grammar
While going through the tutorial, participants commented on how they
reasoned about VMC specifications. Two of the three participants (P1
and P3) commented on how VMC’s specification of the data prepara-
tion step was a good abstraction of how they think and express data
targets in model check visualizations. P3 compared his experience
with bayesplot to VMC, saying “[In VMC,] I only need to specify mu
[for the model quantity] and mean [for the data transformation]. It is
really good compared to that [bayesplot]”. P1 also found the naming
convention and modular structure resembling that of ggplot2 of VMC
familiar to him, which made it intuitive to him – “I had a pretty good
idea of what it was gonna do... [because] it’s modular, and the names
make sense. So it’s pretty intuitive.”

All the participants appreciated that VMC allows them to specify
model check visualizations in a high-level and systematical way. P3
mentioned that high-level interfaces for the observed data and the model
make it easy to think of model check visualizations. Referring to the
specification, he said “There is the data versus model. I do like the
contrasting. I teach a Bayesian course in university and I can totally see
myself like, teaching students how to use this. I like that. It’s relatively
easy to transform things or extract things.” That VMC is built on a
succinct specification with a few conceptual components was deemed
effective by multiple participants: “[The part I like about the grammar
is that] it is built on these four or five foundational functions that built
these plots” (P2).

However, participants also noted some negatives. One of the biggest
concerns was that despite how VMC’s design separates components, they
often remain entangled in some ways. For example, when specifying
the mark type as line+ribbon in Visual_representation, there must
be a conditional variable on the x-axis. In trying to run a VMC specifi-
cation component by component, P3 commented on this dependency
between visual representation and conditional variable: “The grammar
s like [independent] layers added up. But it’s not really [independent]
layers. The visual representation layer can not work independently
without the conditional variable layer.”

8.3.3 RQ3: Exploration
Participants used different approaches in generating the new visualiza-
tions by applying VMC to the models they brought. Each participant
adapted five specifications on average in the time they had. P1 started
by copying all the examples in the tutorial and changing the model input
to his model. After he had reviewed all examples, he chose to explore
the argument that he had not yet encountered: grouping_sample
in the Visual_representation component. He tried combining
different mark types with HOPs. P2 sought better alternatives start-
ing from specific examples from the tutorial, trying to reason about
what should be changed in applying them to his model. For exam-
ple, when looking at the raincloud example Figure 5A, he said “I
guess one thing that...It would be easier to encourage people to think
about data if these were histograms instead of dots”. He changed the
mc_obs_dots to mc_obs_histogram to check that it was straightfor-
ward to change the mark. P3 followed a more top-down approach.
He started by thinking of the general goals he had for the plots then
tried to translate those concepts into the components of our gram-
mar. He first thought that he wanted to check the σ parameter in
the Gaussian distribution, so he specified mc_draw("sigma") and
mc_observation_transformation(sd). Then he tried to find a
suitable visual representation for the model samples and the observed
data. He went through points, lines and line+ribbon mark types, choos-
ing the line+ribbon as the final representation.

Although all the participants succeeded to explore new visualizations
using VMC, they did not always find the newly generated visualizations

effective. For example, P2 experimented with different mark types on
the observed data. He discovered that marks utilizing smoothing meth-
ods failed to accurately represent the original data instances, potentially
leading to misinterpretations. The flexibility of VMC also exposed some
ineffective edge cases such as mismatched data and visual representa-
tions. For example, during P3’s exploration, he found that mark types
for density estimates should not be applied to the observed data when
it is aggregated into a single value such as the mean, although this case
is not precluded by VMC. Nonetheless, that participants could quickly
identify the effectiveness of the newly generated model check visual-
izations is a promising sign that VMC could lead modelers to identify
new, useful designs.

9 DISCUSSION

We developed VMC to explore the potential of using a small set of sensi-
ble abstractions to make model check visualizations easier to reason
about and generate. In its current iteration, VMC can be of immediate use
in statistical workflows. In exploratory data analysis, VMC can be used to
explore provisional models used to drive understanding of features and
heterogeneity in the data. In a Bayesian workflow, VMC could be used to
check the prior distribution before model fitting, and support compari-
sions of alternatives during fake data simulations [13]. In any statistical
workflow, after the model is fitted, VMC can be used to check predictive
distributions, apply test quantities, and check model assumptions like
outliers, distributional assumptions and heteroskadasticity.

While the development of VMC was inspired by Bayesian workflow
where graphics have been more widely accepted as a crucial part of
modeling workflow, one of our aspirations in developing VMC is that
such tools may be helpful in popularizing graphical model checks in
a wider range of statistical workflows as well as statistics education.
For example, standard materials for learning regression often focus on
only a handful of canonical visualizations (residual plots, QQ plots).
By formulating visual model checks as a more extensible design space,
tools like VMC may contribute to more effective modeling in practice
by calling greater attention to the many subtle ways in which model
predictions may align with or deviate from observed data.

Beyond its immediate practical value, developing and evaluating
VMC led to several observations about graphical model checking as a
tool in statistical workflow.

First, our work highlights the need to account for both the visual
judgment mechanisms and data alignment required to facilitate
comparisons of relevant quantities. Visualizations intended for com-
parison should not only facilitate visual judgments through effective
comparative layouts, they should also consider how to ensure compa-
rability of quantities through data alignment. For instance, drawing
meaningful conclusions by comparing the intercept parameter from a
linear regression model with the observed outcome values is unlikely,
regardless of whether they are superposed or juxtaposed. While our
constraints in developing VMC precluded some useful examples (e.g.,
when the observed data is simulated and the intercept used for simula-
tion known), encouraging authors to think carefully about alignment is
likely useful. There may be some value in type systems for data scales,
similar to formal guarantees in typed programming languages, that can
help people align the quantities effectively and avoid comparing them
on scales that do not match.

Second, a tension we encountered in developing VMC points to the
value of extending API support to non-checkable model quantities
to support important steps in a statistical workflow, such as setting
and interpreting priors or displaying fitted parameter values. According
to our definition, a checkable model quantity must have a transformation
function that can align the observed data with it on a common scale.
However, for non-checkable model quantities, no such transformation
function exists, and we must turn to other design strategies. When the
goal is to make model checking accessible to a broader set of modelers
beyond experienced statisticians, then it would be useful for future
work to identify systematic ways of contextualizing abstract scales
like parameter spaces. Doing so could make visualizations of non-
checkable quantities more concrete, similar to how a model check that
requires checking against observed data makes model quantities easier

to understand. This could be achieved, e.g., through analogies to known
phenomena [32] or reference markings illustrating the relationship
between the abstract scales, like the explode-y graphics in [55].

Third, widely applicable model checking visualization tools call
for appropriate software abstractions to overcome heterogeneity
in model outputs, syntax, and checkable quantities, so that model
check visualization tools like VMC can be widely applied. In the im-
plementation of VMC, we aimed to support different model objects and
checkable quantities by combining different model extracting libraries,
e.g., tidybayes [29] and insight [36]. Other model inspection R
packages like marginaleffects [3] and easystats [35] take steps
to write a layer of abstraction that accommodates all of these variations
without requiring intervention by the user, increasing the interoperabil-
ity of tools for modelers within the R ecosystem. Such efforts are a
natural next step for extending VMC, though complete interoperability
may not be possible as a result of the continually changing landscape
of modeling libraries.

Our approach in VMC is also compatible with model comparison
tools that statisticians often use, such as leave-one-out (LOO) cross-
validation and multiverse analysis, but these applications require exten-
sions that accommodate multiple model objects. For example, users
can extend mcplot to take a list of models as input. As long as each
model in this list has the same model quantities, it is straightforward
to apply the visual representations and comparative layout in VMC to
them. It is also worth extending operations to the predictions of these
models after the sample stage in the compiler to support more complex
abstractions in the statistical tools, e.g., model comparison in LOO
cross-validation.

Along the lines of a proposal for more explicit support for model
checking in visual analysis tools [24], VMC can be incorporated in
interactive analysis tools to support the generation of model checks in
exploratory data analysis, similar to the design approach by Kale et al.
in EVM [28]. Adapting VMC for this purpose would allow the developer
to avoid the diffuseness and viscosity of the notation in lower-level
visualization grammars and focus squarely on the main substantive
components of a model check.

Better tools for graphical model checking can also improve the devel-
opment of predictive models through better designed VIS4ML systems,
where principled processes are still in development. Components of
VMC can be taken as a foundation for the development of such tools, and
extended to support high dimensional datapoints like images. Under-
standing what makes a good model check with (parametric) statistical
models may not be equivalent to what make a good model check with
machine learning models, motivating empirical work.

9.1 Limitations

While we propose four necessary design objectives of VMC based on
the practice and theory of model checking in the statistics and visu-
alization literature, we cannot guarantee that these are the sufficient
for a good model check visualization grammar. For example, a model
check grammar could benefit by facilitating the specification of com-
mon interaction techniques in visualizations (e.g., brushing and linking)
such that users can quickly find patterns that reflect important types of
misfit [28]. Other missing design objectives may include expressing
sampling primitives and facilitating model comparison workflows. Fu-
ture work is needed to adjust the design objectives based on the target
scenario.
VMC specifications are also limited to position encodings (i.e., x-axis,

y-axis, rows, and columns), which rules out visualization techniques
that display data without axes, e.g., maps or some space-filling tech-
niques. Allowing display without standard axis encodings may require
another abstract layer in VMC to map the data onto the display space,
e.g., mapping a country variable to a spatial region on the map.

ACKNOWLEDGMENTS

We thank our anonymous reviewers for their helpful suggestions. Jes-
sica Hullman thanks NSF #2211939 for supporting this work.

REFERENCES

[1] M. Allen, D. Poggiali, K. Whitaker, T. R. Marshall, and R. A.
Kievit. Raincloud plots: a multi-platform tool for robust data
visualization. Wellcome open research, 4, 2019. 4

[2] J. Ameijeiras-Alonso, R. M. Crujeiras, and A. Rodríguez-Casal.
Mode testing, critical bandwidth and excess mass. Test, 28:900–
919, 2019. 2

[3] V. Arel-Bundock. marginaleffects: Predictions, Comparisons,
Slopes, Marginal Means, and Hypothesis Tests, 2023. R package
version 0.15.0.9000. 9

[4] H. Baniecki, D. Parzych, and P. Biecek. The grammar of inter-
active explanatory model analysis. Data Mining and Knowledge
Discovery, pp. 1–37, 2023. 2

[5] R. A. Becker, W. S. Cleveland, and M.-J. Shyu. The visual
design and control of trellis display. Journal of computational
and Graphical Statistics, 5(2):123–155, 1996. 2, 5

[6] A. F. Blackwell, C. Britton, A. Cox, T. R. Green, C. Gurr,
G. Kadoda, M. S. Kutar, M. Loomes, C. L. Nehaniv, M. Petre,
et al. Cognitive dimensions of notations: Design tools for cogni-
tive technology. In Cognitive Technology: Instruments of Mind:
4th International Conference, CT 2001 Coventry, UK, August 6–9,
2001 Proceedings, pp. 325–341. Springer, 2001. 2

[7] D. M. Blei. Build, compute, critique, repeat: Data analysis
with latent variable models. Annual Review of Statistics and Its
Application, 1:203–232, 2014. 2

[8] G. E. Box. Sampling and bayes’ inference in scientific modelling
and robustness. Journal of the Royal Statistical Society Series A:
Statistics in Society, 143(4):383–404, 1980. 2

[9] A. Buja, D. Cook, H. Hofmann, M. Lawrence, E.-K. Lee, D. F.
Swayne, and H. Wickham. Statistical inference for exploratory
data analysis and model diagnostics. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 367(1906):4361–4383, 2009. 2

[10] D. Cox. Some remarks on the role in statistics of graphical meth-
ods. Journal of the Royal Statistical Society: Series C (Applied
Statistics), 27(1):4–9, 1978. 3

[11] M. Fernandes, L. Walls, S. Munson, J. Hullman, and M. Kay. Un-
certainty displays using quantile dotplots or cdfs improve transit
decision-making. In Proceedings of the 2018 CHI conference on
human factors in computing systems, pp. 1–12, 2018. 4, 6

[12] J. Gabry and T. Mahr. bayesplot: Plotting for bayesian models,
2024. R package version 1.11.0. 2

[13] J. Gabry, D. Simpson, A. Vehtari, M. Betancourt, and A. Gel-
man. Visualization in bayesian workflow. arXiv preprint
arXiv:1709.01449, 2017. 1, 2, 3, 5, 6, 9

[14] A. Gelman. A bayesian formulation of exploratory data analy-
sis and goodness-of-fit testing. International Statistical Review,
71(2):369–382, 2003. 2, 3, 4, 5, 6, 7

[15] A. Gelman. Exploratory data analysis for complex models. Jour-
nal of Computational and Graphical Statistics, 13(4):755–779,
2004. 1, 2, 6, 7

[16] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian
data analysis. Chapman and Hall/CRC, 1995. 1, 2, 6

[17] A. Gelman, X.-L. Meng, and H. Stern. Posterior predictive as-
sessment of model fitness via realized discrepancies. Statistica
sinica, pp. 733–760, 1996. 3

[18] A. Gelman, A. Vehtari, D. Simpson, C. C. Margossian, B. Carpen-
ter, Y. Yao, L. Kennedy, J. Gabry, P.-C. Bürkner, and M. Modrák.
Bayesian workflow. arXiv preprint arXiv:2011.01808, 2020. 2

[19] M. Gleicher, D. Albers, R. Walker, I. Jusufi, C. D. Hansen, and
J. C. Roberts. Visual comparison for information visualization.
Information Visualization, 10(4):289–309, 2011. 2, 5

[20] J. Heer, S. K. Card, and J. A. Landay. Prefuse: a toolkit for inter-
active information visualization. In Proceedings of the SIGCHI
conference on Human factors in computing systems, pp. 421–430,
2005. 3

[21] H. Hofmann, L. Follett, M. Majumder, and D. Cook. Graphical
tests for power comparison of competing designs. IEEE Trans-
actions on Visualization and Computer Graphics, 18(12):2441–
2448, 2012. 2

[22] J. Hullman. Why authors don’t visualize uncertainty. IEEE
transactions on visualization and computer graphics, 26(1):130–
139, 2019. 1

[23] J. Hullman and A. Gelman. Challenges in Incorpo-
rating Exploratory Data Analysis Into Statistical Work-
flow. Harvard Data Science Review, 3(3), jul 30 2021.
https://hdsr.mitpress.mit.edu/pub/2ym7zm34. 2

[24] J. Hullman and A. Gelman. Designing for Interactive Ex-
ploratory Data Analysis Requires Theories of Graphical In-
ference. Harvard Data Science Review, 3(3), jul 30 2021.
https://hdsr.mitpress.mit.edu/pub/w075glo6. 2, 6, 7, 9

[25] J. Hullman, M. Kay, Y.-S. Kim, and S. Shrestha. Imagining repli-
cations: Graphical prediction & discrete visualizations improve
recall & estimation of effect uncertainty. IEEE transactions on
visualization and computer graphics, 24(1):446–456, 2017. 4

[26] J. Hullman, P. Resnick, and E. Adar. Hypothetical outcome
plots outperform error bars and violin plots for inferences about
reliability of variable ordering. PloS one, 10(11):e0142444, 2015.
4, 5, 6

[27] N. Jardine, B. D. Ondov, N. Elmqvist, and S. Franconeri. The
perceptual proxies of visual comparison. IEEE transactions on
visualization and computer graphics, 26(1):1012–1021, 2019. 5

[28] A. Kale, Z. Guo, X. L. Qiao, J. Heer, and J. Hullman. Evm:
Incorporating model checking into exploratory visual analysis.
arXiv preprint arXiv:2308.13024, 2023. 2, 6, 9

[29] M. Kay. tidybayes: Tidy Data and Geoms for Bayesian Models.
R package version 3.0.5. doi: 10.5281/zenodo.1308151 9

[30] M. Kay. ggdist: Visualizations of distributions and uncertainty in
the grammar of graphics. 2023. 2, 4

[31] M. Kay, T. Kola, J. R. Hullman, and S. A. Munson. When
(ish) is my bus? user-centered visualizations of uncertainty in
everyday, mobile predictive systems. In Proceedings of the 2016
chi conference on human factors in computing systems, pp. 5092–
5103, 2016. 4

[32] Y.-S. Kim, K. Reinecke, and J. Hullman. Explaining the gap:
Visualizing one’s predictions improves recall and comprehension
of data. In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, pp. 1375–1386, 2017. 9

[33] J. Li and J. H. Huggins. Calibrated model criticism using split
predictive checks. arXiv preprint arXiv:2203.15897, 2022. 2

[34] D. Lüdecke, M. S. Ben-Shachar, I. Patil, P. Waggoner, and
D. Makowski. performance: An R package for assessment, com-
parison and testing of statistical models. Journal of Open Source
Software, 6(60):3139, 2021. doi: 10.21105/joss.03139 1, 2

https://doi.org/10.5281/zenodo.1308151
https://doi.org/10.21105/joss.03139

[35] D. Lüdecke, M. S. Ben-Shachar, I. Patil, B. M. Wiernik, E. Bacher,
R. Thériault, and D. Makowski. easystats: Framework for easy
statistical modeling, visualization, and reporting. CRAN, 2022. R
package. 9

[36] D. Lüdecke, P. Waggoner, and D. Makowski. insight: A unified
interface to access information from model objects in R. Journal
of Open Source Software, 4(38):1412, 2019. doi: 10.21105/joss.
01412 3, 9

[37] M. Majumder, H. Hofmann, and D. Cook. Validation of visual
statistical inference, applied to linear models. Journal of the
American Statistical Association, 108(503):942–956, 2013. 2

[38] B. J. Matlen, D. Gentner, and S. L. Franconeri. Spatial alignment
facilitates visual comparison. Journal of Experimental Psychol-
ogy: Human Perception and Performance, 46(5):443, 2020. 5

[39] M. Muller and A. Strohmayer. Forgetting practices in the data
sciences. In Proceedings of the 2022 CHI Conference on Human
Factors in Computing Systems, pp. 1–19, 2022. 2

[40] B. Ondov, N. Jardine, N. Elmqvist, and S. Franconeri. Face
to face: Evaluating visual comparison. IEEE transactions on
visualization and computer graphics, 25(1):861–871, 2018. 5

[41] L. Padilla, M. Kay, and J. Hullman. Uncertainty visualization.
2020. 4

[42] X. Pu and M. Kay. A probabilistic grammar of graphics. In
Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems, pp. 1–13, 2020. 2, 3, 4

[43] X. Pu and M. Kay. How data analysts use a visualization grammar
in practice. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems, pp. 1–22, 2023. 3, 5, 7

[44] T. P. Ryan. Modern regression methods, vol. 655. John Wiley &
Sons, 2008. 3

[45] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer.
Vega-lite: A grammar of interactive graphics. IEEE transactions
on visualization and computer graphics, 23(1):341–350, 2016. 2

[46] G. Shaddick, M. L. Thomas, A. Green, M. Brauer, A. Donkelaar,
R. Burnett, H. H. Chang, A. Cohen, R. V. Dingenen, C. Dora,
S. Gumy, Y. Liu, R. Martin, L. A. Waller, J. West, J. V. Zidek,
and A. Prüss-Ustün. Data Integration Model for Air Quality: A
Hierarchical Approach to the Global Estimation of Exposures to
Ambient Air Pollution. Journal of the Royal Statistical Society
Series C: Applied Statistics, 67(1):231–253, 06 2017. doi: 10.
1111/rssc.12227 1, 5

[47] H. Subramonyam and J. Hullman. Are we closing the loop yet?
gaps in the generalizability of vis4ml research. arXiv preprint
arXiv:2308.06290, 2023. 2

[48] J. W. Tukey et al. Exploratory data analysis, vol. 2. Reading,
MA, 1977. 2

[49] P. F. Velleman and R. E. Welsch. Efficient computing of regression
diagnostics. The American Statistician, 35(4):234–242, 1981. 3

[50] H. Wickham. ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag New York, 2016. 2, 6

[51] H. Wickham, D. Cook, H. Hofmann, and A. Buja. Graphical
inference for infovis. IEEE transactions on visualization and
computer graphics, 16(6):973–979, 2010. 2

[52] L. Wilkinson. The grammar of graphics. Springer, 2012. 2

[53] F. Yang, M. Cai, C. Mortenson, H. Fakhari, A. D. Lokmanoglu,
J. Hullman, S. Franconeri, N. Diakopoulos, E. Nisbet, and M. Kay.
Swaying the public? impacts of election forecast visualizations
on emotion, trust, and intention in the 2022 us midterms. 2023. 6

[54] F. Yang, L. T. Harrison, R. A. Rensink, S. L. Franconeri, and
R. Chang. Correlation judgment and visualization features: A
comparative study. IEEE transactions on visualization and com-
puter graphics, 25(3):1474–1488, 2018. 6

[55] F. Yang, M. Hedayati, and M. Kay. Subjective probability correc-
tion for uncertainty representations. In Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems, pp.
1–17, 2023. 9

https://doi.org/10.21105/joss.01412
https://doi.org/10.21105/joss.01412
https://doi.org/10.1111/rssc.12227
https://doi.org/10.1111/rssc.12227

	Introduction
	Related Work
	Visualizations as Model Checks
	Visualizations for comparison

	Visualization Grammars

	Design Objectives
	VMC: Grammar for Model Checks
	Sampling Specification
	Data Transformation
	Visual Representation
	Choice of mark type
	Grouping samples

	Comparative layout

	A Walk-through Example: Air Quality
	Implementation in R
	Reproducing Real-world Examples
	Observational Interview Study of VMC
	Participants
	Study Design
	Results
	RQ1: Alignment with Participants' Model Check Understanding and Practice
	RQ2: Usability of the Grammar
	RQ3: Exploration

	Discussion
	Limitations

