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A. This forecast website gives 
Davis an 85% win probability on 
the final day before election day.

B. However, Roberts ends up win-
ning the election.

Will you trust this forecast website 
next time?  

C. We allow participants to select 
from various forecast websites, 
each representing one of our four 
uncertainty displays, and mea-
sure their trust in varied election 
forecasts over ten election cycles.

before election day after election day

2028 Presidential Forecast
Last update: November 6, 2028

2028 Presidential Forecast
Last update: November 6, 2028

The outcome of this election

Figure 1: Illustration of an election cycle in our experiments:We show (A) a simulated forecast for the final day before election
day and (B) subsequently the election outcome. In a professional-looking website interface, we showcase different (C) uncertainty
displays: histogram intervals (intervals), a text summary (text), quantile dotplot (dotplot), and quantile plinko dotplot (plinko). Participants can
choose a display/website, and their choices indicate part of their trust. We measure trust in simulated election forecasts throughout ten
repeated election cycles. Note that the interface snapshots here are simplified. See Fig. 4 for the complete designs.
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ABSTRACT
Trust in high-profile election forecasts influences the public’s confi-
dence in democratic processes and electoral integrity. Yet, maintain-
ing trust after unexpected outcomes like the 2016 U.S. presidential
election is a significant challenge. Ourwork confronts this challenge
through three experiments that gauge trust in election forecasts.
We generate simulated U.S. presidential election forecasts, vary win
probabilities and outcomes, and present them to participants in a
professional-looking website interface. In this website interface,
we explore (1) four different uncertainty displays, (2) a technique
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for subjective probability correction, and (3) visual calibration that
depicts an outcome with its forecast distribution. Our quantitative
results suggest that text summaries and quantile dotplots engender
the highest trust over time, with observable partisan differences.
The probability correction and calibration show small-to-null effects
on average. Complemented by our qualitative results, we provide
design recommendations for conveying U.S. presidential election
forecasts and discuss long-term trust in uncertainty communica-
tion. We provide preregistration, code, data, model files, and videos
at https://doi.org/10.17605/OSF.IO/923E7.
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• Human-centered computing → Empirical studies in visual-
ization; Visualization design and evaluation methods; Information
visualization.
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1 INTRODUCTION
Probabilistic election forecasts provide an uncertain estimate of
election outcomes over time. They typically draw upon opinion
polling and fundamental data such as economic indicators. These
forecasts serve various stakeholders’ interests, and impact public
sentiment [113], voter turnout [73, 108], as well as campaign strate-
gies [66]. High-profile election forecasts, like FiveThirtyEight’s [3]
and The Economist’s [5] U.S. presidential forecasts, come under
intense scrutiny and can shape both domestic and international
perceptions [28, 44]. Trust in these election forecasts is paramount,
influencing the public’s confidence in the democratic process and
the integrity of the electoral system.

Yet, due to their inherent uncertainty, seeding trust in these
forecasts is a significant challenge. Despite extensive literature on
uncertainty communication and especially uncertainty visualiza-
tion, the 2016 U.S. presidential election stands as a potent testament
to this challenge. With a 71% win probability for Hillary Clinton
on the final day [2], the election outcome for Donald Trump was
unexpected for many, leading to public skepticism, distrust, and dis-
sonance in both the forecasts and election outcomes [44, 103]—even
though a 71% win probability indicates high uncertainty. Gaining
public trust is not a one-time endeavor. It demands communication
of uncertainty and calibration of outcomes over multiple election
cycles. The U.S. electoral system, with its Electoral College, intro-
duces even further complexities to communicating this uncertainty
and building trust.

Our work confronts this challenge of maintaining trust in U.S.
presidential forecasts. We conduct three experiments, each consist-
ing of ten election cycles, and gauge how different presentations

of forecasts and outcomes affect people’s trust over time. Under a
cover story of a hypothetical 2028 U.S. presidential election, we first
simulate U.S. presidential forecasts with varied win probabilities
and outcomes—correct and incorrect (Sec. 3). We then construct an
interface that resembles a professional forecast website (Sec. 4).

In this interface, we present four uncertainty displays (Fig. 1,
each framed as a website), systematically adjust forecast distribu-
tions (probability correction, Fig. 3) [114], and depict outcomes in
comparison to forecast distributions (visual calibration, Fig. 5). Us-
ing an incentivized voting task, we elicit participants’ attitudinal
trust (perception of a forecast website) and behavioral trust (action
of choosing a forecast website) [16, 41] in these forecasts (Sec. 5), and
analyze the data using Bayesian autocorrelation models (Sec. 6).

Specifically, we contribute:

Design exploration for depicting U.S. presidential election
forecasts and outcomes, including adopting and applying
probability correction and visual calibration (Sec. 4);
Quantitative results of people’s trust in election forecasts
over time, based on four uncertainty displays and simulated
forecasts for U.S. presidential elections (Sec. 7);
Qualitative results of why people trust a forecast website and
how they utilize the uncertainty information presented on
the website (Sec. 8);
Design recommendations for conveying U.S. presidential elec-
tion forecasts (Sec. 10).

Our sequentially preregistered online experiments recruited a
total of 498 participants, with a balanced representation of gender
and partisanship. The results show that a text summary (text, Fig.
1) and a quantile dotplot (dotplot, Fig. 1) gain the highest trust over
time in repeated election cycles, substantially higher than trust
in intervals (Fig. 1) and plinko (Fig. 1). Both probability correction
and visual calibration show small-to-null effects on average, while
partisan-motivated reasoning and forecast correctness have sub-
stantial effects on trust. These underscore the difficulty of fostering
trust in probabilistic forecasts over time as a more general question.
If you leave your umbrella at home when the weather forecast
predicts a 29% chance of rain—and then get wet—will you still trust
the forecast next time? Our research sheds light on the mechanics
of trust maintenance in the face of probabilistic election forecasts.

1.1 Cover story
We aim to be able to provide design recommendations for convey-
ing U.S. presidential election forecasts to the general public. Such
forecasts are typically dynamic and updated throughout an election
season, which often spans 155 days [3]. To capture this data gen-
eration process, we will simulate election outcomes and forecasts
of those election outcomes across a similar timespan.

We set 2028 as the backdrop for our cover story—a presidential
election year sufficiently distant from the time of this work to
minimize contemporary biases, while being proximate enough to
avoid a dramatic change in the U.S. political landscape. The two
hypothetical presidential candidates are M. Davis (Democrat) and
A. Roberts (Republican), using common English last names and
initials to mitigate race and gender implications [71, 93].
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Participants navigate each election cycle characterized by two
stages: before and after election day (Fig. 1). Given the electoral
college’s function in U.S. elections, citizens technically vote for a
slate of electors who pledge their electoral votes to that presidential
candidate. Thus, we position participants within a designated U.S.
state, which we will henceforth refer to as the story state.

Our primary focus is on the probability of winning the electoral
college. Without loss of generality, we concentrate on Davis’s win
probability (𝑝dem ≈ 1 − 𝑝rep). We vary final-day probabilities of
winning the electoral college and fix the win probability of the
story state. Probabilities for other states are diverse but realistic.
Participants experience forecasts of varied win probabilities and
encounter different election outcomes. We present the final-day
forecast for winning the electoral college as the website headline,
followed by state details (Fig. 4). For more information about the
U.S. political context, we direct readers to Sec. 2.2.

2 RELATEDWORK AND BACKGROUND
Our work builds upon literature on uncertainty communication,
trust, and voter turnout, including a recent study on election fore-
cast visualizations [113]. To assist readers from different back-
grounds, we also provide a brief primer to introduce the subjective
probability correction [114] used in some of our experiments, as
well as the basics of the U.S. electorate system and election forecasts.

2.1 Related work
Uncertainty displays. The existing literature developed tex-
tual, graphic, and audible [19] representations for uncertainty com-
munication. Common displays include text summaries (e.g., 50 in
100) [81, 100], icon arrays [65, 111], intervals (e.g., error bars) [37,
99], ribbons [76], distributional plots (e.g., PDFs [72], CDFs [50],
violin charts [65], histograms [114], and quantile dotplots [50, 61,
77, 82]), as well as animation (e.g., HOPs [70, 116] and Plinko [113]).
They help in tasks like probability estimation [77, 111], transporta-
tion decision-making [50, 77, 82], and hurricane evacuation [87, 98].
In the realm of election forecasts, media outlets explored bee swarm
plots [3], histograms [4], text summaries [5], and intervals [7]; and
Yang et al.’s experiment during the 2022 U.S. midterm identified po-
tential impacts of interval and quantile dotplots on people’s emotion
and intention [113]. Uncertainty communication has been increas-
ingly discussed in journalism [45, 68, 110], but remains difficult
with audiences coming from diverse backgrounds [56].

Trust. Many research communities, such as AI/ML [22, 60], eco-
nomics [26, 84, 96], political science [29, 95], and visualization
[35, 47, 48, 53], have attended to trust through different lenses. As a
fundamental aspect of social structures, trust determines how peo-
ple interact with others and utilize new techniques. Various models
and scales have been developed to operationalize and measure
trust (e.g., [47, 89]) as well as longitudinal trust [43, 94]. We delve
into two dimensions of trust—attitudinal and behavioral trust—to
distinguish perception and action [16, 41]. We are inspired by the
trust game [26, 96], an experimental economics exercise in which
one player decides how much money to send to a second player
(the first player’s trust), who receives a multiplied amount and then
chooses how much to return (the second player’s trustworthiness).

Such behavioral outcomes reflect people’s genuine preferences,
in contrast to sometimes misleading perceptual and proxy mea-
sures [31]. Yet, attitudinal trust can be a mediator for behavioral
trust. In our experiments, each of these twomeasures collectively ex-
amines cognitive (e.g., rational evaluation) and affective trust (e.g.,
emotional bond) [48, 113] in data, forecast model, and visualization,
as a lay audience typically does not distinguish between them.

Voter turnout. While not themain focus of the present work, our
experiments involve a voting task. Voter turnout is an indicator of a
functioning democracy, suggesting that citizens are engaged and be-
lieve in the system’s legitimacy. In political science and economics,
the effects of election polls and forecasts on shaping voting behavior
are long-standing topics [17, 21, 23, 36, 38–40, 49, 52, 73, 106, 108],
producing mixed results. Often bandwagon effects [21, 38, 49, 105,
106] and pivotality (the importance of a vote) [27, 57, 108, 113] are
of concern. Political science studies typically utilize national or
local surveys [27, 49, 52, 106], while economics research often de-
vises incentivized behavioral games [14, 23, 73, 108]. A behavioral
approach is more suitable for our interests in behavioral trust. How-
ever, we limit our interpretation of the turnout results to the context
of our specific experiments, avoiding unwarranted generalization.

2.2 Background
U.S. electoral system. At the time of this research, U.S. elec-
tions primarily revolve around a two-party system consisting of the
left-leaning Democratic (D) and the right-leaning Republican (R)
parties [91]. The most prominent national election is the quadren-
nial presidential election, which operates on an indirect voting sys-
tem known as the Electoral College [80]. Each state is allocated a
number of electoral votes, roughly proportional to its population,
with a total number of 538 electoral votes. When casting votes
for the president, citizens technically vote for a slate of electors
who pledge their electoral votes to that presidential candidate. The
winner in each state generally takes all of the state electoral votes,
except for a few states using proportional systems [90, 91]. To win
the presidency, a candidate must secure a majority of the electoral
votes, 270 (269 is a tie, deferring the decisions to the Congress) [102].
The last day citizens can vote is election day, the first Tuesday of
November. A swing state (“battleground state” or “purple state”)
is where the two parties have similar voter support [24], making
the election outcome uncertain. Because of the Electoral College, a
small margin of victory in a swing state can give a candidate all of
the state’s electoral votes.

U.S. election forecasts. Forecasts of presidential winners trace
back to the 1930s [66, 86]. They typically cover the entire election
reason from June to November of a presidential election year, span-
ning about 155 days. Two major outlets publishing probabilistic
forecasts for the U.S. elections are FiveThirtyEight (e.g., [2, 3, 8]) and
The Economist (e.g., [5, 9]). Both present their forecasts in a fashion
that starts with a summary of candidates’ forecasted electoral votes,
followed by changes over time, state details, and relevant news
articles (similar to our Fig. 4). They typically use uncertainty visu-
alizations to convey the probabilistic forecasts and serve various
viewers’ interests, ranging from satisfying curiosity to preparing
related policies.
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Uncertain displays of U.S. election forecasts. In addition
to media news outlets’ practices, various scholarly works have ex-
plored representations for communicating election forecasts and
polls (e.g., [67, 108]). Our work is inspired by the experiment con-
ducted by Yang et al. during the 2022 U.S. midterm elections [113].
We adopt both their designs of annotations and choices of uncertain
displays. However, we build upon their work and examine public
trust over time in a decision-making context, highlighting the po-
tential long-term impacts on democratic processes and electoral
integrity. We also expand upon their choice of uncertainty displays
to include a textual representation, and explore other uncertain
communication techniques, as detailed below.

(Subjective) probability correction. Subjective probability
describes people’s underlying belief in a probabilistic outcome [62,
88]. People may accurately report the exact win probability from a
forecast website presented to them, but they tend to internally shift
forecasted win probabilities towards 0 or 1 (e.g., misinterpreting a
71% chance of winning as a definite event). To account for these
innate biases, subjective probability correction systematically ad-
justs the displayed probability distribution [114]. The core idea is
to model subjective probability as a linear-in-probit (lpr) function
of the true probability [117]:

𝑝subjective = lpr(𝑝true) = probit−1 [𝛼 + 𝛽 · probit(𝑝true)]
and then invert this function to obtain the bias-corrected distribu-
tion (e.g., to ). Intuitively, it undoes the bias occurring
when going from true probability to subjective probability. The pa-
rameter 𝛼 transforms the 50% focal point, and 𝛽 scales the standard
deviation of the distribution; the parameters are empirical point-
estimation from a task eliciting subjective probability (e.g., betting
on winners [20, 114]). This correction technique can substantially
improve decision quality, compared to changing uncertainty rep-
resentations [114]. In the present work, we refer to this technique
as probability correction and apply it to U.S. presidential election
forecasts in our current experiments.

3 SIMULATION
In order to conduct experiments with realistic election forecast-
ing, we must first simulate U.S. presidential elections. We will use
these simulations to generate both election outcomes and forecasts
of those election outcomes. The probability of winning the elec-
toral college (𝑝dem) is computed from the predicted distribution of
electoral votes, which is calculated based on the state vote share
distributions (e.g., the state winner takes all of that state’s electoral
votes). Therefore, the problem is equivalent to generating state vote
share distributions for the Democratic candidate throughout the
timeline.

3.1 Simulation goal
We will generate forecasts for the entire election reason (155
days) encompassing both the electoral college and all states. For
the experimental proposes, we must have varied final-day win
probabilities of the electoral college, i.e., 𝑝dem in {5%, 15%, ...,
95%}, and fixed win probability of the story state. We fix this
state win probability to 50%, the most uncertain scenario, to engage
participants in the experiments and motivate them to consult the

forecasts (also see Sec. 5.2 below). As such, the story state must
be an authentic U.S. swing state, and we will also recruit partic-
ipants from the swing states (see Sec. 5.6 below). The simulated
forecasts should have properties similar to real-world presidential
forecasts (e.g., variance, quality). Moreover, because wewill also use
these simulated forecasts to generate election outcomes, they need
to capture the possibilities of both correct and incorrect election
outcomes.

3.2 Simulation processes
We employ the data generation process proposed for forecasting
the 2020 U.S. presidential election [64]. The core of this process is to
assume vote share in different states fluctuates from day to day, con-
strained by a covariance matrix, which is calculated by Heidemanns
et al. based on fundamental data (e.g., state population, demograph-
ics) [64]. Intuitively, if a Democratic candidate performs poorly in
one blue state, the candidate is likely to perform poorly in other
blue states. All state forecasts on the same day are sampled from
the same multivariate normal distribution. Thus, we seek means
and standard deviations of these multivariate normal distributions.
Our simulation below is to (a) first generate a large set of forecasts
using Monte Carlo simulation, guided by the properties derived
from the past presidential forecasts, and (b) select those that meet
the experimental requirements. We denote the state covariance
matrix after the Cholesky decomposition by K , a 51 by 51 matrix
(50 states and Washington D.C.).

a. Generating forecasts for an election season. We first
simulate elections and generate themeans of state vote share distri-
butions on each day (denoted by𝑀𝑑 ) using Monte Carlo simulation:

𝑀𝑑 = 𝑀0 +
𝑑∑︁
𝑖=1

MVN(0, 𝜖 · K) for 𝑑 ∈ {1..355}

The initial means 𝑀0 are states’ vote share percentages from the
2022 midterm elections (or 2020 elections for those who did not
hold midterms in 2022). The day-to-day changes are drawn from a
multivariate normal distribution (MVN) defined by a scaled covari-
ance matrix (𝜖 · K). The constant 𝜖 is selected empirically to ensure
the fluctuations in the resulting day-to-day win probabilities are
less than 2%, aligning with FiveThirtyEight’s and The Economist’s
2020 forecasts. With a warm-up of 150 days to allow variability, we
accumulate day-to-day changes and simulate 150 + 155 = 355 days.
We repeat this step 1,000,000 times, each producing all states’ vote
share means over 155 days.

To generate forecasts, we must have the standard deviations
of state vote share distributions on each day (Σ𝑑 ). The core idea is
to scale the covariance matrix to obtain the desired margins (the
width of 95% prediction intervals):

Σ𝑑 = _𝑑 · K
_𝑑 = 𝛼 + 𝛽 · (155 − 𝑑)2 for 𝑑 ∈ {1..155}

The day-to-day scaling factor (_𝑑 ) reflects the shrinking uncertainty
approaching election day. This factor is defined by a two-parameter
function varying with days [64]; the two parameters (𝛼 ; 𝛽) are
selected via a grid search to constrain the margins of resulting
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electoral votes. In alignment with FiveThirtyEight’s and The Econ-
omist’s 2020 forecasts, the first-day margin is between 230 and 240
electoral votes, while the last-day margin is between 152 and 156
electoral votes.

With means (𝑀𝑑 ) and standard deviations (Σ𝑑 ), state vote share
distributions on each day are defined by the followingmultivariate
normal distribution:

All states’ vote share distributions on day 𝑑 ∼ MVN(𝑀𝑑 , Σ𝑑 )
We draw 30,000 samples from each distribution. After this step,

we have a set of reasonable forecasts, each containing predictions
of all states (and thus electoral votes) over 155 days, and each day
has 30,000 draws.

b. Selecting forecasts and outcomes for experimental
purposes. First, we set the following criteria for win probabilities,
which guarantee the availability of forecasts in the set generated
above.

The probability of winning the electoral college on the last day
is in {5%, 15%, ..., 95%} ± 1%.
The fluctuation of win probability in the last 7 days is less than
5%, which ensures stable trends and matches FiveThirtyEight’s
and The Economist’s past U.S. presidential forecasts [2, 3, 5].
One swing state has a win probability of 50% ± 3%, which will
be the story state.

We draw samples from last-day forecast distributions to generate
election outcomes, which leads to both correct (the outcome is the
expected winner) and incorrect outcomes. We aim to control fore-
cast quality and ensure a similar quality for all resulting forecasts,
which will be used in the experiments. Given an outcome, we quan-
tify forecast quality by the continuous ranked probability score
(CRPS) [115], a commonly used scoring metric for probabilistic
forecasts. It is defined as the distance between the CDF of forecast
distribution and the step function of the outcome. Specifically, the
2020 presidential forecasts have a CRPS of 0.051 (FiveThirtyEight)
or 0.053 (The Economist), meaning the outcome is about 45 electoral
votes away from the forecast means. State forecasts usually have a
CRPS of 0.01 to 0.07 [113], meaning the outcomes are 0.01 to 0.09
(vote share percentages) away from the forecast means. As such,
we select the forecasts that contain last-day draws (i.e., election
outcomes) to satisfy:

The draw has a CRPS of 0.05 to 0.06 for electoral votes, and can
be either correct or incorrect.
The same draw has a CRPS between 0.01 and 0.02 for the story
state, and can be either correct or incorrect.
The other states in the same draw are reasonable: the number
of correct states is 46, 47, or 48, as FiveThirtyEight and The
Economist’s past forecasts have 46 to 49 correct states; the dis-
tance between the state outcomes and forecast means is always
smaller than 0.075 (vote share percentages), and large states like
California must be correct to ensure similar perceptions.

3.3 Simulation results
After the above steps, we have a set of U.S. presidential forecasts,
each giving predictions of state vote share and electoral votes over

155 days. They have desired last-day win probabilities and election
outcomes. Given any of these election outcomes, the corresponding
forecast has a similar quality. Both the forecasts and their quality
match past U.S. presidential forecasts. The story state in each fore-
cast may vary, but it is one of possible U.S. swing states. We provide
our code and the resulting data files in supplementary materials
( simulating elections).

4 UNCERTAINTY DISPLAYS
For our experiments, we create a professional-looking forecast web-
site and convey forecasts of both the electoral college and states.
Following the 2020 presidential forecasts by FiveThirtyEight and
The Economist, our website interface has a headline panel (Fig. 4A),
a panel of changes over time (Fig. 4B), a state-level summary (Fig.
4C), and state-level details (Fig. 4D). Our experiments vary the head-
line displays (Figs. 1 and 2), use of probability correction (Fig. 3),
and use of visual calibration (Fig. 5), all explorations of ways to
maintain trust in election forecasts over time. The interface is color-
blind-inclusive, and was tested in Chrome, Safari, and Firefox.

4.1 Headline uncertainty displays
The headline conveys the forecast of electoral votes. Our exper-
imental choices are motivated by recent works on election fore-
casts [113, 114], particularly regarding the integration of annota-
tions within visualizations. In a journalism context, appropriate
annotations are essential; without them, it is nearly impossible for a
lay audience to interpret a visualization appropriately. We adapt our
approach from Yang et al.’s designs [113], aiming to choose each
visualizations along with its most suitable annotations. Despite
inherent differences, we ensure consistency and comparability in
annotations across various displays. Our annotations communicate
the same probabilities and/or prediction intervals using consistent
colors, fonts, and similar phrasing.1 We also consider other works
on uncertainty visualizations (e.g., [50, 72, 77]) and the current prac-
tice of media outlets (e.g., [3, 5, 7, 8]). We decide on four displays,
representing the breadth of common design choices. We empiri-
cally pick 16 electoral votes as the bin size, which yields reasonable
visualizations on a typical screen.

Histogram intervals (intervals, Fig. 2A) extend conventional
representations [50, 72] and use illuminance to convey probability
density inside intervals. Both The Economist’s 2021 German elec-
tion forecasts [7] and Yang et al. [113] used a similar display; the
latter work also showed that intervals have substantial effects on
viewers’ emotion, trust, and intention. Following them, we annotate
the 95% prediction intervals of electoral votes and their interpre-
tation. For example,

Roberts gets 234 to 388Davis gets 150 to 304
electoral votes electoral votes

1Conducting a separate experiment on varied annotations could shed light on the
effects of different annotations, which, however, falls beyond the scope of this work.

https://osf.io/923e7
https://osf.io/923e7
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A. Histogram Intervals B.Text Summary C. Quantile Dotplot

Figure 2: Examples of uncertainty displays: (A) histogram intervals (intervals), (B) a text summary (text), and (C) quantile dotplot (dotplot),
all showing an 85% win probability for Davis. We present plinko and thumbnails in Fig. 1.

Text (text, Fig. 2B) summarizes both win probabilities and 95%
prediction intervals. The Economist’s 2020 U.S. presidential fore-
casts [5] used the same representation. Other scholarly works com-
pared a text summary with visual representations [50, 108], obtain-
ing mixed results. Following the literature [100, 113], we convey
win probabilities in a frequency style. For example,

Roberts

Davis wins 85 in 100 outcomes
wins 14 outcomes

... and there is 1 tie outcome.

100in

Quantile dotplot (dotplot, Fig. 2C) discretizes a probability den-
sity function [77]. FiveThirtyEight used a similar beeswarm plot
for the 2020 U.S. general [3] and 2022 midterm [8] elections. Yang
et al. explored both a single quantile dotplot and dual quantile dot-
plots [113], and found a single quantile dotplot had strong effects
on emotions and trust in forecasts. Other works also support that
quantile dotplots prompt understanding of uncertainty in decision
tasks [50, 72, 82]. Following previous designs [113], our dotplot has
100 dots, and we annotate the meaning of a dot, the win probabili-
ties, as well as the most likely outcome:

This pile means, in 19 election outcomes, 
Davis gets 285 to 301 electoral votes.

Roberts wins in 14Davis wins in 85
electoral outcomes electoral outcomes

In consideration of a tie, we slightly modify the design and place
tie outcomes in a separate bin (Fig. 2C).

Plinko quantile dotplot (plinko, Fig. 1) uses an animated phys-
ical analogy to depict the data generating process, formally intro-
duced by Yang et al. [113]. The core concept is similar to the Galton
Board [55], which approximates a forecast distribution using a Bi-
nomial distribution with a shifted mean. The Binomial distribution
resembles a series of Bernoulli distributions, and a ball bounce on a
peg represents each Bernoulli distribution. The variance of the Bino-
mial distribution determines the height of the Plinko board. In Yang
et al.’s results, Plinko quantile dotplots qualitatively improved view-
ers’ understanding of uncertainty, but slightly undermined trust in
election forecasts [113]. The latency caused by animation appears
detrimental to user experience and subsequently their trust [113].
As such, we make the following modifications: automatically start-
ing the animation, shortening their duration from 60 seconds to
20 seconds, and animating only the election outcome in the post-
election stage (Fig. 5C, also see Sec. 4.3). Our annotations simplify
the cited work:

Balls are dropped at 
the location that 
represents the most 
likely election 
outcome.

Each ball has many 
possible paths that 
roughly match the 
uncertainty in our 
forecast.

The taller the Plinko 
board is, the more 
uncertain the 
election outcome is. 

We provide videos in supplementary materials ( interface demo)
to demonstrate the animation and annotations.

4.2 (Subjective) probability correction
One way to maintain trust in election forecasts might be to help
people appropriately interpret probabilities (e.g., let them believe a
71% chance is a less likely event). As briefed in Sec. 2.2, probability
correction is a technique that adjusts the displayed distribution
to account for biases in people’s beliefs about the winner [114].
A probability correction relies on two parameters (𝛼, 𝛽) that are
estimated from empirical experiments. The original work provides

https://osf.io/923e7
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Figure 3: Examples of probability correction. The three examples here show our probability correction for an actual win probability of
85%, corresponding to Fig. 2. We eliminate plinko for the consideration of probability correction.

the parameters for histograms and a point-estimation text descrip-
tion [114]. We face several issues when applying this technique to
U.S. presidential elections, elaborated below.

Correction parameters. The original work does not provide
correction parameters for intervals, dotplot, and text (our text is an
interval-style description). To obtain the parameters, we conducted
new experiments. We used the same experimental materials and
analysis code obtained from the original authors. We ran a sim-
ulation and found a sample size of 50 participants per condition
yielded sufficient precision. We collected empirical data for the
three displays, recruiting 53, 55, and 48 Prolific participants,2 re-
spectively. Since this probability correction technique amplifies
variance, resulting in an excessively space-consuming board for
plinko, we exclude plinko for consideration.

Ambiguous viewers. The original probability correction is tai-
lored to scenarios where a viewer is primarily concerned with their
preferred candidate’s win probability, a left- or right-tail probabil-
ity of the forecast distribution. Such corrections are asymmetric,
slightly different depending on whether the viewer prefers the
Democratic or Republican candidate. However, in a journalistic
context, we may not know the viewer’s preferred candidate, thus,
we need a symmetric correction agnostic to an assumed preference.
We modify the original model and fix the intercept parameter (𝛼)
to 0.3 This yields a symmetric probability correction, roughly equiv-
alent to scaling the standard deviation of the forecast distribution
by 𝛽 . The final parameters (𝛽s) for our probability correction are
1.55 (intervals), 2.02 (dotplot), and 2.14 (text), respectively.

Other considerations. Because our emphasis is on conveying
the forecast of electoral votes, we apply probability correction only
to this distribution (the headline), preserving uncorrected state-
level forecasts. However, our scope encompasses the entire election
season, spanning 155 days, requesting a transformation of the fore-
cast of each day. Lastly, following suggestions from the original
2Small variations in sample sizes do not substantially influence the resulting adjusted
distributions. The actual sample sizes fluctuate with recruitment discrepancies on
Prolific and imperfect assignments in Qualtrics.
3The parameters provided in the original work [114] are: 𝛼 = −0.34, 𝛽 = 2.44 for text,
and 𝛼 = −0.34, 𝛽 = 1.58 for histograms. The 𝛼 values were already close to 0.

work, we add a note into the interface to transparently apply a
correction:

To adjust for how people typically discount uncertainty in 
forecasts, the standard deviation of electoral votes shown 
is approximately 2x that of our model. We hope that this 
will better explain the uncertainty for the reader.

We show examples of the probability-corrected distributions in
Fig. 3. Note that we do not apply a correction to any election out-
come. Readers can find our experimental materials and code in
supplementary materials ( prob correction).

4.3 Visual calibration
Another way to maintain trust in election forecasts can be to release
a post-election model calibration, a visual comparison between the
actual outcome and the probabilistic forecasts, to enable viewers
to appropriately judge the forecast quality. Yang et al. presented
their calibration for state outcomes of the 2020 U.S. midterm elec-
tions [113]; meanwhile, FiveThirtyEight also publishes aggregated
calibration on a separate page [10, 11]. With simulated forecasts,
we can formally investigate the effects of visual calibration.

We adopt the visual calibration designed by Yang et al. [113] and
represent an outcome as part of the forecast distribution (Fig. 5).
These visual comparisons are annotated in a distinct green color.
For intervals, we annotate the outcome onto the intervals using .
For dotplot, we display the outcome as one of the dots using , and
annotate its meaning. For plinko, Yang et al. animated an election
outcome along with other dots, replaying the entire animation;
we modify their design and animate only the election outcome,
shortening the duration to 5 seconds. For text, we reiterate the
election outcomes to ensure consistency with the other displays in
the experiments.

Additionally, we present visual calibration of state-level election
outcomes. As the state outcomes are not of primary interest, we
use the same design across all variants of headline displays (Figs.
4C and D). For state-level summary (snake charts; Fig. 4C), we
keep the same layout, altering colors to represent the outcomes.

https://osf.io/923e7


CHI ’24, May 11–16, 2024, Honolulu, HI, USA Yang et al.

  calibration 

This panel displays changes for electoral votes 
over 155 days. When applying probability correc-
tion, the ranges and probabilities displayed 
change accordingly.

When showing visual calibration (right), we anno-
tate the election outcomes.

When not showing visual calibration, this panel 
stays the same when going from pre- to 
post-election (I to II).

I. Before election day II. After election day 

A

C

D

E

F

E

B

In each election cycle, we ask (I) a voting question before election day and (II) trust 
questions after election day, displayed in pop-out windows overlaid on the interface. 

The headline in the next election depends on participants’ choice.

This headline panel shows a display of forecasted 
electoral votes.

In all three experiments, participants choose the 
display for the next forecast via the options pro-
vided.

In Experiments 1 and 2, we vary probability cor-
rection and calibration for this panel between 
participants.

When not showing calibration, this panel stays the 
same from pre- to post-election (I to II).

This panel shows state-level details, the forecast-
ed vote margins.

The visual calibration (right) annotates the state 
outcomes onto the intervals.

This panel is a summary of state-level forecasts, 
inspired by FiveThirtyEight’s design. Tighter races 
are in the middle.

The visual calibration (right) recolors all states by 
the election outcomes.

When not showing visual calibration, this panel 
stays the same when going from pre- to 
post-election (I to II).

When not showing calibration, this panel adds 
only the actual winner column when going 
from I to II.

The election outcome is always displayed (II) in 
a post-election stage regardless of calibration.

F

Snapshots of the interface
AN EXAMPLE OF NO CORRECTION, CALIBRATION

Figure 4: Each forecast/election cycle has two stages: (I) Before election day, this example of dotplot shows an 85% probability of
winning the electoral college (without probability correction). (II) After election day, participants are informed of (E) the election outcome;
this example of visual calibration depicts the incorrect election outcome in relation to the forecast distribution.
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time

Figure 5: Examples of calibration illustrating an incorrect outcome. Fig. 4 shows visual calibration for dotplot and other panels. Here
we show only the headline displays. These examples correspond to Figs. 1, 2, and 3.

Viewers can use a toggle button to switch between forecasts and
outcomes. For state-level details, we annotate the outcomes onto
the intervals (Fig. 4D).

5 STUDY DESIGN
Below, we outline the independent variables, which vary at the
electoral college level (Fig. 4A headline):

uncertainty displays: { intervals, text, dotplot, plinko}
probability correction: { no correction, correction }
visual calibration: { no calibration, calibration }
forecasted win probabilities: { 5%, 15%, ..., 95% } ± 1%
forecast correctness: { correct, incorrect }

The first three variables explore diverse representations, whereas
the latter two cover a broad spectrum of forecast scenarios. These
two variables enable us to examine how variations in win prob-
abilities and forecast correctness affect participants’ voting deci-
sions [40, 108] and their trust. Each win probability corresponds to
one forecast (or one election cycle) comprised of two stages: before
election day (pre-election) and after election day (post-election).
Each participant experiences ten forecasts, or say, ten election cy-
cles. In each forecast, they answer different questions in the two
stages (e.g., voting and trust). The story state consistently has win
probabilities nearing 50%.

5.1 Measures
The heart of our research is to maintain people’s trust in election
forecasts over time, particularly their trust after an incorrect out-
come. In line with the trust literature outlined in Sec. 2.1, we opt for
two trust measures—attitudinal and behavioral trust [16, 41, 112],
both measured in the post-election stage when the election outcome
is revealed.

Attitudinal trust as a perception underlies the manifest behav-
ior. Commonly referenced in literature, it is measured through
attitudinal questions (e.g., “how accurate ...” and “how trustworthy

...”) [16, 99], and responses across different dimensions are often
correlated. We adopt the measures from Yang et al. for election fore-
casts [113] and Padilla et al. for COVID-19 forecasts [99]. We gauge
different trust dimensions using three items: accurate, reliable, and
trustworthy. Each item is rated in a 7-point Likert format. Three
items are later combined and averaged to generate a single scale
for attitudinal trust [30, 63] in quantitative analysis.

Behavioral trust is the action resulting from attitudinal trust,
reflecting genuine preferences and decisions. Inspired by a variant
of the trust game where participants choose a game partner [109],
and the two-alternative forced choice task used for comparing trust
in two models [53], we measure behavioral trust by asking partic-
ipants to choose among different forecast websites. We frame each
display (e.g., dotplot) as one forecast website, and represent each
using an icon (e.g., ). At the post-election stage of each election
cycle, participants have the option to select the forecast website
(i.e., the display symbolized by the icon) they would like to use for
the next election. The headline of the interface will be updated
in the next election accordingly. We randomize the order of these
displays in the options (e.g., dotplot is not always the third option)
across participants, negating both ordering and framing effects.

Last, we measure voter turnout by asking participants if they
would vote for their candidate in the story state before election
day, introducing shortly after this section in Sec. 5.2 (also see Sec.
1.1 above). While simulated elections do not fully capture real-
world nuances, this measure can still shed light on voting behavior.
More importantly, it prompts participants to contextualize election
forecasts, as detailed below.

5.2 Partisan priming and incentives
We prime and incentivize participants to get closer to a real-world
election context. After consent, each experiment begins with de-
mographic questions, followed by questions about political inter-
ests, partisan identification, ideology, and voting history. Then, we
present the cover story, the two candidates’ names (M. Davis and
A. Roberts, their political standings, and party logos ( and ).
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Given the widening partisan divide among U.S. electorates [13, 29],
partisan priming becomes necessary. We enforce a choice of the
preferred candidate, including an option labeled “other candidate,
not from the two major parties”. Their preferred candidate is who
they would vote for (or not) throughout the experiment. This design
ensures consistency and prevents insincere voting, as participants
might switch allegiances merely to win a reward—a scenario un-
likely in real elections [6]. This approach also simplifies experi-
ments and enables us to collect more reliable turnout data, which
is essential for addressing questions relevant to democratic par-
ticipation [90]. We also inform participants of voting incentives.
They start with a balance of 10 , and this balance at the end of the
experiment will be converted to a bonus at a 10:1 rate (e.g., 10

means 1 USD). The rules are

-1

+5 -2

0

+3-2

Voting has a cost         ; if your candidate wins the 
electoral college, you gain          ; if they lose, you lose         .

Abstaining costs nothing         ; if your candidate wins the 
electoral college, you gain          ; if they lose, you lose          .     

These rules ensure (1) the same expected rewards regardless of
whether participants consistently vote or abstain, preventing any
unintended encouragement towards either action, and (2) a realistic
turnout rate. By setting the voting cost to be a fifth of the winning
reward, we aim for a turnout rate that aligns with the typical range
observed in U.S. elections (40% to 70%) [14, 108]. We also pilot sev-
eral rounds with different incentives and without incentives (asking
participants to behave “naturally”). The results indicate that minor
variations in incentives do not significantly impact turnout, but
having no incentives leads to an unrealistic high voter turnout near
100%. We also anticipate various voting strategies [83], such as
voting out of a sense of obligation.

5.3 Forecast finalization and assignment
From the forecasts generated in Sec. 3, we select ten with varied
win probabilities and outcomes. We present the same ten forecasts
to all participants and counterbalance them across participants to
ensure experimental validity:

Each participant is exposed to two incorrect forecasts, one for
each party, which roughlymatches the historical accuracy (∼80%)
of forecasting elections [78].
The election outcomes presented to participants are consistent
with forecasted win probabilities for both the electoral college
and the story state. For instance, if the forecasted win probability
is 50%, roughly half of the participants see an outcome of Davis
winning.
The order of the ten forecasts is randomized; however, the first
forecast is always correct, matching the most recent U.S. presi-
dential forecast in 2020 to provide participants with a sense of
realism.
The electoral college winner is balanced: each participant sees
five wins each for Davis and Roberts.

The story states are balanced: five total states, each occurring
twice. These five states are Arizona, Georgia, Kansas4, Wiscon-
sin, and Nevada.

Order randomization is generated onsite; the others are satisfied
via a constraint programming algorithm. This algorithm outputs
ten different specifications, each containing the ten forecasts and
randomly assigned to participants. The exact win probabilities of the
ten forecasts are {5%, 15%, 24%, 35%, 44%, 56%, 65%, 75%, 85%, 94%}.

5.4 Experimental design
We adopt a sequential design process, illustrated in Fig. 6. Given
the unpredictability of the results, this approach allows for itera-
tive refinement, wherein each experiment builds upon the findings
of the preceding one, culminating in our final recommendations.
We initiate with Experiment 1 and use the preceding results to
inform the design and preregistration of subsequent experiments.
Participants from the pilot studies, earlier experiments, or any
related studies we conducted are excluded from subsequent experi-
ments. We provide our preregistration in supplementary materials
( preregistration).

Experiment 1. We start with a larger experiment varying both
probability correction and calibration. To eliminate ambiguity, we
let participants choose from only three displays: intervals , text

, and dotplot . In other words, both probability correction
and calibration are between-subjects variables, and each partic-
ipant is assigned to one of the four combinations {no correction,
correction } × {no calibration, calibration }. We exclude plinko because
it is difficult to apply probability correction to (see Sec. 4.2 above),
and its inclusion would complicate result interpretation. We use
pilot data to generate synthetic data for estimating model precision,
and decide on 300 participants.

Experiment 2. We then compare the “winners” of Experiment 1
with plinko. The results of Experiment 1 suggest that, on average,
participants choose text slightly more than dotplot, both ahead of
intervals. We had piloted with text, dotplot, and plinko. Nevertheless,
the results raise a concern about the independence of irrelevant
alternatives [25]. That is, the presence of a third option may un-
equally decrease the probability of selecting the other two. Thus,
we reduce the options to dotplot and plinko for a precise
comparison between the two visual displays, varying no calibration
and calibration between participants. The number of conditions is
one-third of that in Experiment 1, and therefore we decide on 120
participants and obtain 119, as Prolific sometimes has discrepancies
in participant numbers.

Experiment 3. Combining the results of Experiments 1 and 2,
dotplot gains the highest trust among the three visual displays.
However, on average, the effects of correction and visual calibration
are small and may be subject to individuals’ characteristics (e.g.,
partisanship). Therefore, Experiment 3 disambiguates text and

4While Kansas might not be considered a conventional swing state, in both 2018 and
2022 gubernatorial elections, the popular votes are very close (e.g., 49.54% vs. 47.33%).
The state is likely to be a swing state in the future.

https://osf.io/923e7
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The design flow of our sequentially preregistered experiments

Key resultsExperiment 1

Experiment 2

Trust in dotplot and text seems similar, higher than 
trust in intervals.

The presence of a third option may unequally affect 
the probability of selecting the other options (IIA).

Participants trust text more than dotplot, which is 
the most trusted visual display in the experiments.

intervals text dotplot

BETWEEN-SUBJECTS VARIABLES

dotplot plinko

BETWEEN-SUBJECTS VARIABLE

VISUALIZATION OPTIONS

text dotplot

VISUALIZATION OPTIONS

Experiment 3 

300 participants

Exploring a larger set

A head-to-head comparison

The final run-off  
VISUALIZATION OPTIONS

119 participants

79 participants

Both are with calibration.

calibrationcorrection

calibration

TAKEAWAYS

0 .2 .4 .6 .8

0 .2 .4 .6 .8

0 .2 .4 .6 .8

1% to 99% CIs

4 4.5 5 5.5 6

4 4.5 5 5.5 6

4 4.5 5 5.5 6

Average probabilities of selecting a visualization 

Average ratings over all forecasts

Participants choose dotplot over plinko, but attitudinal 
trust is similar between the two.

Calibration may have small-to-null effects.

Average probabilities of selecting a visualization 

Average ratings over all forecasts

Average probabilities of selecting a visualization 

Average ratings over all forecasts

higher trust

similar

similar

similar

95% CIs: [4.92, 5.13] & [4.95, 5.13]

95% CIs: [4.92, 5.13] & [4.85, 5.12]

95% CIs: [4.90, 5.23] & [5.01, 5.27]

Figure 6: The design flow and key results of our sequentially preregistered experiments, each building upon the preceding
results. Overlapped intervals are blended using ggblend [74].

.
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dotplot in the presence of visual calibration. The number of con-
ditions is further halved. We decide on 81 participants and obtain
79, excluding two participants who were retaking the experiment.

5.5 Procedure and interface
After consent, demographics, cover story, and selecting their candi-
date (e.g., Davis, see Sec. 5.2 above), participants have a test trial to
learn the association between icons and forecast websites. Then, in
the first forecast, they are randomly assigned to one of the displays
depending on the experiment. They complete ten forecasts, each
having two stages. Before election day, they answer two questions.

After election day, they report attitudinal and behavioral trust.

The “which candidate...” question is a sanity check. Participants
must see the headline panel before answering the questions in a
pop-out window, and they can hide the window to refer back to the
forecast at any time. The wording in the final forecast is slightly
modified to fit the scenario. After ten forecasts, they respond to
four open-ended questions, such as how they vote and choose a
forecast website.

5.6 Participants and recruitment
We recruit all participants from Prolific.com and screen them based
on their profiles reported to Prolific. The three experiments use the
same screeners. We request participants who live or lived in the
U.S. swing states: Oregon, Arizona, Nevada, Minnesota, Colorado,
Ohio, Michigan, Wisconsin, Maine, New Hampshire, Pennsylvania,
North Carolina, Georgia, Florida, and Texas. Because the turnout
for the 2020 U.S. presidential election is approximately 66% [12],
we balance partisanship and recruit participants who voted for
Joe Biden, Donald Trump, and who did not vote at a rate of 1:1:1,

balancing gender for each. The exception is that Experiment 3
requests 28, 28, and 26 participants to have gender balance for an
odd number of total participants.

We provide demographic breakdowns in supplementary materi-
als ( data and analyses). Each participant is compensated 4 USD
for their time. The mean completion time is 19.21, 22.45, and 21.28
minutes for the three experiments; and the mean bonus is 1.45,
1.52, and 1.51 USD. The accuracy of the winner question is 81.67%,
84.45%, and 86.08%. The study was approved by the Institutional
Review Board (IRB) at Northwestern University (#STU00216162-
MOD0002).

6 QUANTITATIVE ANALYSES
Because each participant undertakes ten forecasts, their responses
likely depend on each preceding forecast. Therefore, we model
their trust responses using Bayesian autocorrelation models. We
use similar model specifications for all experiments and begin with
describing Experiment 1 below, followed by the modifications for
Experiments 2 and 3 to account for the different experimental de-
signs. All model specifications and priors are preregistered.5

We used Rstan [104], CmdStanR [54], posterior [32, 107], and
tidybayes [75] for our implementation. We inspected sampler tran-
sitions (treedepth, divergences, and E-BFMI), effective sample size,
and R-hat values, all of which were satisfactory. The data, R and
stan code, and model files are available in supplementary materials
( data and analyses).

6.1 Behavioral trust
Behavioral trust models the observations of participants’ choices
of headline displays/visualizations. The core idea is to maintain a
latent trust variable for each participant’s trust in each visualization
over time, including an initial state indicating prior beliefs before
the first forecast. Therefore, this latent variable has 11 dimensions
(i.e., forecast 𝑡 corresponds to time 𝑡 + 1). After each choice, this
latent variable is updated in accordance with the visualization of
the current forecast and experimental variables. This latent variable
generates each choice through a Multinomial distribution, except
for the first forecast, where visualizations are assigned randomly.
Corresponding to this latent variable, behavioral trust is measured
by participants’ probabilities of selecting a particular visualization.

More formally, we express our model specification as follows.

5We preregistered more than one specification and a protocol to explore them. Because
we find the primary specification satisfying, we present it here and use it for result
reporting.
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Observation distribution
The visualization vis seen by participant 𝑖 at time 𝑡 + 1 (forecast 𝑡 )
is given by a Multinomial distribution, defined by the probabilities
of seeing each visualization Pr(vis𝑖,𝑡+1). These probabilities are
transformed from the latent trust H of each participant 𝑖 , visual-
ization 𝑣 , and time 𝑡 + 1 via a softmax function.

Initialization
The latent trust before the first forecast is initialized toH∗. The first
dimension is set to 0 for the identifiability of the softmax function.

Updating
For participant 𝑖 and forecast 𝑡 , their latent trust H𝑖,𝑡+1,· , which
decides their choice for the next forecast, is updated for the cur-
rent visualization vis[𝑖, 𝑡] based on the current predictors 𝑋𝑖,𝑡
and their coefficients 𝛽𝑖,vis[𝑖,𝑡 ] . The other entries of latent trust
remain the same. In Pinheiro-Bates notation [101], we define
𝑋 as correctness:calibration + correctness:prob_correction +

partisanship, indicating the effects from forecast correctness, vi-
sual calibration, probability correction, and partisan leaning (con-
trast: -.5, 0, .5), as well as the interaction between them.

Hierarchical priors
We anticipate each participant 𝑖 to have their own initial trust and
coefficients for updating for each visualization 𝑣 .

Indices for Experiments 1, 2, and 3
Nparticipant is 300, 119, and 79, respectively, and Nvis is 3, 2, and 2,
respectively. Nforecast is always 10.

Modifications for Experiments 2 and 3
We modify the predictors (𝑋 ) used in updating. Experiment 2
varies only visual calibration, and has correctness:calibration

+ partisanship, and Experiment 3 always shows calibration, and
therefore has correctness + partisanship. Also, both experiments
provide participants with two visualization options; the Multino-
mial distribution reduces to a Bernoulli distribution. However, we
use the same expression and code for consistency.

6.2 Attitudinal trust
Attitudinal trust models the observations of the Likert responses.
Following the analysis guideline for Likert format data, we take
the mean of the three Likert questions as the observations of atti-
tudinal trust [30, 63]. The model is substantially similar to that of
behavioral trust above, except that a Normal distribution with a
latent mean and standard deviation generates rating observations,
defined below.

Observation distribution
We expect Rating by participant 𝑖 in forecast 𝑡 comes from a
Normal distribution. Its mean is given by the latent attitudinal
trust P𝑖,𝑡+1,𝑣 at that time 𝑡 + 1 for the participant and visualization
vis[𝑖, 𝑡].

vis𝑖,𝑡+1 ∼ Multinomial(Pr(vis𝑖,𝑡+1 | H𝑖,𝑡+1,·))

Pr(vis𝑖,𝑡+1 | H𝑖,𝑡+1,·) = softmax(H𝑖,𝑡+1,·)

H𝑖,1,· =
[
0,H∗

𝑖,2,H
∗
𝑖,3
]

H𝑖,𝑡+1,𝑣 =

{
H𝑖,𝑡,𝑣 + 𝛽𝑖,𝑣 · 𝑋𝑖,𝑡 if 𝑣 = vis[𝑖, 𝑡]
H𝑖,𝑡,𝑣 otherwise

H∗
𝑖,𝑣 ∼ Normal(`∗𝑖,𝑣, 𝜎

∗
𝑖,𝑣)

`∗𝑖,𝑣 ∼ Normal(0, 3)
𝜎∗𝑖,𝑣 ∼ Exponential(1)
𝛽𝑖,𝑣 ∼ Normal(`𝑖,𝑣, 𝜎𝑖,𝑣)
`𝑖,𝑣 ∼ Normal(0, 1)
𝜎𝑖,𝑣 ∼ Exponential(1)

𝑖 ∈ {1..Nparticipant}
𝑡 ∈ {1..Nforecast}
𝑣 ∈ {1..Nvis}

Rating𝑖,𝑡 ∼ Normal(P𝑖,𝑡+1,vis[𝑖,𝑡 ] , 𝜏𝑖,𝑡+1,vis[𝑖,𝑡 ] )
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Initialization
The latent attitudinal trust is initialized for each participant 𝑖 and
each visualization 𝑣 .

Updates, hierarchical priors, and indices
The updates, priors, and indices are the same as the behavioral trust
model, except for including a prior 𝜏 on the standard deviation of the
Normal observation distribution. The predictors and modifications
for Experiments 2 and 3 are the same as above.

6.3 Voting decision
We use a similar model structure for voting observations but with-
out temporal autocorrelation. Given the experimental designs, par-
ticipants are most likely to vote based on win probabilities and their
voting habits. We also modify the predictors because participants
vote in the pre-election stage. Voter turnout is then measured by
the probability that an average participant votes.

Observation distribution
We view each binary voting decision 𝑗 arising from a Bernoulli
distribution [23, 85], with the voting probability \ 𝑗 as a function of
experimental variables as the predictors.

Hierarchical priors and indices
We use a similar hierarchical model structure, where each
participant[ 𝑗] has their own coefficient 𝛾𝑖,𝑣 for each visualization
vis[ 𝑗]. However, the predictors are different, denoted by 𝑍 and
defined as logit(𝑝dem):party_candidate + prob_correction in the
logit space. This means the actual win probability interacts with
which candidate they vote for (the same candidate they select at
the beginning of the experiment), and probability correction also
affects voting decisions. We remove the prob_correction term for
Experiments 2 and 3.

P𝑖,1,𝑣 = P∗
𝑖,𝑣

...

𝜏𝑖,𝑡,𝑣 ∼ Exponential(1)
P∗
𝑖,𝑣 ∼ Normal(`∗𝑣 , 𝜎∗𝑣 )

...

Voted𝑗 ∼ Bernoulli(\ 𝑗 )

logit(\ 𝑗 ) = 𝛾participant[ 𝑗 ],vis[ 𝑗 ] · 𝑍participant[ 𝑗 ],vis[ 𝑗 ]
𝛾𝑖,𝑣 ∼ Normal(`𝑣, 𝜎𝑣)
`𝑣 ∼ Normal(0, 1)
𝜎𝑣 ∼ Exponential(1)
𝑗 ∈ {1..Nobservation}
𝑣 ∈ {1..Nvis}

7 QUANTITATIVE RESULTS
With the models and measures, we first report the results from the
preregistered analyses. At the end of this section, we report the
results from a non-preregistered exploratory analysis. Because we
balance gender, partisanship, and experimental conditions, we base
our interpretation on participants’ averages and report the medians
and 95% credible intervals (CIs; Bayesian analog to confidence in-
tervals) in the format of median [lower, upper]. For those model
coefficients, we transform them to the original scale to facilitate
interpretation.

7.1 Behavioral trust (probability)

Participants’ average trust (Fig. 7A). We observe a clear
difference in participants’ behavioral trust. Their initial trust in
each visualization can be similar (Experiments 2 and 3). However,
participants’ choices of visualization tend to be stable after two
forecasts and gradually converge (Experiments 1 and 3) or diverge
(Experiment 2).

More specifically, in Experiment 1, people choose text anddotplot
over intervals (in the last forecast: 0.44 [0.43, 0.46], 0.37 [0.36, 0.39],
0.18 [0.17, 0.20]). In Experiment 2, people choose dotplot over plinko
(in the last forecast: 0.66 [0.63. 0.68], 0.34 [0.32, 0.37]). In Experi-
ment 3, people choose textslightly over dotplot (in the last forecast:
0.56 [0.54, 0.59], 0.44 [0.41, 0.46]). On average, participants tend
to choose and therefore trust text the most, slightly more than

dotplot, and both more than intervals or plinko.

Model coefficients (Fig. 7B). Across the three experiments
and visualizations, correctness and partisanship consistently in-
crease participants’ behavioral trust. That is, when a forecast is
correct (cf. incorrect) or predicts their candidate winning (cf. the
opponent candidate), it can substantially increase the probability
of choosing a visualization (e.g., Experiment 1, dotplot 0.14 [0.03,
0.24]). However, the effects of partisanship are less consistent and
sometimes diminish (e.g., Experiment 2 dotplot and Experiment 3
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Figure 7: Behavioral trust over time. We show participants’ average probabilities of selecting a visualization, including their initial trust
before seeing any forecast, and how the experimental variables affect participants updating their trust over time.

text). On average, probability correction and calibration have non-
conclusive effects on behavioral trust; we explore further in Sec.
7.4 below.

7.2 Attitudinal trust (Likert scale)

Participants’ average trust (Fig. 8A). The results suggest
that participants’ perceptions of visualizations are similar, and the

effect sizes are generally small. Experiments 1 and 3 show their
attitudinal trust in dotplot is similar to that in text, though text
gains slightly higher trust in Experiment 3. However, in Experiment
1, their attitudinal trust indotplot slightly improves over time, which
contrasts with Experiment 3. In Experiment 2, attitudinal trust in
dotplot and plinko are similar. Overall, the results of attitudinal
trust corroborate with those of behavioral trust above—trust in
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Figure 8: Attitudinal trust over time. We show the average participants’ underlying rating of visualization, including their initial trust
before seeing any forecast, and how the experimental variables affect the rating.

textand dotplot are similar, and higher than trust in intervals and
potentially plinko.

Model coefficients (Fig. 8B). Across the experiments and
visualizations, correctness consistently increases participants’ at-
titudinal trust (e.g., Experiment 1, intervals 0.34 [0.014, 0.67]); the

partisanship effect is weaker and sometimes diminishes (e.g., Exper-
iment 2, plinko 0.20 [-0.052, 0.46]; Experiment 3, dotplot 0.16 [-0.11,
0.44]). On average, in Experiment 1, correction has small positive
effects on improving trust perceptions, especially for dotplot (0.16
[0.017, 0.30]).
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7.3 Voter turnout (probability)

We also report voter turnout in Fig. 9, showing the probabilities
of an average participant voting in the experiments. Our model
contrasts the two parties based on the candidate participants select,
and those selecting the “other candidate” are coded as 0, resulting
in a uniform turnout distribution. Hence, we present the results of
participants who supportDavis, mirroring the results of participants
who support Roberts.

Overall, we see that turnout increases as the win probabilities of
their chosen candidate increase. If we take text as a baseline, then
both Experiments 1 and 3 show that dotplot increases turnout over
text (e.g., in Experiment 1, when 𝑝dem = .45, dotplot 0.65 [0.58, 0.72]
and text0.50 [0.41, 0.59]). However, both intervals and plinko can
further increase voter turnout when the win probability is low (e.g.,
in Experiment 1, when 𝑝dem = .15, intervals 0.16 [0.11, 0.23], dotplot
0.087 [0.040, 0.17]), but may slightly decrease voter turnout when
their win probability is high (e.g., in Experiment 1 when 𝑝dem =
.85, intervals 0.89 [0.83, 0.94], dotplot 0.97 [0.94, 0.98]). Additionally,
in Experiment 1, correction has small, non-conclusive effects on
increasing turnout (Fig. 9A).

7.4 Non-preregistered exploratory analysis
Given the non-conclusive effects of probability correction and cali-
bration on behavioral trust, we conduct a small-scale exploratory
analysis based on participants’ choices in the last forecast/election
cycle. Prior work identified gender [53] and partisan [113] differ-
ences in trust. In the present work, we find that the partisan divide
is more consistent than any gender difference. As such, we first split
participants based on the candidate they select in the experiments
and report participants’ averages in Fig. 10.

We see that the choices of participants supporting the Demo-
cratic candidate appear different from those supporting the Republi-
can and other candidates. In Experiment 1, Democratic participants
choose dotplot slightly over text and intervals (Fig. 10A). In both
Experiments 1 and 2, their choices of visualizations are getting
closer in the presence of correction and/or calibration (Figs. 10A and
B). We also observe a similar effect in Experiment 1 for Republi-
can participants, but this effect diminishes in Experiments 2 and 3.
These suggest that visual displays, correction, and calibration are
preferred by Democratic participants.

Second, we further break down participants by their education
levels, reported in Fig. 10D. We see a correlation between higher
education levels and preferring dotplot in several subgroups, such as
those Democratic participants in Experiment 1 and non-Democratic
participants in Experiment 2, but this correlation seems not to hold
universally.

8 QUALITATIVE RESULTS
To examine construct validity and gain further insights, we conduct
a qualitative analysis of participants’ responses to two open-ended
questions: how they decide to vote and choose a website. We did not
distinguish between different experiments, and one coder analyzed
all 498 × 2 = 996 responses. The coder started with open coding and
then grouped the codes into axes [79]; the code assignments were
not mutually exclusive. This qualitative analysis is also under our
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preregistration, and the codebook and assignments are provided in
supplementary materials ( qualitative analysis).

8.1 Voting strategies (Tab. 1)
We find that 78% of participants use the information provided to
make their voting decisions in the experiments. As expected, a por-
tion of the participants always vote (13%), considered as “regular
voters” in the literature [51]; and 3% of the participants (usually
who support the “other candidate”) always abstain. In general, par-
ticipants vote based on win probabilities (34%), forecasted winners
(15%), or margin of victory (8%); some further consider state de-
tails (5%) and trends (1%). All suggest that the experiments prompt
political thinking and interpretation of the forecasts, showing good
construct validity. These also suggest what information was used
by participants, providing clues for designing a forecast website.

8.2 Choosing/trusting a website (Tab. 2)
Participants may choose a website to finish the experiments ef-
ficiently (4%) or based on personal interests (ranging from 1% to
15%). Mostly, accuracy (22%), understandability (19%), readability
(11%), preference (15%), and similar aspects capture the majority of
responses. They can be interpreted as engagement in the experi-
ments and a reflection of participants’ needs for election forecasts.
Design factors such as aesthetics (3%) also affect some participants’
choices. These results suggest that participant behavioral trust is a
result of both cognitive (e.g., forecast accuracy and visualization
clarity) and affective trust (e.g., aesthetics and benevolence) [48].
The results also verify the construct validity of this work, and shed
light on designing such an interface to convey presidential election
forecasts, which we will discuss in Sec. 10.

9 GENERAL DISCUSSION
9.1 Trust over time
We note that our trust results align with but are slightly different
from those Yang et al. reported for the 2022 U.S. midterm elec-
tions [113]. They suggest intervals engender the highest trust while
dotplot increases trust after the outcome is known. Differences in
study design (e.g., viewer environments and forecast distributions)
and measures may partly explain the discrepancies. However, the
significant difference is that the present work accumulates trust
changes over multiple election cycles, and both our results and
theirs similarly suggest that dotplot is more robust to maintaining
trust over time among the visualizations tested.

9.2 The null-ish effects of probability correction
and visual calibration

In designing the experiments, we had hoped that probability cor-
rection and/or calibration could dampen the impression that the
forecast was “wrong”. However, both techniques show small-to-
null or non-conclusive effects on average in our experiments. One
reason might be that the voting task and incentives only reward a
correct prediction, not considering that a “wrong” forecast could be
the same quality as a “correct” forecast. Probability correction was
slightly effective in improving people’s attitudinal trust, suggesting
that they indeed changed people’s subjective probability to some

extent. Calibration sometimes worsens people’s attitudinal trust,
perhaps reminding them of the “mistake”. From the results of our
current experiments, we would assume at least that these two tech-
niques do not strongly undermine trust. We speculate that calibra-
tion might be more effective when judging forecast quality, and may
display a non-linear relationship to the forecast quality. Examining
these effects requires a different experimental design that varies
forecast quality, which is beyond the scope of the present work.

9.3 Perception and action
It is notable that in our experiments, participants’ perceptions and
actions are not always the same, and signals in their actions, or say,
differences in their decisions [46, 69] are much stronger than those
in their attitudes. Perception has been a long-standing interest in
both visualization and political science. While perception provides
intricate results as mediators between causes and effects, decisions
and actions generate more impactful behavioral outcomes. Coming
back to the example at the beginning of this manuscript, we may
tell our friends that a weather forecaster is unreliable, but do we
choose a different forecaster or ignore the next rain forecast? We
may express certain views or opinions, but our actions often offer a
more genuine reflection of our beliefs and trust. In essence, it is not
merely about what we say or think, but more crucially, about what
we choose to do in response, and how visualizations and techniques
affect or help with such decisions.

9.4 Design for visualization in practice
We also aimed to address the difficulties of applying visualizations
in practice. We had to adapt previous work (e.g., [50, 77, 113, 114])
to suit them for the U.S. presidential elections. For example, to
apply subjective probability correction, a demonstrated technique,
we conducted new experiments, fitted new models, and iterated
several times to finally find a design that could be ethically applied
in practice.

Also, the two major U.S. political parties are polarized at the elite
level [59]. At the time of this research, individuals with higher levels
of education tended to lean towards the Democratic party [1], which
may partly explain the observed differences in trust. Furthermore,
the observed partisan differences could also be partly explained
by different individual traits (e.g., spatial memory [97]), working
memory capacities [33], visualization literacy [18], or trust in dif-
ferent sciences (e.g., liberals were more trusting of impact scientists
and conservatives more trusting of product scientists) [92, 95]. Or
that different parties choose to receive information from different
sources, impacting the familiarity of different party groups with
different types of visualizations. Media outlets like FiveThirtyEight
and The New York Times heavily use graphic presentations and
have more left-leaning viewers, while RealClearPolitics, mostly
relying on text and tables, has more right-leaning readers. This
gap between academic research and real-world applications un-
derscores the importance of iterative testing and refinement when
translating theoretical insights into practical solutions.

9.5 Limitations and generalization
Our findings primarily apply to U.S. presidential election forecasts,
as our experiments were designed specifically for this context. In

https://osf.io/923e7
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Table 1: Participants’ voting strategies(498 total responses)

Axis % Code Quote

Use the information provided

34% probability/odds I voted if their was a more than 50% chance of wining

19% generic answer I used the website data

15% forecasted winner Based on the statistics of who was projected to win

8% margin of victory Using certain charts to see who had a higher lead in votes

5% educational guess After looking at everything chose my gut feeling

5% state information I used the map with the states to gauge my choice

4% risk/payoff Balancing perceived risk and perceived reward

2% trustworthiness ... how trustworthy the site i picked was.

1% trend ... I tired to see if there was a trend.

... ...

Irrelevant to forecast

13% always vote I always voted. It’s my responsibility as a US citizen.

3% always abstain Since I was other, I abstained on all votes.

2% prior knowledge Was it typically a red state or blue state?

<1% randomly It was a random decision

... ... ...
Unable to code 2% - highest 1 out of 100 ratio

Table 2: What affected participants choosing/trusting a website (498 total responses)

Axis % Code Quote

More task-focused 

Less task-focused 

4% efficiency I tried to use the most efficient forecast website

4% helpfulness The one I used was more helpful

5% reliability Which one I felt was most reliable

22% accuracy I chose the one which seemed most accurate when I used it

19% understandability The one that I can understand better

11% readability The balls were easier to read

7% clarity Whichever presented the data most clearly.

15% preference I picked the one I liked

3% perception/intuition I chose the seemingly proficient one

3% visual method I like graphs

3% simplicity I generally used the first one with simple numbers.

3% aesthetics I liked the dots better most visually pleasing

2% presentation I liked the layout of one over the other

1% special interests ... because i could watch how people voted

<1% for fun I thought the first one was fun

<1% partisan bias The one that said Roberts would win

... ... ...
No strategy/randomly 6% - I randomly picked

Unable to code 6% - Number differences
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Figure 10: Non-preregistered exploratory analysis for behavioral trust based on partisanship and education levels.

countries with different electoral systems (e.g., multi-party pro-
portional voting systems without an electoral college), adapting
our two-party design system may be challenging. Some partisan
effects may also not generalize beyond the U.S. political landscape.
Also, it is important to note that controlled experiments, while
informative, offer only an approximation of the complex and evolv-
ing nature of U.S. elections and forecasts. Participants have much
to digest in a relatively short period, and our design did not fully
capture the gradual shifts in public trust influenced by dynamics in
political and media landscapes. Despite these limitations, our exper-
iments highlight the significant potential shifts in trust following
an election. Our results of different uncertain displays, participants’
desire for clarity and understandability, and the individual differ-
ences observed offer insights into maintaining trust over time for
communicating uncertainty in general.

10 RECOMMENDATION AND CONCLUSION
Beginning with simulating forecasts of a hypothetical U.S. presi-
dential election, we conduct three experiments to refine our recom-
mendations for uncertainty displays that aim at maintaining trust
in election forecasts. Our results suggest that text engenders the
highest trust over ten election cycles, especially among participants
who support Republicans and Independents; dotplot is most trusted
by those supporting Democrats, and in some cases, by participants
with advanced education.

Assuming a partisan-neutral design goal—
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Using our forecast model, we compute 30,000 equally likely election outcomes for what 
might happen on election day (November 7, 2028).

2028 Presidential Election Forecasts

We explain our methods here.

Davis wins 85 in 100 outcomes Roberts wins 14 in 100 outcomes
 and likely gets 230 to 385 electoral voters  and likely gets 153 to 308 electoral voters

If we use       to represent a possible outcome...

Out of 100 possible election outcomes

People tend to overlook un-
certainty. In response, we 
developed a version that 
compensates for this.

Our research suggests that 
this version should be suit-
able for most individuals. 
Please share your feedback.

Interested in a different vi-
sualization? We have a lively 
animated version that vivid-
ly depicts uncertainty.

Feedback Form
click to expand our 1-minute survey

continued...

1. We recommend a mixed layout that can engender the highest
trust among the majority of viewers. Start with text summaries;
for those viewers adept at interpreting visuals, invite them to the
visual—a quantile dotplot.

2. This mixed layout is substantially similar to FiveThirtyEight’s
presentation for their 2020 and 2022 forecasts [3, 8] but differs
from their 2016 presentation, which used text and a U.S. map [2].
Nonetheless, some individuals may prefer different designs, and
forecasters may want to test alternative designs, possibly integrat-
ing more options into the website interface.

3. Responsible forecasters may consider gauging their viewers’
trust level. While our approach involves a sequence of experiments,
in a real-world setting, the choice between display options can
be modeled as a multi-armed bandit problem [15]. Each display
would be an arm, and the optimal display to show could be de-
termined using Thompson sampling (e.g., [15, 34], see [42] for an
example in HCI). Forecasters may also embed a short survey to
obtain demographics and partisanship.

4. Our qualitative results highlight the need for forecast presen-
tations to prioritize understandability, readability, clarity, and ac-
curacy. The educational background of viewers may significantly
influence their trust and preferences. Forecasters might consider
simplifying the interface to cater to a broader audience. Addition-
ally, we balanced the two parties when analyzing voter turnout and
considered our turnout results to be specific to the current experi-
ments. Future studies might explore differential turnouts in more
realistic settings (e.g., a field experiment [58]); for instance, certain
displays might unintentionally motivate one party over another to
vote. Finally, we also pose unresolved questions regarding proba-
bility correction, visual calibration, and state-level presentations.
When constructing the interface, we found a contrast between
before and after election day helpful for checking data (e.g., the
snake chart). While our current results do not provide substantial
evidence for or against these attempts, we hope our insights will
spur future research, especially for those being planned for the 2024
U.S. presidential election.
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