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Data-driven predictions are often perceived as inaccurate in hindsight due to behavioral responses [51]. We consider the role of
interface design choices on how individuals respond to predictions presented on a shared information display in a strategic setting.
We introduce a novel staged experimental design to investigate the effects of interface design features, such as the visualization of
prediction uncertainty and prediction error, within a repeated congestion game. In this game, participants assume the role of taxi
drivers and use a shared information display to decide where to search for their next ride. Our experimental design endows agents
with varying level-𝑘 depths of thinking [8], allowing some agents to possess greater sophistication in anticipating the decisions of
others using the same information display. Through several large pre-registered experiments, we identify trade-offs between displays
that are optimal for individual decisions and those that best serve the collective social welfare of the system. Additionally, we note that
the influence of display characteristics varies based on an agent’s strategic sophistication. We observe that design choices promoting
individual-level decision-making can lead to suboptimal system outcomes, as manifested by a lower realization of potential social
welfare. However, this decline in social welfare is offset by a slight reduction in distribution shift, narrowing the gap between predicted
and realized system outcomes. This may enhance the perceived reliability and trustworthiness of the information display post hoc. Our
findings pave the way for new research questions concerning the design of effective prediction interfaces in strategic environments.
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1 INTRODUCTION

Technological affordances enable service providers to leverage historical data and offer users predictions from statistical
models to assist decision-making [22, 40]. For example, ad marketplace owners present marketers with predicted
outcomes in terms of clicks or ad placement by bid amount. Rideshare and taxi drivers, not to mention members of the
public attempting to travel from point A to point B, consult predicted demand surges or traffic congestion from their
App or Google Map to decide where to search for a ride or which route to take.

These everyday decision scenarios can be viewed as strategic settings of non-cooperative game theory, in which
multiple agents use a shared information display provided by a principal to make decisions and lead to individual payoffs
that depend on the agents’ own choice and the choices of other agents.
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In principle, having access to predictions from information displays can benefit agents by providing them with
exogenous, payoff-relevant information. However, in practice, the full benefit of information access may not always be
realized. Consider a display predicting a taxi driver’s chance of getting a pickup based on the number of other taxis on
the road and historical data about where drivers tend to go. Such information displays could guide a driver’s decision
about where to head next. Yet, taxi drivers attempting to best respond to such a display might be taken aback when the
displayed predictions are not realized. The problem lies in the fact that decision-making based on a shared information
display becomes more challenging to use in multi-agent strategic settings: the system outcome formed by combining
individual-level decisions is subject to distribution shift [26], where the predicted outcome shown on the display is
inaccurate in hindsight because of agents’ strategic responses to the displayed predictions.

A principal (i.e., service provider like a taxi company) faces limited options when confronted with persistent
distribution shift resulting from behavioral reactions. Periodically retraining the model is often used in practice. Recent
works in machine learning research [46, 51] propose exploring fixed-point solutions within the model retraining
space to account for human behavioral responses upon viewing predictions. Drawing inspiration from information
design [6], a game-theoretical approach involves selectively providing agents with payoff-relevant information to
persuade behavioral change. However, the aforementioned solutions have drawbacks, as they can be costly (e.g., model
retraining) or rely on stringent theoretical assumptions. We investigate an alternative approach through the lens of
interface design and explore the design factors of shared information displays by examining how they can influence the
individual-level decision-making and the aggregate-level system outcomes. Additionally, we explore the stability of
these dynamics during repeated strategic decision-making over time.

We contribute the design and results of a large pre-registered online staged experiment using a repeated three-action
congestion game based on the search-pickup dynamics of 2.1 million real-world taxi trips. In our experiment, we act as
the principal, or the taxi company, while participants play as agents who are taxi drivers. As the principal, the taxi
company’s objective is to help drivers make good search decisions, ultimately leading to more pickups and improved
overall efficiency. To accomplish this objective, the taxi company uses knowledge of how many drivers are on the road
and historical data on supply and demand to train a statistical model and present the deduced flows and predicted
pickup probabilities of different districts of a city through a visual interface accessible to all drivers.

We postulate that two design factors of a shared information display may be particularly influential in shaping
agents’ decision processes. First, we manipulate whether uncertainty in the predicted outcomes is visualized directly, as
a salient depiction of uncertainty for predictions may encourage agents to fixate less on a single best response. Second,
we manipulate whether realized prediction error—the difference between the predicted outcome and what actually
happened—is visualized, as seeing how predictions tend to be wrong may help some agents make better use of an
"inaccurate" information display. To study how these factors affect the strategic decision-making of agents with realistic
variation in their levels of sophistication, we use a staged experimental design, in which we endow each agent with a
level-𝑘 depth of thinking according to a Poisson Cognitive Hierarchy Model (Poisson-CH model) [8]. The Poisson-CH
model posits that behavioral responses in a strategic setting can be explained by assuming a population comprised
of agents who exhibit varying levels of sophistication in how they anticipate other agents’ responses. For example,
a level-0 agent behaves non-strategically; a level-1 agent attempts to best respond to a population of only level-0s; a
level-2 agent attempts to best respond to a fixed mixture over level-0s and level-1s, etc.

Our results shed light on the interplay of design elements with strategic outcomes and underscore the challenges of
designing shared information displays tailored for agents with varying levels of strategic sophistication. We discover
that incorporating post hoc decision feedback through visualizing realized prediction error can help more strategically
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sophisticated agents (i.e., level-2s) make more informed decisions. When decisions are combined to construct the system
outcome according to the Poisson distribution used to define the frequency of all levels, design manipulations that can
improve individual-level decisions can lead to decreasing social welfare relative to the system optimal over repeated
decisions. Hence, desirable outcomes at the system level can be opposed to those at the individual level. At the same
time, the decrease in social welfare is accompanied by a slight reduction in distribution shift, narrowing the gap between
the predicted outcome and the realized system outcome, and hence improving perceived reliability and trustworthiness
of the information display post hoc. We find that these results are robust across two close replications of our experiment,
in which we varied the order of decision scenarios and the level distribution of strategic sophistication. We conclude by
discussing how our work motivates new research questions around how communicating prediction uncertainty and
error affects trust and reliance on shared information displays in strategic environments.

2 RELATEDWORK

2.1 Information Design in Congestion Games

We study strategic decision-making in congestion games, which represent a broad class of non-cooperative games. Each
action of the game represents a congestible good (e.g., local demand or traffic bandwidth) and is associated with a cost
function, which incurs cost that increases with the number or fraction of agents who chose the same action [54, 55].
In our experiment, the principal’s provision and manipulation of displayed information resembles the problem of
information design in Economics, which studies how a principal can selectively provide payoff-relevant information
to influence agents’ behavior so as to better achieve the principal’s objectives [6]. Previous work by Das et al. [15]
shows that information design can mitigate congestion and improve social welfare in a congestion game. In contrast
to selectively releasing information to influence decision-making, our work considers a scenario in which a principal
is committed to providing all agents equal access to a shared information display but faces the choice of whether
to present agents with prediction uncertainty or post hoc decision feedback on realized prediction error. Our work
complements information design in economics by evaluating how the provision of prediction uncertainty and error
impact both individual-level decision-making and aggregate-level system outcome in repeated decision-making.

2.2 Strategic Sophistication in Game Theory

Standard practice in game theory assumes that agents are fully rational and capable of error-free calculations using
payoff-relevant information. However, behavioral economists view agents’ utility maximization problem through
the lens of bounded rationality [60], in which agents, typically constrained by limitation of both knowledge and
computational capacity, tend to satisfice and adapt during decision-making [34, 58, 59]. This perspective has led to the
development of several behavioral models, such as Cognitive Hierarchy Models [8], Prospect Theory [35], and Quantal
Response Equilibrium [45], that aim to explain and model the underlying mechanism that dictates behavioral agents’
decision-making. Our work adopts a Poisson-based Cognitive Hierarchy Model, which has been extensively studied
by empirical game theorists (e.g., [17, 20, 62]), by endowing strategic sophistication to agents in a congestion game
through a level-𝑘 framework. The Poisson-CH model defines the frequency distribution of agents’ levels by a Poisson
distribution. All agents within the level-𝑘 framework are considered to be myopic; they assume they are the most
sophisticated agents in action and that all other competing agents are distributed according to a normalized Poisson for
levels between 0 and 𝑘 − 1. We use the level-𝑘 framework to understand how interface design features can affect agents
differently depending on their levels of strategic sophistication.

3



CSCW ’24, November 9–13, 2024, San José, Costa Rica Zhang, et al.

2.3 Information Displays for Strategic Decision-making

Research on uncertainty visualization tackles questions such as how to incentivize uncertainty communication [30],
how to depict uncertainty information (e.g., [13, 19, 37]), and the challenges of evaluating uncertainty displays even
for individual decision-making [31]. However, design goals for data and uncertainty visualization have traditionally
prioritized individual outcomes, aiming tomaximize perception or individual decision quality. Designing interfaces solely
to achieve these objectives may not necessarily align with aggregate-level desiderata like greater efficiency or social
welfare. Our work tackles novel questions related to how visualizing uncertainty can impact strategic decision-making.

Our work is closely related to Kayongo et al. [38] who propose the concept of visualization equilibrium. A visualization
is in equilibrium if the system outcome observed from agents’ decision-making mimics or closely approximates the
distribution shown in the display. By studying initial play (i.e., decisions made with no feedback) in a two-action
congestion game, they demonstrated how an outcome that a principle might desire for the system, such as a Nash
Equilibrium, cannot be achieved by visualizing that outcome, but one can estimate an equilibrium by finding a displayed
prediction that matches the realized outcome. Hence, their experiment differs from ours in two important ways: (1) the
predictions that the principal provides in their set-up are not constrained by any exogenous information (they can be
entirely fictitious), whereas we study a setting in which the principal’s predictions are more realistically constrained
by real-world taxi behaviors, and (2) they study initial play where agents do not observe any information about the
realized outcome (either their choice or the aggregate system outcome) after using a display to make a decision.

Kayongo et al. [38] also proposes a hypothesis on the impact of visualizing prediction uncertainty on agents’ ability
to anticipate other agents’ actions. They suggested that using a display that can make prediction uncertainty more
salient, such as through animated hypothetical outcomes [32], may pose challenges for agents in predicting how
others will react to the same display. While they provide weak evidence to support this hypothesis, our study aims to
further investigate its validity through pre-registered experiments. From a qualitative analysis of participants’ reported
strategies, they find reports that suggest agents’ decision-making behavior might be characterized by varying levels of
strategic sophistication when it comes to anticipating other agents’ responses, though this analysis is speculative, as
they did not attempt to measure or endow strategic sophistication in their experiment. In contrast, we explicitly endow
different levels of strategic belief according to a Poisson-CH model to understand design factors by level and vary the
distribution over levels to check the robustness of our results.

3 ONLINE EXPERIMENTS

3.1 Overview

We conduct a large pre-registered1 between-subjects repeated measures experiment on Prolific and two robustness
checks in which we replicate the main experiment but change a single assumption. We study a three-action congestion
game modeled after real-world situations that involve selecting between congestible goods [55], in which agents (i.e.,
participants) act as taxi drivers and are asked to (1) anticipate other participants’ actions and (2) decide where to
search for their next ride from three districts using a shared information display. Participants can use the display in
this situation to help them maximize their payoffs—or chance of getting a pickup—by accounting for the displayed
predictions in their decision processes. However, since all participants can access the same information display, whether
or not a participant’s decision can result in a pickup depends on the decisions of other participants. When more
participants choose to search in the same district, the predicted chance of getting a pickup in that district is lower

1Pre-registration: https://aspredicted.org/pp8s8.pdf
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on average. Because agents who use information displays in strategic settings such as congestion games are often
long-lived, we observe learning from repeated plays over 15 trials.

The critical component of our congestion game is access to a counterfactual model that can compute realistic
payoffs for players after decision-making. To inject realism into our setting and to evaluate decisions under exogenous
predictions that are not fabricated, we analyzed the search-pickup dynamics of 2.1 million Chicago taxi trips and trained
a counterfactual model that has a functional form of 𝑝𝑖𝑐𝑘𝑢𝑝𝑠 = 𝑓 (𝑓 𝑙𝑜𝑤). The model is designed to predict 9 AM taxi
pickups (i.e., the designated prediction timestamp) in three Chicago Community Areas, corresponding to each action
(i.e., district) of the game, given a discrete flow distribution of drivers going to search over the three districts. We use
this model to (1) create predictions modeled after taxi search flows and (2) evaluate participants’ decisions.

Decision-making in strategic settings such as the one we study has been found to be well described by assuming that
players can vary in how sophisticated they are when anticipating other players’ actions [8]. The shared information
display we define embodies the assumption that drivers will act non-strategically, relying on their prior driving
experiences without access to the display. We define these drivers as level-0s (L0s) according to the Poisson-CH model [8],
and simulate the behaviors of these drivers in each decision scenario based on their past search preferences using the
taxi data (see Appendix A.3).

We endow our study participants with either level-1 (L1) or level-2 (L2) depth of thinking according to a Poisson
distribution that characterizes the level frequency over the participant population. Participants who are endowed with
L1 belief assume all other participants are L0s, and therefore the displayed prediction closely resembles the level-specific
outcome against which they will be scored. L2 participants who believe the population is composed of a fixed mixture of
L0s and L1s are expected to make their decisions by combining the information about L0s from the information display
with their beliefs about how L1s will attempt to best respond to that display. L2s are scored against a level-specific
outcome that matches their beliefs, simulated by sampling L0s’ decisions from the historical taxi data and L1s’ decisions
from L1 participants’ responses according to L2’s endowed belief that there is fixed mixture of L0s and L1s. Beyond
allowing us to study interface effects over realistic variation in participants’ levels of strategic sophistication, level
endowment enables us to observe how the influence of interface design factors may depend on the extent to which the
displayed prediction is aligned with the distribution of behavior that produces the participants’ payoffs.

In our manuscript, we employ several specialized terms to delineate our setting and present our findings. For clarity
and ease of reference, a glossary of these terms is provided in Table 7 of Appendix C.

3.1.1 Experimental Manipulations. Similar to Kayongo et al. [38], we vary whether the prediction uncertainty is
visualized directly by showing participants either static point estimates or animated hypothetical outcomes plots
(HOPs) [32]. HOPs are a frequency-based uncertainty visualization technique that presents a finite set of samples from
a distribution, or predictions in our context, through a sequence of animated frames. Previous visualization studies
suggest that HOPs can yield more accurate judgments than error bars [28, 32, 36] or other static methods such as
static ensembles and violin plots [32]. We expect that visualizing static point estimates will lead to less variance in
decisions from L1s and L2s, whereas visualizing uncertainty more saliently via HOPs will increase variance in decisions
by helping participants recognize that the L0 decisions are not deterministic.

In each trial, participants are provided with post hoc feedback after decision-making. Bandit feedback only informs
the participants if they received a pickup based on their decision. Full feedback informs the participants if they received
a pickup based on their decision and visualizes the realized prediction error, or the difference between the predictions
they saw prior to making their decisions and the level-specific outcome used to evaluate their decisions. Full feedback also
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visualizes the participant’s anticipation error, or the difference between the participant’s anticipation of the level-specific
outcome and that is realized. By varying the feedback structures, we are primarily interested in assessing whether
visualizing realized prediction error can help participants anticipate the prediction error as a result of strategic behavior.

Table 1. Treatment Conditions

Interface Uncertainty Display Feedback Structure

1 Static Bandit
2 Static Full
3 NetHOPs Bandit
4 NetHOPs Full

We vary the uncertainty display and the feedback structure between subjects, resulting in four conditions outlined
in Table 1. For each condition, we evaluate participants’s performance using two individual-level responses: a binary
indicator of whether the participant best responded to the display assuming their level-specific beliefs are correct, and
a quantitative measure of their anticipation error in anticipating other participants’ decisions. Additionally, we also
simulate the more realistic system outcome for each decision scenario, calculated by assuming that the population
consists of a fixed mixture of L0s, L1s, and L2s, governed by the Poisson distribution used to define the frequency
of all levels. We calculate the achieved social welfare, representing the fraction of the total possible social welfare for
that decision scenario (i.e., trial) that was achieved, and the distribution shift, representing the difference between the
displayed prediction and the system outcome. Figure 1 demonstrates the features of our experiment design, describing
how a distribution over all participants’ levels of sophistication gives rise to a data collection arm where participants’
level-specific feedback is generated given the endowed level-𝑘 beliefs and how we combine decisions to aggregate system
outcomes. We describe each step of our experiment with references to Appendix and supplementary material.

3.2 Methods

3.2.1 Endowing Levels of Strategic Sophistication. A core aspect of our experimental design is the integration of the
Poisson-CH model. In our main experiment, we use a Poisson(𝜆) where 𝜆 = 1.5 to define the frequency of levels in
decision scenarios (i.e., trials) consisting of 𝑁 participants, based on the findings of Camerer et al. [8] who analyzed the
interplay of level distributions and results of nearly 100 games. Prior work [8, 11, 63] suggests that human players tend
to perform one to two depths of thinking in strategic games, so we truncate the Poisson(1.5) and re-standardize its level
distribution to a maximum level-𝑘 where 𝑘 < 3. Truncating levels in the context of a Poisson-CH model is a common
practice within the level-𝑘 framework (e.g., [53, 65, 66]). The rationale for excluding levels beyond 𝑘 = 2 is based on the
characteristics of the Poisson distribution, which determine the population’s level frequency. As levels increase beyond
a certain threshold, the probability mass associated with higher levels diminishes significantly, thus, as 𝑘 increases,
fewer agents exhibit behaviors associated with levels 𝑘 − 1. When 𝑘 = 4 and beyond, the behaviors of levels 𝑘 − 1 and 𝑘
become indistinguishable, leading to behavioral convergence. This truncation strategy also aligns with the nature of
the Poisson-CH model and ensures that the model remains practical and interpretable within the given framework.

We demonstrate an example of how we use a Poisson distribution to define the level composition in Table 2. Given a
Poisson(1.5) used to define the level distribution of 𝑁 drivers, we first draw a sample of size 𝑁 (i.e., counts in row 1 and
percentages in row 2) and then normalize the sampled L0-L2s counts to create a 30-40-30 split (i.e., row 3) after rounding
the proportions to the nearest tenth to simplify participants’ reasoning. This pseudo-Poisson distribution including
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Fig. 1. Diagram of key features of our experimental design. (1) We define a pseudo-Poisson distribution using a Poisson(1.5) , which
includes L0s-L2s. (2) We endow level-specific beliefs by normalizing the pseudo-Poisson distribution for L1s and L2s who are our
study participants. (3) We conduct a staged data collection: in each trial, participants use the information display (shown in Figure 3)
to make decisions and then review level-specific feedback (shown in Figure 4). L1s and L2s complete all trials in the same order, but
L1s complete the study before L2s, so that L1s’ responses can be used with that of L0s (i.e., the taxi data) to construct level-specific
feedback that aligns with L2s’ endowed belief. (4) We calculate the system outcome by combining decisions from L0s (i.e., the taxi
data) and L1-L2s (i.e., the collected responses) according to the mixture we used to define the level distribution (step 1). (5) We conduct
two replications of the experiment by varying trial order and re-define the level mixture of L0s-L2s using a Poisson(3) .

L0-L2 drivers represents the “true” population mixture over levels, which is exclusive knowledge of the principal used
to aggregate the system outcomes by combining decisions using data and the collected responses from our participants.

Following the level definitions of the Poisson-CH model, our study participants are utility-maximizing but myopic
agents whose decision-making is governed by the depth of thinking we endow. As illustrated in Figure 1, the non-
strategic L0 players in our population are real drivers queried from the taxi data: players who made decisions based on
their prior driving experience without using the shared information displays. L1 and L2 players are study participants for
whom we endow levels on all study screens that present shared information displays and elicit responses. Specifically,
L1 participants are told:

All other drivers will NOT consult the display and do NOT know the exact number of competitors in the region.

They will drive according to their past driving experiences, which the taxi company has used to create the

information display.

We inform L2s that the other drivers are a mix of L0s and L1s, derived by re-normalizing the pseudo-Poisson
distribution used to define all levels, which creates a 40-60 split of L0-L1. Specifically, L2 participants are told:

[XX]% ([level-0 count]) of drivers do NOT use the display and do NOT know the exact number of competitors

in the region. These uninformed drivers will make decisions according to their past driving experience.
7
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[YY]% ([level-1 count]) of drivers consult the same display as you do, but each of them falsely assumes they

are the only person using the display.

We evaluate individual-level decisions of participants using level-specific outcomes that align with the endowed belief,
which we elaborate on in Section 3.2.4.

Table 2. We use a Poisson(1.5) to define all participants’ level composition for trials of our main experiment using the minimum
total drivers of the 15 trial weekdays, which is 598. The Poisson(1.5) generates a frequency distribution that includes 149 (25%) L0s,
184 (30%) L1s, and 139 (23%) L2s. Notice that this proportion does not sum to 100% because there are higher levels in the sample,
which we omit. We then use the counts of L0-L2s (row 1) to re-normalize the distribution and round to the nearest tenth (row 3).
Based on this 30-40-30 split from the pseudo-Poisson, the true level composition for this trial consisting of 598 participants is 180
(30%), 240 (40%), and 180 (30%) L0s, L1s, and L2s (row 4) after rounding again to the nearest tenth to simplify level endowment.

Level-𝑘 0 1 2

#Obs. 149 184 139
Percent 25% 30% 23%
Rescaled 30% 40% 30%

True Comp. 180 240 180

Recruit 50% 0 120 90

3.2.2 Tasks and Rewards. We create the decision scenarios that constitute the trials of our experiment by sampling
15 unique but homogeneous weekdays from the taxi data used to train the counterfactual model. Participants in the
experiment must repeatedly decide "where should I find my next pickup at 9 AM?" based on information displays that
render both the deduced search flows and the predicted pickup probabilities, assuming all drivers act according to their
past driving experiences. Although our decision scenarios have the same time setting, the search-pickup dynamics
presented in the information displays vary, because each reflects decisions of a unique set of 𝑁 drivers on that specific
historical weekday (see Appendix A.2). We keep the time of the decision scenarios fixed at 9 AM on weekdays so that
participants in the experiment are in a position to learn from repeated decisions, similar to how a taxi or rideshare
driver might form a mental model of what dynamics to expect during a given driving time frame.

In each trial, we elicit participants’ decisions and their corresponding anticipation of other participants’ actions.
Participants are asked to (1) decide where to search by selecting a district and (2) anticipate what other drivers will
do by entering the number of drivers that they think will search in each district according to the endowed level. As
shown by the elicitation interface in Figure 2, participants select from multiple choice options and use a dynamic input
form based on previous work on eliciting Dirichlet distributions [9, 50] to provide anticipated flows. Each participant
receives a base pay of $2 and a bonus of $0.2 for each trial in which their selected strategy resulted in a pickup.

3.2.3 Generating Shared Information Displays. For each trial, the information display presents flows going into the
three districts by deducing decisions using the search preferences of real taxi drivers (i.e., L0s) who are involved in the
decision scenario. These deduced flows are then used to predict pickup probabilities with the counterfactual model. As
decisions based on real drivers’ search preferences are subject to uncertainty, we use simulations to create a distribution
of hypothetical outcomes. Each outcome is used as a frame for the animated display, and they are aggregated to produce
the static display.

8
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Fig. 2. The interface used to collect participants’ decisions. When providing anticipation, after a participant provides guesses for two
districts, the interface imputes the flow of the last district to ensure proper summation to the total number of drivers of the decision
scenario. The interface dynamically updates both the current flow sum and the amount of flow to be allocated or removed if the
elicited flows does not sum to the correct total.

Simulated Flows and Predicted Payoffs. We first identify a set of 𝑁 candidate drivers involved in a decision scenario
who would be able to search our districts at 9 AM from their current location (see trace dyad in Appendix A.3). We

then consult each candidate driver’s conditional search prior, which is encapsulated in the driver’s search dyad 𝑉
𝑁−−→ 𝑆 ,

where 𝑉 is the drop-off district of the previous trip, 𝑆 is the pickup district of the consecutive trip, and the weight 𝑁 is
the number of occurrences of the pickup pattern (see search dyad in Appendix A.3). Because a search dyad summarizes
a driver’s search preferences from the current location based on her pickup history over the past ten days, we deduce a
driver’s search decision by sampling 𝑠 using 𝑛 as weight. We combine sampled decisions to deduce the flow of each
district and address uncertainty by replicating this procedure 1,000 times, so each district has a distribution of simulated
hypothetical outcomes including the deduced flow and the resulting pickup probabilities predicted by the counterfactual
model. We provide detailed descriptions of our counterfactual model in Appendix A.4.

Visualizing Predictions as Networks. The action set (i.e., possible choices) of our congestion game contain three
districts forming a traffic network describing flows. We present these predictions in the form of node-link diagrams
of an egocentric network, which is a common representation of flow data. Our design choice is governed by the fact
that the information display communicates two important forms of payoff-relevant information to participants: (1)
deduced flows and (2) predicted pickup probabilities. Nodes representing districts are labeled with district names2 with
the corresponding predicted pickup probability as text above the node. This value is also encoded as node size and
hue. Links connecting the ego and nodes of districts (i.e., alters) represent deduced flows, where the amount of flow is
encoded by edge width. We position the nodes on the display to resemble an outgoing star [43] using a force-directed
layout algorithm [18].

We randomly vary the display types between participants. As shown in Figure 3, some participants are assigned
Network Hypothetical Outcome Plots (NetHOPs) [68], which depict prediction uncertainty more saliently by showing
simulated network realizations. Following suggestions from Zhang et al. [68] on how to tune NetHOPs’ visualization
parameters to effectively support node-attribute and edge-attribute tasks, we render 1,000 hypothetical outcomes in a

2Each district of the action set represents one of three Chicago Community Areas. North Loop as "North District", West Loop as "West District", the Loop
as "East District". See more detailed description in Appendix A.1.
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Fig. 3. Examples of the information displays used for decision scenarios varied by uncertainty quantification. Right: NetHOPs,
which render 1,000 hypothetical outcomes, are presented in a looping animation with an animation speed of 0.2 seconds per frame
using a fixed force-directed layout (i.e. anchoring 𝛼 = 1). This approach follows suggestions from Zhang et al. [68] that best support
node-attribute and link-attribute tasks. Left: Point estimates where the rendered payoffs are the weighted averages of our simulations.

looping animation with an animation speed of 0.2 seconds per frame using a fixed layout (i.e. anchoring 𝛼 = 1). The
remaining participants are assigned a static node-link diagram of point estimates, in which the deduced flows and
predicted pickup probabilities visualized are the weighted averages over the 1,000 hypothetical outcomes.

3.2.4 Evaluating Decisions and Generating Level-Specific Outcome.

Staged Experiment Design. Our desire to incorporate both realism and control into the strategic setting, especially
by introducing variation in players’ levels of strategic sophistication, presents a challenge: to evaluate decisions by
higher-level participants (i.e., L2s), we need access to decisions from the lower levels. While this is trivial for L0s, whose
decisions are drawn from the taxi data as shown in Figure 1, to score and give feedback to L2 decisions, we need access
to L1 decisions. Consequently, we designed a staged data collection procedure in which L1 participants first complete
the series of trials, and are scored according to L1’s endowed beliefs, then L2s complete the same series of trials, but are
scored according to L2’s endowed beliefs.

There are several implications of this experimental design choice. Because the post hoc decision feedback participants
receive is level-specific, we can study individual-level performance under the assumption that players’ beliefs are fixed
and contrast the impact of different interface manipulations on players of different levels of sophistication. By combining
L0, L1 and L2 according to the Poisson distribution used to define the frequency of all levels, we can also calculate
aggregate-level system outcomes under the assumption that players are myopic (i.e., unaware of other players at the
same level as them and above). Note that this requires a fixed trial order where all agents experience the scenarios in
the same order, so that the aggregate results are not confounded by differences stemming from prior decision-making.
The primary limitation of the staged design is that we cannot know to what extent receiving decision feedback based
on the "true" population mixture including players of all levels would change the patterns of behavior that we observed.

Computing Level-specific Feedback. We generate level-specific outcomes that align with participants’ endowed
levels to score their decisions and provide feedback in each decision scenario. Recall that an L1 player believes herself to
be the most sophisticated player and assumes that her competitors are all L0s. Therefore, L1s’ decisions are evaluated by
a level-specific outcome created by combining the decisions of L0s, which is exactly the distribution of search flow and
the corresponding pickup probabilities we used to fit the counterfactual model. Similarly, since an L2 player believes that

10



Designing Shared Information Displays for Agents of Varying Strategic Sophistication CSCW ’24, November 9–13, 2024, San José, Costa Rica

she is playing against a combination of L0s and L1s, we generate L2s’ level-specific outcome by sampling the decisions
of L0s (from the taxi data) and L1s according to the proportion of L0s and L1s endowed to L2s (see Section 3.2.1), which
is possible as a result of the staged data collection. To reduce sampling error, we repeat the sampling procedure 1,000
times and summarize the samples by computing the expected flow distribution. We use this distribution to predict each
district’s pickup probabilities by the counterfactual model and to evaluate L2’s decisions.

Fig. 4. Example of bandit and full feedback provided after a participant submits their responses. Both bandit and full feedback show
the decision result and the current compensation for the study (i.e., highlighted in the red rectangle), which is also the only feedback
information provided to participants by the bandit feedback. Participants in the full feedback condition will see three additional
visualizations reminding them of the prediction they used (left), the level-specific outcome (middle), and their anticipation submitted
with decision (right).

Feedback Structure. We evaluate two types of decision feedback: bandit and full. In the full feedback conditions,
participants are presented with the level-specific outcome along with a reproduction of the predictions and their
anticipated flows, as illustrated in Figure 4. To enhance the visibility of realized prediction and anticipation errors, we
use blue color to denote over-estimation and red color to denote under-estimation in the labels of the feedback displays
and the accompanying summarizing text. In the bandit feedback condition, participants receive a subset of the feedback
information provided in the full feedback condition, focusing solely on the decision results, as highlighted in Figure 4.

3.2.5 Experiment Procedure. Participants are directed to our study interface3 by Prolific. They first see a welcome page
with the estimated study completion time and compensation. Participants are instructed to complete the study in a
single session using Google Chrome on a large screen device. If a participant agrees to the terms by clicking a button,
they are randomly assigned to one of the four treatment conditions shown in Table 1.

Upon enrollment, participants must review four detailed instruction pages. These instructions provide a comprehen-
sive overview of the study, encompassing the experimental setting and specific guidance on using the assigned display
and feedback for decision-making. After reviewing the second instruction page, participants encounter a multiple-choice
question designed to assess their understanding of the display. Participants in the static display condition are prompted
to select the district with a specified pickup probability. In contrast, those in the NetHOPs condition must estimate
3Study interface: https://strategic-performativity.com
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the pickup probability of that district based on the animation. To proceed, participants need to answer the question
correctly, though they have multiple attempts available.

On the third and fourth instruction pages, participants engage in a practice trial. The task page of this practice trial
includes a unique instructional question, prompting them to select the district they believe most drivers will search.
Participants then proceed to the feedback page, where they receive an explanation of the reward mechanism and learn
how their ongoing compensation will be updated and displayed throughout each trial. After completing all 15 trials,
participants have the option to describe how they utilized the information display.

3.2.6 Robustness Checks. To ensure the robustness of our findings, we conduct two additional replications of our
experiment. These replications assess variation in two specific assumptions, trial order and level composition.

(1) Robust Trial Order: Participants complete trials in a different but fixed order than that used in the main
experiment (see columns 3 and 5 of Figure 1). This approach allows us to evaluate to what extent our results
might be influenced by the specific trial order.

(2) Robust Level Composition: Participants complete trials in the same order as in the main experiment. However,
we alter the level composition by using Poisson(3) instead of Poisson(1.5) (refer to column 4 of Figure 1). This
change results in an increased proportion of more strategically sophisticated L2s within decision scenarios
consisting of 𝑁 drivers. By following the same procedure outlined in Section 3.2.1, we modify the proportion
endowed to L2s from a 40-60 split for L0-L1 (as in the main experiment) to a 20-80 split for L0-L1. This adjustment
enables us to explore how potential variations in results might manifest when the level distribution leans more
towards higher strategic sophistication.

3.2.7 Participants. We recruited participants from Prolific using a gender-balanced sample and two pre-screening
criteria: fluency in English and being based in the US. Given our staged experimental design and the need to collect
data for two additional rounds of robustness checks (i.e., a total of six data collection arms), we excluded participants
who had previously taken part in the study, ensuring that each collection arm contained unique Prolific users.

Defining Level Composition. We define the distribution over levels for our decision scenarios using a Poisson(𝜆)
where 𝜆 = 1.5 for the main experiment and Robust Trial Order experiment, and a 𝜆 = 3 for the Robust Composition
experiment. As described in Section 3.2.1 and demonstrated in Table 2, we adopt a breakdown of 30% L0s, 40% L1s, and
30% L2s for the main experiment and Robust Trial Order experiment, and a breakdown of 15% L0s, 35% L1s, and 50%
L2s for the Robust Composition experiment, following the same procedure.

Number of participants to recruit. Given that each decision scenario in our experiment involves hundreds of
drivers, we choose to recruit 50% of L1s and L2s based on the true composition (see row 5 of Table 2) for each between-
subject treatment of the main experiment (assuming the minimum number of drivers for a scenario is 598), and 25% for
the two robustness checks. We then re-sample decisions with replacement from these 50% and 25% samples to create
the level-specific outcomes shown to L2s and the system outcomes, which are generated by combining the decisions
of all three levels according to the level distribution defined for each experiment. Table 3 presents the number of
participants we recruited by levels and by collection arm. Note that the total number of participants we recruit for the
robust composition check is 300. This is because this collection arm follows the same trial order as the main experiment,
allowing us to use L1 responses from the main experiment without additional recruiting.
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Table 3. The number of participants recruited for each collection arm by size. The parentheses in each table cell include the number
of recruited participants for each of four treatment conditions per level (column) and per collection arm (row).

Collection Level-1 Level-2 Total

Main Experiment 480
(4 × 120)

360
(4 × 90) 840

Robust Trial Order 240
(4 × 60)

180
(4 × 45) 420

Robust Composition 212
(4 × 53)

300
(4 × 75) 300

Note: The 212 L1s from the Robust Composition check are
sampled from those of the main experiment because L1 tasks
are identical for these two collection arms.

3.2.8 Analysis Method. We pre-registered an analysis plan, which includes four dependent variables: two at the
aggregate-level and two at the individual-level.

Aggregate-level Dependent Variables. In essence, a principal cares about aggregate-level outcomes like the efficiency
of the system in terms of matching drivers and riders or the magnitude of the difference between what is realized and
what is predicted. We calculate aggregate-level outcome variables based on the system outcomes, created by combining
L0’s decisions from the taxi data and L1’s and L2’s decisions collected from participants in each trial according to
the pseudo-Poisson distribution used to determine the frequency distribution across all levels. Since the number of
participants we recruit per level per trial is fewer than what is defined by the decision scenario, we sample participants’
decisions with replacement to achieve the correct number needed for each decision scenario. To mitigate the effect
of sampling error, we generated system outcomes 500 times per trial, forming a distribution for each aggregate-level
outcome variable. It is important to note that these system outcomes are different from the level-specific outcomes

used to evaluate participants’ individual-level decisions, and can only be calculated after both L1 and L2 stages of data
collection are complete.

Given these per-trial outcome distributions, we define the social welfare ratio for each trial as the proportion of
social welfare achieved (i.e., total realized pickups) out of the total possible social welfare obtainable (i.e., maximum
pickups). We use a non-linear optimization via the augmented Lagrange method [67] that employs random initialization
and multiple restarts [29] to identify the optimal flow distribution for each trial. We define an objective function that
takes an input flow vector of length three and outputs a numerical value representing the number of drivers who failed
to get pickups given constraints that ensure the input flow vector sums to the total number of drivers in a decision
scenario and that the minimum and maximum flow to a district does not exceed the bounds given by the historical data.
Full details are given in the Supplemental Material.

We calculate the distribution shift for each trial as the Earth Mover’s Distance (EMD) [56, 57] between the
distribution of deduced search flows shown to participants on the display and the flows simulated from the system
outcomes. EMD quantifies the discrepancy between the displayed flows and the flows of the system outcome by
the minimum amount of "work" needed to match the two flow distributions. To compute EMD, we map both flow
distributions into a 2D grid and find the minimum amount of Euclidean distance required to shift and align the flow
distributions, which is then standardized by the total number of drivers in the decision scenario. We describe the cost
function used to optimize the EMD computation in our Supplemental Materials.
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Individual-level Dependent Variables. We define two individual-level response variables to help us gain insights
into how participants endowed with varying levels of strategic sophistication are affected by our experimental ma-
nipulations. At the individual-level, we define best response as a binary indicator of whether a participant selected
the district that results in the highest expected pickup probability based on the endowed level. For L1s, best response
amounts to simply choosing the district with the highest expected pickup probability as shown on the display. For
L2s, the best response is the district that results in the highest expected pickup probability based on the level-specific
outcome formed by combining L0 and L1s’ decisions under the endowed proportion of L2s. Evaluating the best response
of L1s and L2s over repeated decisions allows us to observe how access to prediction uncertainty and realized prediction
error may be more or less useful for agents acting under particular beliefs about the behaviors of other agents.

Anticipation error measures how well a participant anticipates other participants’ search decisions. Evaluating
anticipation error over repeated decisions allows us to observe how the provision of realized prediction error, in
particular, may help participants anticipate others’ behaviors even if the predictions of the information display are
"inaccurate". Similar to distribution shift, we compute the EMD between each participant’s anticipated flow distributions
of how many drivers would go to each district and the level-specific outcome used to evaluate decisions under the
endowed belief (see Section 3.2.4).

Statistical Models. For the two aggregate-level variables, we pre-registered regression models for welfare ratio and
distribution shift, using the expected values calculated from 500 simulations as the dependent variables. We specified
the maximal models [4] for the aggregate-level variables by Wilkinson-Rogers-Pinheiro-Bates syntax [52, 64] as follows:

Aggregate-level Model 1Welfare Ratio (ratio)
1: ratio ∼ Beta (𝜇, 𝜙)
2: logit(𝜇) = display * feedback * trial
3: log(𝜙) = display * feedback * trial + maxProb

Aggregate-level Model 2 Distribution Shift (DS)
1: log(DS) ∼ student_t (𝜈 , 𝜇, 𝜎)
2: 𝜇 = display * feedback * trial

Here, trial and maxProb are numeric, while display and feedback are categorical. For the welfare ratio model, we use
a Beta distribution as the likelihood (line 1, left), parameterized by mean (𝜇) and precision (𝜙). We apply a logit link for
𝜇 (line 2, left) and include all experimental variables, display, feedback, and trial, as predictors on 𝜇 of the likelihood.
We apply a log link for 𝜙 (line 3, left) and include an additional predictor maxProb, which is the maximum pickups
optimized based on the system outcome to control the amount of spread for the achieved welfare. For the distribution
shift model, we use a student-t distribution as the likelihood for log-transformed DS (line 1, right), parameterized by 𝜈
(degree of freedom), 𝜇 (mean), and 𝜎 (scale) and include all experimental variables as predictors for 𝜇 (line 2, right).

To model individual-level variables while accounting for the experimental design, we pre-registered Bayesian Linear
Mixed-effect Models for best response and anticipation error. We specified separate models by levels, since the tasks
that an L1 completes is different from an L2, and separate models for each collection arm, since level composition and
trial order change for the two robustness checks. We specify the individual-level maximal models as follows:

Individua-level Model 1 Best Response (BR)
1: BR ∼ Bernoulli (𝑝)
2: logit(𝑝) = display * feedback * trial + (trial | ID)

Individua-level Model 2 Anticipation Error (AE)
1: log(AE) ∼ student_t (𝜈 , 𝜇, 𝜎)
2: 𝜇 = display * feedback * trial + (trial | ID)
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Here, trial is numeric, while display, feedback, and ID are categorical, with ID representing each participant’s unique
Prolific ID. Line 1 of both models presents the assumed likelihood functions. Since best response is binary, we use a
Bernoulli distribution as the likelihood, with parameter 𝑝 indicating the best response rate. To account for outliers in
participants’ anticipation, we use a Student-t distribution as the likelihood for log-transformed AE, parameterized by 𝜈
(degree of freedom), 𝜇 (mean), and 𝜎 (scale). Line 2 presents the hierarchical linear models, for which we use a logit link
for best response rate 𝑝 . Both individual-level models estimate fixed effects of trial, display type (static or NetHOPs),
and feedback structure (bandit or full). Because participants may have varying baseline performances and demonstrate
different variations in performance across trials, we specify random effects for participants as random intercepts and
random slopes for effects of trial and the intercepts.

We used a standard Bayesian workflow [24] to check our model fits and include model diagnostics in the Supplemental
Material. We report expected performance with the median point estimate of the expectation with uncertainty expressed
as a 95% highest posterior density interval (i.e., credible interval (CI)) for each variable and condition, marginalizing
over trials unless examining learning effects.

4 RESULTS

In total, we received 1,573 valid responses. Table 4 summarizes the number of unique participants by treatment, level,
and collection arm, with these numbers highlighted in bold. We removed four participants from the total number
recruited according to our pre-registered exclusion rule (i.e., two L1s of the main experiment and two L2s of the Robust
Trial Order experiment).

Table 4. The number of valid responses received by condition, level, and collection arm.

Collection Main Experiment Robust Trial Order Robust Composition
Level-𝑘 Level-1 Level-2 Level-1 Level-2 Level-1 Level-2

Valid 480 361 240 181 212 311

Static+Bandit 115 103 63 40 53 78
Static+Full 115 86 59 44 53 70

NetHOPs+Bandit 122 92 52 49 53 84
NetHOPs+Full 128 80 66 48 53 79

Note: The 212 L1 responses from the Robust Composition check are sampled from those of the
main experiment because L1 tasks are identical for these two collection arms.

4.1 Data Preliminaries

Table 5 presents the study completion time, from which we see that the completion time depends on the endowed
levels, display type, and feedback structure. Participants who were endowed with L2 beliefs, who viewed NetHOPs, and
who received full feedback took more time to complete the study.

Recall our participants could optionally describe how they used the interface to make decisions. We lightly analyzed
their statements by sampling 100 comments from each level across collection arms. From 84 meaningful L1 comments,
we found four participants who either misunderstood the payoff information shown in the display or misinterpreted
the strategic setting. From 83 meaningful L2 comments, we found that the level-endowment success rate is slightly
lower (84%), with 13 participants acting like L1s or randomly guessing. Hence, the realized Poisson distribution in the
main experiment might skew slightly more toward L0s and L1s than intended.
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Table 5. Summary of study completion time by treatment condition.

Group Min. Median Mean SD Max

Pooled 4.4 18.1 20.4 10.6 132
Level-1 4.4 17.4 19.4 9.5 77
Level-2 5.1 18.9 21.5 11.5 132

Static + Bandit 4.4 16.8 18.8 10 83.1
Static + Full 5.9 18.7 21.1 10.8 78.8

NetHOPs + Bandit 5.1 16.4 19.3 10.9 132
NetHOPs + Full 6.2 20.7 22.5 10.2 77

4.2 Aggregate-level Outcome

We first examine the two aggregate-level variables, welfare ratio and distribution shift, calculated from the system
outcomes by combining the decisions according to the true mixture over the levels. The welfare ratio in our experimental
setting captures the efficiency of the system, measured by the proportion of realized pickups relative to the maximum
number of pickups that could have been attained from a decision scenario. The distribution shift quantifies the difference,
in EMD, between the deduced flow shown on the display and the realized flow of the system outcome. We present the
95% CIs of the median expected outcomes of the posterior predictive distribution by treatments shown in Figure 5 (A),
and examine its variations by trial in Figure 5 (B).

Fig. 5. (A) Median point estimates of the expected welfare ratio (top) and distribution shift (bottom) resulted from the system
outcome. We expressed uncertainty as 95% credible intervals (CIs) predicted by the fixed effects of both aggregate-level models for
each treatment marginalized over trials. (B) Same as (A), we present both the point estimate and the corresponding 95% CIs for
welfare ratio (top) and distribution shift (bottom) for each trial to examine changes in system outcome by trial.

4.2.1 Welfare Ratio.

Welfare Ratio by Interface. When using a Poisson(1.5) to define a 30-40-30 mixture of levels (i.e., main experiment and
Robust Trial Order), we find similar expected welfare ratios across treatment interfaces. In all treatments, the expected
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ratios fall within the range of 83% to 89%. (Figure 5 (A) top-left and middle). However, when combining decisions in the
Robust Composition experiment using a Poisson(3) that produces a split more skewed toward higher-levels (15-35-50),
we observe a higher median expected ratio on average with greater variance across interfaces. The display type, either
NetHOPs or static displays, appears to have minimal effect on welfare ratio of the system outcomes. However, bandit
feedback (90%; CI[86%, 94%]) appears to produce slightly higher welfare than those produced by full feedback (87%;
CI[82%, 91%]).

Trial-level Variations. We observe consistent interface effects when examining the expected welfare ratio by trial
shown in row 1 of Figure 5 (B). From the main experiment, changes in ratio by trial appear to depend more on the
feedback structure, with bandit feedback leading to a slight increase in welfare ratio over trials (red and blue) and
full feedback leading to a slight decrease (yellow and green). The trial-level variation in the welfare ratio observed in
the Robust Trial Order experiment is similar to those observed from the main experiment, except that the feedback
effect is weaker, as reflected by flatter slopes. With a level distribution that skews more toward higher levels (Robust
Composition experiment), although welfare ratios are similar in early trials, they begin to diverge such that all interfaces
have increasing welfare with more trials except for static displays with full feedback (yellow), where welfare decreases.

In summary, we observe fairly robust welfare variations over the three experiments when it comes to: (1) static
displays and full feedback resulting in a lower welfare ratio by trial, and (2) NetHOPs displays and bandit feedback
leading to a higher welfare ratio over trials.

4.2.2 Distribution Shift.

Distribution Shift by Interface. Under a 30-40-30 mixture of levels from a Poisson(1.5) (main experiment and Robust
Trial Order), we find full feedback leads to lower and less extreme expected distribution shift than bandit feedback on
average (e.g., main experiment, Full 3.9; CI[2.4, 6.3] and Bandit 5.7; CI[2.6, 14.1]). As shown in Figure 5 (A) bottom-left,
this effect is especially prominent for NetHOPs where variance in the expected amount of distribution shift is quite
high with bandit feedback (red). We see a smaller version of this effect in the Robust Composition experiment. Static
displays may produce slightly lower and less extreme expected distribution shift than NetHOPs (e.g., main experiment,
Static: 4.4; CI[2.5, 8.1] and NetHOPs: 4.7; CI[2.5, 14.1]) but the estimates have high uncertainty.

Trial-level Variations. From the main experiment (Figure 5 (B) bottom-left), changes in distribution shift over trials
appear to be driven by the feedback structure. With the bandit feedback, distribution shift decreases with more trials.
With full feedback, distribution shift remains fairly consistent with more trials. Although distribution shift varies
substantially depending on the interface in the early trials, the expected distribution shift appears to converge by the
last trial across the interfaces. However, we observe a different pattern for distribution shift in the Robust Trial Order
experiment (Figure 5 (B) bottom-middle), where changes in distribution shift over trials are more similar, as reflected by
relatively flat slopes. For the Robust Composition experiment (Figure 5 (B) bottom-right), expected distribution shift
tends to increase by trials across interfaces, except for the condition of a static display with full feedback. Although the
changes in distribution shift vary by trial order and level composition, a static display with full feedback can consistently
produce slightly lower distribution shift across the experiments.

4.3 Individual-level Analysis

We analyzed participants’ individual-level best response rate and anticipation error to explore the potential causes
of the observed variations in the aggregate-level variables. Recall that in our experimental setting, selecting a best
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response means that a participant decides to search a district that has the best chance of resulting in a pickup based on
the level-specific outcome, while the anticipation error captures the difference, in EMD, between the anticipated flow
and the flow of the level-specific outcome. We report both individual-level response variables using the 95% CIs of the
median expected value from the posterior predictive distribution by treatment conditions and examine them by trial.

Fig. 6. (A) The median point estimates of the expected best response rate with uncertainty expressed as 95% credible intervals (CIs)
predicted by the fixed effects and marginalizing over trials. (B) As in (A), we present both the point estimate and the corresponding
95% CIs of the expected BR rate for each trial to examine changes by trial. Notice we omit L1s of robust composition check
because these L1s’ responses are sampled from those of the main experiment.

4.3.1 Level-1 Best Response. We observe minimal differences between L1’s best response rate across treatments from
both the main experiment and Robust Trial Order experiment, shown in the top-left and middle of Figure 6 (A). The
high best response rates of L1s are to be expected: because L1s are endowed with the belief that the displayed prediction
is "accurate", their best response is to choose the district that shows the highest predicted pickup probability from the
display. In both experiments, we find (1) static displays lead to slightly higher BR rates for L1s than NetHOPs (e.g., main
experiment, Static: 84%; CI[71%, 93%] and NetHOPs: 80%; CI[66%, 91%]), and (2) bandit feedback leads to slightly higher
BR rates over full feedback (e.g., main experiment, Bandit: 83%; CI[70%, 93%] and Full: 80%; CI[67%, 92%]). It may be that
when best responding to a display that is straightforward, processing prediction uncertainty and viewing full feedback
can make some participants second-guess how to best respond. However, all the interface effects observed are quite
small for L1s.

We observe slight but consistent improvements in BR rates in all treatments for L1s as they completed more trials of
the main experiment and Robust Trial Order experiment (Figure 6 (B) top-left and middle). We can see that L1s who
used static displays and bandit feedback (blue) are more likely to best respond than those who used the alternatives.

4.3.2 Level-2 Best Response. L2s’ best response rates (Figure 6 (A) row 2) are much lower than those of L1s across
treatments, with greater uncertainty in the estimates. This is likely because L2s face a harder task: they must reason
about the distribution of other players’ actions using a display that is not expected to be "accurate". The larger variance
that we observe is partially due to high trial-level variance, as some L2s appear to have been able to considerably
improve their best response rates with repeated decisions.
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At a high level, we find that (1) L2 participants who received full feedback were slightly more likely to best respond
than those who received bandit feedback (e.g., main experiment: Full 59%; CI[26%, 90%] and Bandit 40%; CI[19%, 85%]),
and (2) L2s who viewed static displays were more likely to best respond than those who viewed NetHOPs (e.g., main
experiment: Static 61%; CI[25%, 91%] and NetHOPs 40%; CI[18%, 80%]). These effects persist in the Robust Trial Order
and Robust Composition experiments, though intervals overlap. The use of static displays and full feedback may be the
most effective for encouraging L2s to best respond. Our results provide weak evidence that the emphasis on prediction
uncertainty makes it harder for L2s to anticipate how others will respond to a display, which Kayongo et al. [38] had
speculated but were unable to validate from their study. However, the high uncertainty in the estimated L2 performance,
likely due to the difficulty of best responding to a display under beliefs about a mixture of other agents over levels,
prevents us from drawing any strong conclusions.

One other difference we observe is that the best response rates for L2s are noticeably higher across treatments in the
Robust Composition experiment. We expect this is because more L1s in the mixture over levels that L2s are endowed
(i.e., 80% L1s in Robust Composition vs. 60% L1s in main experiment) may make it easier for L2s to anticipate others’
actions. With more lower-level players in the mixture of belief that L2s are endowed, more competitors will choose to
search in the most lucrative district following the display.

When examining L2s’ best response rate by trials (Figure 6 (B), row 2), we find steeper increasing slopes than those
of L1s, providing evidence that L2s can over time learn a mapping between predicted and level-specific outcomes. We
see consistent treatment effects where static displays and full feedback tend to help L2s best respond over trials. We
observe that L2s who use a "bad" display design for their task (namely NetHOPs and bandit feedback) may cease to
learn at all depending on the order of decision scenarios (Robust Trial Order experiment in Figure 6, bottom-middle).

Fig. 7. (A) Median point estimates of the expected anticipation error in EMD with uncertainty expressed as 95% credible intervals
(CIs), accounting for all fixed effects and marginalizing over trials. EMD describes the averaged Euclidean distance a participant’s
anticipated flow distribution must move in order to match the flows of the level-specific outcome. (B) Same as (A), we present both
the point estimate and the corresponding 95% CIs of the expected anticipation error for each trial to examine changes in performance
by trial. Notice the y-axis scales are different between L1s (top) and L2s (bottom), and we omit L1s of robust composition
check because these L1s’ responses are sampled from those of the main experiment.
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4.3.3 Level-1 Anticipation Error. Between our main experiment and Robust Trial Order experiment, the amount of
anticipation error for L1s, with EMD measured in units of Euclidean distance, is quite small, with the CIs closely
overlapping between a range of 2.7 and 4.5 (Figure 7, row 1). When examining the variation in L1s’ anticipation error
by trials (Figure 7, row 1), although the signs of the slopes are different, the slopes are all small, indicating minimal
improvement or deterioration in L1s’ ability to anticipate level-specific outcomes.

4.3.4 Level-2 Anticipation Error. For L2s, the expected anticipation error is much higher in all treatments compared to
that of L1s. As shown in Figure 7 (A) row 2, we observe strong feedback effects across all three experiments, where L2s
who received full feedback show a clear advantage over those who received bandit feedback in anticipating competitors’
actions (e.g., main experiment, Full: 19; CI[16.9, 21] and Bandit: 27.3; CI[23.8, 32.2]). We observe no clear effect of using
NetHOPs versus static displays.

We observe higher anticipation error for L2s in the Robust Composition experiment. This may seem to contradict
the results of L2s’ best response rate observed from this experiment, which were higher than those from the other
experiments, presumably because of the higher proportion of L1s they attempted to best respond to. We speculate that
anticipation error is a more fine-grained measure. Estimating how many other players will choose to search in each
district may be difficult, even if the best response district is obvious to an L2.

Examining L2s’ anticipation error by trial (Figure 7, row 2) indicates that full feedback can consistently help
participants more accurately anticipate others’ decisions across trials in all three experiments. The results of the Robust
Trial Order experiment suggest that variations of anticipation error over repeated decisions can depend on the specific
sequence of prior decision scenarios, as anticipation error decreases in the main experiment and Robust Composition
experiment and increases in the Robust Trial Order experiment.

Fig. 8. (A) The median proportion of L1s and L2s who secured pickups from their selected district with 95th percentile intervals (PI)
summarizes the distribution of pickup proportions from 500 simulations of the system outcomes, marginalized over trials. (B) As in
(A), we present both the median and 95% PI of L1 and L2s’ pickup proportion for each trial to examine changes by trial. Notice the
y-axis scales are different between L1s (top) and L2s (bottom), and we omit L1s of robust composition check because
these L1s’ responses are sampled from those of the main experiment.
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4.4 Connecting Individual-level Response and Aggregate-level Outcomes

We analyzed the individual-level best response rate and anticipation error against the level-specific outcomes. A question
naturally arises: do we observe the same or similar display or feedback effects when participants’ decisions are evaluated
against the system outcome that is realized by combining the decisions of L0s, L1s, and L2s?We construct 95th percentile
intervals (PI) using the median as point estimate to evaluate the proportion of L1s and L2s who secured pickups from
their selected district based on 500 simulations of the system outcomes for each type of interface, marginalized over all
trials in Figure 8 (A) and by individual trial in Figure 8 (B).

From our simulations, the PIs for L1s’ proportion of pickups (Figure 8 (A), row 1) suggest a strong right-skewness,
with most simulated observations falling below or close to 50%, indicating that the chance of pickup for L1s, in general,
is generally low and accompanied by high uncertainty. When marginalizing the proportion of pickups for L1s using
all simulations across the three experiments, the display and feedback effects for L1s are minimal: the difference in
proportion between Static display and NetHOPs is -0.6% (PI[-6%, 7%]), while that between full and bandit feedback is
1.7% (PI[-4%, 7%]).

The noticeable difference between the proportions of pickups for L1s and L2s (row 1 and row 2 of Figure 8 (A)) is
that L2s have a clearly higher chance of getting pickups due to their strategic sophistication. Similar to the results
when evaluating L2s’ best response rate under their level-specific outcomes, we find minimal differences between
using a static versus NetHOPs display for L2s’ pickup probability in the system outcome (0.8%; PI[-6.9%, 8.6%]). We
again see a higher proportion of pickup when L2s use full feedback (3.4%, PI[-3%, 10.4%]). In summary, the interface
effects identified from our individual-level results appear to hold when evaluating decision-making against the system
outcome as reflected by each level’s proportion of pickups.

4.4.1 Level-𝑘 Decisions and Welfare Ratio. The observed trial-level variations in the social welfare ratio can be contex-
tualized by several aspects of the individual-level decision. Design choices, such as displaying prediction uncertainty
and error, have limited impact on L1s who respond to an "accurate" display. Due to the simplicity of their tasks, L1s
can easily identify their best response district (e.g., West) from the information display. In contrast, although L2s face
more challenging tasks, they can improve their decision-making when using an interface with static displays and full
feedback. While the best response rate of L2s is generally lower than that of L1s, as some L2s may behave similarly
to L1s due to their incomprehension of the endowed level, the interface’s provision of realized prediction error (i.e.,
full feedback) can help L2s to identify their best response district (e.g., East) over repeated decisions. Consequently, as
participants complete more trials, more L2s who initially misunderstood their level endowment and behaved like L1s
can recognize the opportunity to profitably deviate from L1s’ best response district.

It is important to note that each district of our congestion game has a limited capacity of pickups (see Figure 11
in Appendix A.4). While L2s deviating to their best response district can increase their overall share of pickups, it
also decreases the probability of pickup in that district until the remaining district (e.g., North), which is not the best
response for either L1s or L2s, becomes a new opportunity of profitable deviation. However, this opportunity goes
unnoticed by both L1s and L2s who are myopic, resulting in a reduction in the social welfare ratio achieved by the
system outcome and suggesting that design choices that can support individual-level decisions for certain groups can
lead to a worse collective system outcome.

4.4.2 Level-𝑘 Decisions and Distribution Shift. The quantification of distribution shift using EMD is useful in describing
the overall difference between flows shown on the display and those observed in the system outcome. However, the
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EMD computation does not consider flows at the district level, specifically the difference between the deduced number
and the actual number of drivers searching in each district. Because flows to each district are driven by individual-level
decisions, the amount of distribution shift that arises from a system outcome is naturally associated with the number of
participants who were able to select the best response strategy based on their endowed levels. Additionally, we observe
that the distribution shift is influenced by interface design factors, that is, an interface with full feedback has a robust
feedback effect, producing system outcomes with lower distribution shift than its bandit counterpart. We performed an
exploratory analysis, investigating the trial-level variations of distribution shift through the lens of the flow proportion
to each district under the influence of the two feedback structures. Our goal is to answer the high-level question: how
does the feedback structure influence the flows to each district, prompting changes to distribution shift over trials?

Fig. 9. The median proportion of drivers who searched in each district relative to the deduced flow shown in the information display.
The intervals representing 95th percentile summarize district flows from 500 simulations. The red horizontal line centered at 0 can
be viewed as a benchmark so that a positive proportion difference means more drivers go to a district, while a negative proportion
difference means fewer drivers go to a district. Colors differentiate interfaces with full feedback from those without.

In Figure 9, we dissect flows of the system outcome of each trial by district (i.e., in West, North, and East) for each
collection arm. We then present the differences between the observed flows for each district relative to those shown
on the information display. Recall system outcomes are created by simulation. Therefore, we create 95th percentile
intervals that summarize the difference in proportion going into each district that summarizes simulations. When
inspecting the differences in proportion corresponding to each district across trials, we see a consistent pattern, in
which more participants choose to search in the West district (i.e., above the red horizontal line centered at 0% in
Figure 9, left) and fewer participants choose to search in the East or North districts, compared with the flows shown in
the display. This behavior is expected because (1) choosing the West District is the best response strategy under L1s’
endowed beliefs (see Table 6 of Appendix B), and (2) level endowment may fail for some L2s, who instead choose to
search in the West district because it is the most lucrative location shown in the display.
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When inspecting the influence of receiving full feedback (yellow intervals in Figure 9) on the difference in flow
proportion to each district, we see that relatively more participants (i.e., including both L1s and L2s) choose to search in
the East district (L2s’ best response strategy), while fewer searched in the West district (L1s’ best response strategy).
Recall our individual-level results on best response rate suggested that (1) L1s tend to have relatively high and increasing
best response rates across trials and (2) full feedback helps L2s with best responding. Therefore, the gaps that represent
the difference in flow proportions by feedback structure observed from the West and East districts suggest that as
participants complete more trials, more L2s are able to identify their best response strategy corresponding to their
endowed level (see Figure 6 (B), row 2, yellow). As more L2s choose to profitably deviate and L1s maintain a high BR
rate, the distribution shift of the system outcome may reduce. Hence, our results imply that a principal can expect
reduced distribution shift by tailoring the interface to the needs of more strategically sophisticated players within a
repeated strategic decision-making context. As the amount of distribution shift gets lower with repeated decisions,
predictions shown on the information display become more "accurate" retrospectively relative to the system outcome
and hence improve trust and reliance on the information display.

5 DISCUSSION

The results of our experiments highlight the impact of design choices, specifically the provision of prediction uncertainty
and error, on decision-making among agents with varying levels of strategic sophistication. Methodologically, we
demonstrate how level endowment can be useful for understanding the dynamics of system outcomes that are otherwise
difficult to disentangle. We introduce a staged experimental design as an alternative to synchronous experiments,
particularly useful in situations where collecting decisions from a large number of participants simultaneously is not
feasible. Moreover, we emphasize the value of Cognitive Hierarchy Models as a powerful tool for researchers studying
the design of information display for strategic settings that is naturally aligned with calls for behavioral researchers to
take effect heterogeneity more seriously [7, 23].

More specifically, our results suggest that the more strategic the user population of the prediction, the more
important it becomes to design information displays that are effective in anticipating how other agents will respond
to the predictions. One way to facilitate anticipation according to our results is to use a static display, rather than
emphasizing uncertainty. More importantly, when the prediction of an information display may be seemingly inaccurate
in hindsight as a result of agents’ strategic response, providing information on the realized prediction error can help
agents make more informed decisions despite distribution shift. This result has implications for the study of trust in
data-driven predictions. Prior work [42] suggest users’ trust in predictive model outputs is affected by the observed
accuracy of the model. When real-world decision-makers perceive a gap between the predicted and the realized
outcomes, they may lose trust and stop relying on the predictions, rather than trying to infer how they are wrong
and adjust their decision strategies. However, in a strategic setting like we study, a consistently "wrong" information
display that is transparent about its error can be more useful to agents than one that is not forthright about its error. An
interesting pursuit for future work is to study agents’ trust in such settings. For example, when access to an information
display or post hoc decision feedback carries a cost, it raises the question of what factors influence agents’ willingness
to tolerate an inaccurate display that can potentially improve their decision-making and how agents can effectively
assess performance gains in the presence of an incorrect display.

Another important implication of our results is that information displays that help more sophisticated agents better
anticipate others’ responses can lead to a differential advantage that results in less total welfare across the population,
but, at the same time, also reduces distribution shift. While providing an interface that can communicate realized
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prediction errors to the entire user population appears to be the best default to maximize utility at the individual level,
we find that chasing this objective will not necessarily result in greater overall social welfare. In fact, interfaces that
did not disclose realized prediction error were better at maximizing the total possible social welfare of the system.
However, while the deployment of an interface that visualizes realized prediction errors may have a negative impact
on the system’s social welfare, a principal can anticipate a reduction in distribution shift. This reduction implies a
decrease in the disparity between the predicted outcome and the realized outcomes, improving the perceived accuracy
of the information display for agents after decision-making. As a result, it improves agents’ trust and reliance on the
information display in a repeated strategic decision-making context.

Our findings suggest that there are not only ethical considerations that arise in negotiating the trade-off between
individual-level utility and aggregate-level social welfare, but also an important trade-off between social welfare and
users’ potential trust and reliance of the information display.

5.1 Challenges of Estimating Display Effects in Strategic Settings

We study a situation where the predictions from an information display is based on historical data that is unlikely to be
a good reflection of the behavior that results when agents use the display. Rather than trying to reduce the disparity
between the predictions and the realized outcome, our interest is in how different design features of an information
display impact individual-level decision-making and aggregate-level system outcomes and their stability over repeated
decisions over time. Because the relationship between these two types of measures can be complex, studies like ours
take on a challenging problem.

We believe that our goals are an important complement to approaches that aim to "prescribe" a desirable aggregate-
level system outcome through a display. Such approaches include information design, which utilizes selective information
disclosure (e.g., [15]); the visualization equilibrium [38] where the displayed prediction matches the realized outcome,
essentially represented by a fixed point of the agents’ behavior and the visualization function that produces the
visualization; and theoretical solutions in machine learning research for addressing distribution shifts induced by
predictive algorithms in most social prediction context (i.e., performative prediction), which involves defining stable or
optimal fixed points of retraining against expected future outcomes (e.g., [46, 47, 51]). Attempts to inform design with
knowledge about causal effects of display characteristics, as we pursue, tend to require fewer assumptions. However,
this does not mean that identifying such effects experimentally is easy. The small number of trials we conducted imposes
limitations on the dynamics we can observe. Future work might attempt to observe behavior over a longer duration, to
understand the patterns of performance improvement and convergence across interfaces with extended usage

5.2 Presentation of Prediction Stimuli

In our experiment, we utilized graphs to present prediction stimuli and employed NetHOPs as a counterpart for more
salient uncertainty quantification. This design choice was partially motivated by the structure of our congestion game,
which comprises three districts forming a traffic network that can be most naturally visualized using a graph. As
detailed in Section 3.2.3, our presentation is efficient in conveying important payoff-relevant information to participants
in a clear and compact manner, thereby better streamlining the decision-making process.

However, we acknowledge that there are alternative visualization methods that can be employed. For instance,
the same prediction stimuli can be illustrated using clustered or side-by-side bar charts in a small multiple form
with uncertainty quantified by conventional confidence intervals. Our decision to use a frequency-based uncertainty
visualization technique like NetHOPs stems from their ability to emphasize uncertainty to such an extent that participants
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are compelled to consider it, rather than merely focusing on point estimates or other common biases and misconceptions
that can arise when using conventional confidence intervals [5, 14, 27]. Still, we think it is beneficial for future research
to compare performance of decision-making using alternative visualization techniques to present prediction stimuli
and quantify the associated uncertainty for a more comprehensive understanding of the robustness and generalizability
of our findings.

5.3 Limitations and Future Work

Our proposed staged experimental design could be applied to most non-cooperative games under the level-𝑘 framework,
including games of different payoff structures, asymmetric information, and involving dynamic environments. However,
this design is constrained by the level-𝑘 frameworks in that we can only evaluate agents’ decisions using a level-
specific outcome that aligns with the endowed belief (see section 3.2.4). Our design reinforces level endowment by
making players myopic, which leads to consequence that we were unable, with this setup, to leverage players’ intrinsic
strategic sophistication and investigate the dynamics of decision-making and system outcome when players’ levels of
sophistication can change over repeated games in light of the results of previous plays. Future work might attempt
to infer the level distribution of users in real-world prediction interfaces like driving direction apps or advertising
dashboards, so as to complement algorithmic solutions to problems like distribution shift with greater knowledge of
how outcomes can arise. Future work might also pursue the use of synchronous experiments using platforms such as
empirica.ly [1] where it is possible for post-decision feedback to combine decisions from all participants in real-time
(e.g., [21]) to avoid the limitations of our staged design.

Our experiment also did not directly measure display reliance, but an interesting pursuit for future work would be
to design a similar experiment where an agent’s interest in continuing to use an information display is an outcome
variable. For example, an experiment might elicit and quantify their willingness to pay for a display relative to the
utility-optimal amount.

6 CONCLUSIONS

The distribution shift that occurs when presenting predictions poses challenges in designing an interface that can
support data-driven decision-making in strategic settings. We presented the results of several large pre-registered
online experiments to study the impact of design features like visualizing prediction uncertainty and prediction error
on individual-level decision-making and aggregate-level system outcomes in a repeated congestion game, where agents’
payoffs depended on their own actions and those of other agents viewing the same display. By endowing agents with
varying level-𝑘 depths of thinking from a Poisson-CH model [8] in a novel staged experimental design, our work
demonstrated how the design of a shared information display can affect agents differently depending on their level of
strategic sophistication. The interface that provides post hoc decision feedback visualizing realized prediction error
can help more sophisticated L2s to best respond and anticipate other agents’ decisions. Our work also underlines
the inherent trade-off that can arise between individual-level utility and collective outcome in strategic settings like
congestion games. In the scenario we study, design choices that promote individual-level decision-making lead to worse
collective outcomes in terms of lower percentages of the possible social welfare for the system being achieved, but, at
the same time, improve users’ trust and reliance on the prediction interface by decreasing distribution shift, making
predictions more accurate post hoc. Our work opens up a new space of questions about what makes for a robust design
strategy in settings where shared information displays may be inaccurate retrospectively.
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A FULL DESCRIPTION OF DATA PRE-PROCESSING AND COUNTERFACTUAL MODEL

We build our congestion game using the Chicago Taxi Trips data4, which takes the form of origin-destination (OD) flows.
Each observation represents a completed trip including variables such as taxi ID, start/end timestamps, and pickup/drop-
off Community Areas (CAs)5. We leverage the findings from previous work onmodeling taxi trips (e.g., [10, 16, 41, 48, 69])
and concepts from spatial econometrics [3, 25, 39, 49] to process the taxi trips data and formulate a counterfactual
model that can support our strategic setting by computing individual player payoffs as well as the system outcome.

A.1 Defining the action set available to players

We first define the action set of our congestion game that each player must choose from by inspecting the average daily
pickups by CAs between January 2014 and December 2015. We choose this time range because Chicago taxi demand
was at its peak during this time: like many other major US cities, taxi pickups in Chicago had been declining annually
because of the market competition from ride-sharing companies [12, 33].

Fig. 10. Averaged daily pickups by Chicago CA.

As shown in Figure 10, the averaged daily pickups indicate spatial heterogeneity [2] as the spatial distribution of
pickups is highly uneven. Three CAs in the Central Business District have significantly greater daily pickups than the
rest of the CAs, and they are North Loop (CA = 8), West Loop (CA = 28), and the Loop (CA = 32). At the same time, the
three contiguous spatial hot spots [49] show evidence of spatial dependency [25] in that the averaged daily pickups are
similar in quantity. To control spatial heterogeneity and the number of total actions available in our strategic setting,
we define a player’s action set as these three spatial hot spots and refer to them as action CAs.

4The data is publicly available online at the Chicago Data Portal.
5Community Areas are a set of consistent boundaries that do not change over time and are also used for census collection. See detailed descriptions
provided by Chicago’s Department of Asset, Information and Services.
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A.2 Reducing heterogeneity in training data

Taxi pickups can vary considerably depending on the time of day, day of the week, weather conditions, and special
events (e.g,. sports games, holidays). While real taxi drivers could adjust their use of an information display in light of
such factors, in our experimental setting, training a model without accounting for these irregular demand shocks could
lead to highly variant display errors. We therefore implement a stratification scheme that groups taxi trips by start
timestamps along two time dimensions: (1) days of a week (i.e., weekdays and weekends) and (2) time intervals of a day6.
We define the pickup session of our strategic setting to take place at 9 AM, and select the strata containing 5.8 million
trips from 522 weekday AM Peaks (7AM - 10AM) as relevant trips to infer each driver’s 9 AM search decisions. We also
account for two external factors that can influence taxi flows within the strata: the weather conditions and occurrence
of special events. For weather conditions, we rely on four hourly meteorological variables7 (i.e., apparent temperature,
precipitation, snow depth, and wind speed). For special events, we consulted a list of Chicago CBD events8 as well as
national holidays. After conditioning on time period and external factors, we identified 221 (42%) homogeneous target
weekdays from the trip strata.

A.3 Deducing search flows

Our objective is to have a counterfactual model to have a functional form pickups = 𝑓 (flow), so that it can predict
the total number of pickups (i.e., dependent variable) in each action CA at 9 AM, given a discrete flow distribution
of drivers going to search over the three CAs (i.e., independent variable). Although we can aggregate the dependent
variable by directly counting the total number of 9 AM pickups for each action CA from the taxi data, we face a hard
data limitation that threatens the viability of our counterfactual model: the data only provides partial information about
successful pickups or the total supply – we do not know the number of drivers that searched an action CA and did
not get a pickup.9 We therefore design an algorithm that can deduce drivers’ search decisions using their prior pickup
history during AM Peaks.

At a high level, the algorithm first identifies candidate drivers who might choose to search in each action CA at 9 AM
on a target weekday by considering what it means to be able to make a pickup in an action CA at 9 AM on that weekday.
By (1) back-tracing the previous drop-off CAs of drivers who found 9 AM pickup in an action CA and (2) computing the
amount of idle time between their previous drop-off and 9 AM pickup, we can approximate the maximum amount of
time drivers who obtained a pickup spent searching from their previous drop-off CAs. The output of this procedure is a
collection of weighted edges, which we call trace dyads because they track drivers’ movements on the target weekday

in the form of 𝐷
𝑇−→ 𝑃 where 𝐷 is the previous drop-off CA, 𝑃 is an action CA that a driver found pickup in at 9 AM,

and 𝑇 is the weight representing the amount of idle time between previous drop-off and 9 AM confirmed pickup. For
each unique trace dyad by 𝐷 and 𝑃 , we find the maximum idle time, 𝑡𝑚𝑎𝑥 , and set 𝑡𝑚𝑎𝑥 to be the time threshold used
to identify candidate drivers who might choose to search in the action CA from each unique 𝐷 . For example, if the
data shows the maximum idle time for drivers who previously dropped-off in the North Loop before finding a 9:00 AM
pickup in the Loop is 15 minutes on the target weekday, we include all unique drivers who dropped-off in the North
Loop 15 minutes before 9 AM into our candidate list for that target weekday.

6We consulted the time intervals defined by Uber Movement, which are AM Peak (7AM-10 AM), Midday (10AM-4PM), PM Peak (4PM-7PM), Evening
(7PM-12AM), and Early Morning (12AM-7AM).
7Hourly meteorological variables are collected from Weatherstack API.
8Data is publicly available by Chicago’s Department of Cultural Affairs and Special Events.
9We also do not observe total demand, but the convention is to use total pickups from a location as a proxy of total demand.

29

https://movement.uber.com/
https://weatherstack.com
https://www.chicago.gov/city/en/depts/dca/supp_info/events.html


CSCW ’24, November 9–13, 2024, San José, Costa Rica Zhang, et al.

The algorithm next classifies each candidate driver identified by trace dyads into three types according to their 9 AM
vacancy status shown by the taxi data. These are (1) those who successfully found a pickup in an action CA at 9 AM, (2)
those who successfully found pickups elsewhere at 9 AM, and (3) those who failed to find a pickup and have no trip
history in the data at 9 AM. Drivers of type (1) must have searched in one of the action CAs and hence are included
in the search flow to the action CA where they found a pickup. Drivers of type (2) are removed from the candidate
list. Drivers of type (3) are of primary interest: we need to deduce where they might have searched and decide if they
should be included in the search flow to any action CA.

The algorithm consults each type (3) driver’s search prior and tabulates unique consecutive pickups completed by
the driver in the AM Peaks of the past tens days prior to the target weekday. From each driver’s search prior, we create

a collection of search dyads expressed as 𝑉
𝑁−−→ 𝑆 where 𝑉 is the dropoff CA of the previous trip, 𝑆 is the pickup CA

of the consecutive trip, and the weight 𝑁 is the number of occurrences of the pickup pattern. A search dyad can be
interpreted as: in the AM Peaks of the past 10 days, given a driver dropped off in 𝑣 , she found her next pickup in 𝑠 for
𝑛 times. Since the collection of search dyads with the same 𝑉 can be seen as proxies of a driver’s conditional search
preference from 𝑉 , the algorithm identifies the 𝑆 with the maximum 𝑁 as the search CA for the driver.

A.4 Counterfactual Model

The above pre-processing steps result in a training dataset that contains 9 AM flow-pickup pairs on 221 homogeneous
weekdays for each candidate CA, summarized from 2.1 million relevant trips completed by 5109 Chicago taxi drivers.
Each observation from the processed data describes the number of observed pickups in an action CA, resulting from
the quantity of deduced flow going into the action CA on each of the 221 weekday. We use a Bayesian Multilevel model
to estimate pickup distributions and specify the model in Wilkinson-Rogers-Pinheiro-Bates syntax [52, 64] as follow:

1: lpickup ∼ Gaussian(𝜇, 𝜎)
2: 𝜇 = lflow + (1+ lflow | CA)

As shown, lpickup is the dependent variable and lflow is the independent variable, both are log-transformed before
model fitting. CA is a categorical variable used as the identifier for action CAs. In line 1, we define the likelihood
function of lpickup to follow a Gaussian distribution, which is parametrized by 𝜇 (mean) and 𝜎 (scale). In line 2, we
specify a hierarchical model with varying intercepts and slopes. This is because although pre-processing (described in
Appendix A.2) can reduce heterogeneity of pickup-flow dynamics within action CAs, each action CA can still have
intrinsically different dynamics converting flows to pickups. The intercept and slopes can co-vary because if an action
CA has larger average pickups (i.e., high intercept), it could signal relatively stronger rate of pickups conversion from
flows. Because the action CAs we defined are neighbors to each other subject to the effect of spatial dependence, the
dynamics learned by the model from an action CA can be used to improve estimate about the other CAs. Therefore,
we want to model the covariance in flow-pickup dynamics as a result of spatial dependence between the action CAs,
and improve CA-specific estimates through information pooling [44, 61]. Detailed model diagnostics and posterior
predictive checks can be found in the Supplemental Material.

A challenge in creating a counterfactual model is that the simulated and observed flows we pass to the model to
generate the display and to score decisions may in some cases fall below or exceed the flow range observed from the
historical data. We use two heuristics to ensure the model makes reasonable predictions in such cases:
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Fig. 11. Counterfactual Model Fits

• If a flow to an action CA is greater than the maximum historical flow observed from the data, we use the model
to compute an action CA’s expected pickups using the historical maximum flows. This captures how predicted
pickups would at some point stop increasing with greater flow.

• If a flow is less than the minimum historical flow, we use the counterfactual model to predict pickups. Once
predicted pickups exceeds the simulated flow, we assign a 100% pickup probability.

We present our model fits in Figure 11 with the dependent variable in counts (as defined in the model) on the left and
converted pickup probability on the right. When more drivers choose to search in an action CA, the pickup probability
becomes lower on average, though with varying slopes depending on the CA. The predictions become deterministic
only when flows fall outside of the range observed historically from the data.

B DECISION SCENARIOS

Table 6. The orders of weekdays (decision scenarios) used to create our repeated game for the main experiment and robust composition
check, and the robust trial order check, with the corresponding best responses by trial, level, and treatment.

Trial Order Date Level-1 Level-2
Main+Robust composition Robust trial order Static+Bandit Static+Full NetHOPs+Bandit NetHOPs+Full

0 0 2014-07-22 West East East East East
1 6 2014-05-13 West East East East East
2 14 2015-05-21 West East East East East
3 10 2014-06-05 West East East East East
4 7 2015-06-25 North East East East East
5 12 2014-11-07 West East East East East
6 15 2015-06-30 West East East East East
7 1 2015-10-26 West East East East East
8 9 2015-10-22 West East East East East
9 4 2015-10-14 North East East East East
10 3 2014-09-26 West East East East East
11 8 2014-12-05 West East, North East, North East East
12 5 2015-08-28 West East East East East
13 13 2014-05-22 West, North East East East East
14 2 2014-10-24 West East East East East
15 11 2014-09-29 West East, North East East East
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C GLOSSARY

Table 7. Glossary of terms and concepts used in empirical game theory in the context of our multi-agent strategic setting.

Game Theory

Congestion game A broad class of non-cooperative games where each action represents a con-
gestible good and is associated with a cost function, which incurs cost that
increases with the number or fraction of agents who chose the same action.

Principal A service or prediction provider. In our experimental setting, we assume the
role of the principal, or the taxi company.

Agents Users of predictions who also make decisions. In our experimental setting,
participants act as taxi drivers who use the information display to inform their
search decisions.

Action set The collection of all possible actions available to a player in a game. In our
experiment, action sets contain three districts, referred to as action CAs, that
a participant can choose to search for passengers.

Payoff-relevant information Pertinent details that influence potential rewards or outcomes. In our experi-
ment, the payoffs are influenced by two main factors participants observe on
the information display: (1) deduced flow, (2) predicted pickup probability.

Experimental Setting

Poisson Cognitive Hierarchy Model A behavioral model we utilize to characterize agents’ strategic sophistications
through levels, with proportions following a Poisson distribution.

Level-𝑘 framework In a level-𝑘 framework, all agents are assumed to be myopic. They believe they
are the most sophisticated agents in action. They assume all other competing
agents are distributed according to a normalized Poisson distribution for levels
ranging from 0 to 𝑘 − 1.

Level distribution A Poisson distribution including L0-L2 drivers representing the “true” popula-
tion mixture over levels, which is exclusive knowledge of the principal used
to aggregate the system outcomes by combining decisions using the taxi data
and the collected responses from our participants.

Level endowment Endowing levels by informing participants of the level mixtures. After normal-
izing the level distribution, this helps them perceive the rest of the population
as consisting entirely of agents of levels lower than their own.

Realized prediction error The discrepancy between the predicted outcome and the realized outcome.
Level-specific outcome An outcome that aligns with participants’ endowed levels to score their deci-

sions and provide feedback in each trial.
System outcome An outcome derived by integrating decisions from all levels, in accordance

with the level distribution that defines the population.

Experimental Manipulations

Static display An information display that presents predictions as a static point estimate.
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Table 7 continued from previous page
NetHOPs A frequency-based uncertainty visualization technique that displays predic-

tions and communicates the associated uncertainty via animated frames.
Bandit feedback A feedback mechanism that solely informs participants about whether they

secured a pickup based on their decision.
Full feedback A comprehensive feedback display that not only informs participants of the

decision outcome but also visualizes the realized prediction error.

Response Variables

Best response A response variable assessing whether a participant chose the district yielding
the highest expected pickup probability, as dictated by their endowed level.

Anticipation error A response variable evaluating a participant’s ability to foresee other partici-
pants’ search decisions, determined using the Earth Mover’s Distance.

Distribution shift A response variable that quantifies the disparity between the deduced search
flows displayed to participants and the flows derived from system outcomes.

Social welfare ratio A response variable that computes the proportion of social welfare achieved
(i.e., total realized pickups) out of the total possible social welfare obtainable
(i.e., maximum pickups).
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