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ABSTRACT
Y-axis truncation is a well-known, much-debated visualization prac-

tice. Our work complements existing empirical work by providing

a systematic analysis of y-axis truncation on grouped bar charts.

Drawing upon theoretical frameworks such as Algebraic Visualiza-

tion Design, we examine how structure-preserving modifications

to visualization affect user performance by systematically dividing

the space of possible truncations according to their monotonic-

ity and the type of relations in the underlying data. Our results

demonstrate that for comparing and estimating the difference be-

tween the lengths of two bars, truncating the y-axis does not affect

task performance. For comparing or estimating the relative growth

between two bars, truncating monotonically has similar perfor-

mance to no truncation, while truncating non-monotonically is

very likely to impair performance. We discuss possible extensions

of our work and recommendations for y-axis truncation. All sup-

plementary materials are available at https://osf.io/k4hjd/?view_

only=008b087fc3d94be7ba0ce7aea95012a7.
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1 INTRODUCTION
Should a chart of global average temperature start from 0? In a

chart of temperature over time created by National Review [6],

they extend the y-axis to include 0, but by doing so compress the

trend of global warming to obscurity. An alternative design may

consider starting the y-axis from a different number, but how do

we decide which number? While some guidelines reason that it is
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never acceptable to truncate [23, 39], others argue that it might be

acceptable for some chart types but not others [4, 8]. Additional

guidelines such as Brinton [5] recommend no truncation when the

reader’s focus is on the relative amount of change, while other

guidelines like Skelton [34] recommend no truncation when the

reader’s focus is on the absolute rate of increase/decrease. Only

some of this guidance has been tested by empirical studies, which

find that y-axis truncation results in quantifiable differences in how

people subjectively interpret the size and significance of effects,

even when behavioral and visual interventions (e.g. broken axes)

are employed [12, 30, 44, 46].

To understand precisely when it may be appropriate to truncate

or not, we systematically analyze how y-axis truncation affects

visual properties and identify those that remain invariant after

truncation. Specifically, we ask: What happens when we truncate

the y-axis in such a way that the underlying relations in data are

still preserved in the truncated graph? Motivated by prior work

such as Kindlmann and Scheidegger [27] and Demiralp et al. [16],

we define y-axis truncations that preserve the underlying relations

in data to be monotonic and truncations that do not preserve

underlying relations in data to be non-monotonic.
Our results suggest that for tasks such as comparing or estimat-

ing the differences between bars, y-axis truncation (regardless of

monotonicity) has little to no effect on user performance. Thus, for

these tasks, if the designer wants to elicit a meaningful subjective

perception of effect size in the viewers, our results corroborate ex-

isting recommendations [12, 31, 44] to truncate the y-axis to show

the desired effect size. However, for tasks such as comparing or

estimating the percentage change between bars, no truncation, in

general, performs similarly to monotonic truncation, and both per-

formmuch better than non-monotonic truncation. Thus, we suggest

that the designer perform no truncation or monotonic truncation

for these tasks.

In real life, designers may find themselves in situations where

they face constraints and need to make trade-offs between design

choices. Our work provides a rigorous empirical basis that corrobo-

rates and expands upon previous recommendations on y-axis trun-

cation by (1) providing a re-evaluation of some existing guidelines

about why not to truncate the y-axis, (2) quantifying the degree

to which y-axis truncation affects perceptual accuracy (for two

data-generating distributions and four tasks), and (3) identifying

scenarios where previous research that focused on the subjective

perception of effect size can be applied without risk of decreasing

performance on judgments of differences or percentage changes

between bars.
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2 RELATEDWORK
2.1 Graphical Perception & Bar Charts
Graphical perception was introduced by Cleveland and McGill [10]

as “the visual decoding of information encoded on graphs”. They

tested the impact of bar chart designs (simple and stacked) on

participants’ ability to estimate the ratio between the lengths of

two bars and found that the designs in which the bars are aligned
along a common baseline scored better than the designs where the

comparisons are unaligned. They hypothesized that this difference

is due to the use of two different visual estimation strategies –

for aligned bars, viewers make a visual comparison of positions
while for unaligned bars, viewers make a much less accurate visual

comparison of lengths. They suggest encoding information with

position instead of length for better perceptual accuracy. Cleveland

and McGill [10] also found that comparisons between adjacent

bars are more accurate than between widely separated bars. In our

experiment, we had two comparison tasks. The first comparison

task asked the participants to compare the difference in heights

between two groups of bars, which would requires the participants

to make an unaligned length comparison. The second comparison

task asked the participants to compare the percentage change (i.e.,

(tall bar −short bar)/short bar) between two groups of bars, which
would either require the participants to use both unaligned and

aligned length comparison or a similar perceptual judgment to that

of a perceptual judgment of correlation.

Talbot et al. [37] replicated Cleveland and McGill’s finding that

separating bars in space makes the comparison of their height

more difficult. They also looked at the effects of distractor bars, but

their results were not conclusive. Zhao et al. [50] investigated how

neighboring bars affect the perception of order in bar charts, and

found that while neighborhood effects do exist in rank estimation

tasks, the effect size of neighborhood effects is small compared to

other data-inherent effects. From these prior results, we decided to

not explicitly model distractor bars because we think the effect size

is going to be small. We also did not include the distance between

the two groups of bars in our analysis because it is randomized

across all conditions.

2.2 Deceptive Visualization & Y-axis Truncation
Pandey et al. [30], the first work to empirically examine deceptive

techniques in data visualizations, defined deceptive visualization to

be “a graphical depiction of information ... that may create a belief

about the message and/or its components, which varies from the ac-

tual message”. Heer and Correll [13] also presented a definition that

emphasizes the encouraged interpretation that deviates from the

actual message in the data. Among studied deceptive visualization

practices, we focus on y-axis truncation, a practice of beginning
the vertical axis at a value other than 0. Prior empirical research

[12, 30, 44, 45] has studied this topic by focusing on the subjective
perception of change. These papers find that truncated bar charts

persistently increase the perceived magnitude of trends, despite

behavioral interventions (e.g., warning and teaching people about

y-axis truncation before showing them the stimuli [45]) and visual

interventions (e.g., adding broken axes to emphasize the truncated

y-axis [14]). As a result, these papers suggest either completely

avoiding y-axis truncation for bar charts [45] or truncating it in

a way that aligns with the task at hand or conveys meaningful

effect size to the viewers [12, 44]. In our paper, we quantify the

degree of this increased perceived magnitude by asking participants

to estimate the absolute change (i.e., difference) or the relative
change (i.e., percentage change) between bars. We delay a more

detailed discussion of prior recommendations and guidelines to

subsection 6.1 to better summarize motivations for these recom-

mendations as well as how our motivations and recommendations

fit in with existing ones. We note that truncated axes are not unique

to bar charts. Nevertheless, arguments for other chart types tend to

focus on how truncation changes the aspect ratio of these charts.

Existing research has examined how to set the optimal aspect ratio

for line charts [9, 21, 36, 42] and for scatter plots [18]. Our work

does not examine the effects of aspect ratio changes, as we do not

manipulate the aspect ratios of the bars or the bar chart itself. We

truncate the y-axis, which alters the length of bars within the bar

chart. While one could argue that y-axis truncation alters the aspect

ratio of the position encodings of bars, our experiment primarily

utilizes length judgments, thus the changed position encoding is

not relevant to our work.

2.3 Structure in visualization
This paper was inspired by two groups of work in formal evaluative

theories of visualization. The first group examines how data distri-

butions and user tasks influence the effectiveness of charts [32, 33]

and visual encodings [26]. Hu et al. [22] proposed to view every

realized visualization as a tuple of (data 𝐷 , visual form 𝑉 , task 𝑇 ).

McNutt [29] adopted this view and conducted an algebraic analysis

of table cartograms by fixing the visual form, varying either data

or user task, and observing the remaining element in the triplet.

Behrisch et al. [3] provides a detailed survey on research that views

visualization design as a multi-objective optimization problem. One

such research is Dasgupta et al. [15], in which the authors proposed

a model to quantify the different visual structures in parallel co-

ordinate graphs, as well as a way of automatically optimizing the

display based on their model.

The second group [16, 27, 48] emphasizes the connection be-

tween mathematical structure in the underlying data and mathe-

matical structure in the perception of visualization. Kindlmann and

Scheidegger [27] proposed Algebraic Visualization Design (AVD),

a framework for reasoning about the design of data visualizations

through their intrinsic symmetries. AVD explores the effect of

changes in data on resulting images. It is composed of three general

principles, including the principle of visual-data correspon-
dence, which advocates for “[matching] mathematical structure

in data with that in visual perception”. Similarly, Demiralp et al.

[16] defined a visualization as a function that maps from a domain

of data points to a range of visual primitives. They argued that a

visualization is “good” if the embedded visual elements preserve

structures present in the data domain.

Albeit not mathematical, Zacks and Tversky [49] shared a similar

view, in that there exists data correspondence (between graph type

and data type) and message correspondence between graph type

and the intended message. They showed that there was “a strong

tendency to portray discrete comparison descriptions as bars and

trend assessment descriptions as lines”.
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Figure 1: What are monotonic truncations and what are non-monotonic truncations?
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3 A MODEL FOR Y-AXIS TRUNCATION
We synthesize the ideas from Demiralp et al., Kindlmann and Schei-

degger, and Hu et al. [16, 22, 27] and form the following model for

reasoning about visualizations:

Data 𝐷 ↔ Visual forms 𝑉 ↔ Tasks 𝑇

Given a particular data set 𝑑 in the space of all possible data sets

𝐷 ,𝑑 could be mapped to a set of different visual configurations𝑉𝑑 ⊆
𝑉 , some more structure-preserving (or having better “data-visual“

correspondence) than others. Each feasible visual configuration

𝑣 ∈ 𝑉𝑑 can be used to answer tasks, be it low-level [2] or high-level

[38]. Some visual configurations providemore affordance for certain

tasks [32, 49] and may support better perceptual accuracy. Others

might not support perceptual accuracy but better decision-making

[24] or require a lower level of cognitive effort.

This model allows us to go one step further beyond matching

mathematical structure in data with that of visualization. Instead,

we want to examine the nature of these correspondences between

data, visual forms, and tasks, and be able to characterize these

correspondences. Similar to Kindlmann and Scheidegger [27], we

start by introducing changes into our model – if we alter the visual

configurations in a way that preserves the inherent structures in

data, how does it affect the performance of tasks? Formally, if

function 𝑓 : 𝑉 → 𝑉 is a structure-preserving function applied to

visual configurations, would 𝐷 ↔ 𝑓 (𝑉 ) ↔ 𝑇 be much different

than 𝐷 ↔ 𝑉 ↔ 𝑇 ? And what can we say about the properties of

such a structure-preserving function 𝑓 (·)?
To make our question more concrete, consider the bar charts in

Figure 2.

Figure 2: Left: example of untruncated bar chart. Right: example
of truncated bar chart. The two charts share the same data set
{𝐴1, 𝐴2, 𝐵2, 𝐵2}.

First, look at group 𝐴 in the untruncated bar chart. Group 𝐴

contains two elements, {𝐴1, 𝐴2}, from which we can derive at least

three quantities: mean
1

2
(𝐴1 +𝐴2), gap 𝐴2 −𝐴1, and ratio 𝐴1/𝐴2.

Let 𝐿 denote the height of the viewport on which the bar chart

materializes. Then, the gap Δ𝐴 in the data space maps to Δ𝐴/100×𝐿
in the visual space. The underlying relation between Δ𝐴 and Δ𝐵 in

data space, i.e., Δ𝐴 > Δ𝐵, still holds in the visual space:

Δ𝐴 > Δ𝐵 =⇒ Δ𝐴/100 × 𝐿 > Δ𝐵/100 × 𝐿 (1)

which justifies the usage of length of bars to answer max{Δ𝐴,Δ𝐵}.

Let’s introduce a change by truncating the y-axis. Let 𝑡 denote

the amount truncated for the bar chart on the right in Figure 2. Then,

in the truncated bar chart, the length of Δ𝐴 is now Δ𝐴/(100−𝑡) ×𝐿.
If we simply compare the length of Δ𝐴 in the truncated bar chart to

the length of Δ𝐴 in the untruncated bar chart, we would conclude

that truncation leads to visual exaggeration, sinceΔ𝐴/(100−𝑡)×𝐿 >

Δ𝐴/100 × 𝐿. However, using the rendered lengths of Δ𝐴 and Δ𝐵
in the truncated bar chart to answer the question of max{Δ𝐴,Δ𝐵}
should nevertheless work since the relation that holds in data space

still holds in the visual space:

Δ𝐴 > Δ𝐵 =⇒ Δ𝐴/(100 − 𝑡) × 𝐿 > Δ𝐵/(100 − 𝑡) × 𝐿 (2)

Further, note that the above inequality in Equation 2 implies that

regardless of the amount 𝑡 we truncate, the relation between Δ𝐴
and Δ𝐵 in data space, Δ𝐴 > Δ𝐵, would still hold in the visual space.

Consider another judgment task: What is the answer to

max{𝐴1/𝐴2, 𝐵1/𝐵2}? In the example (Figure 2), the underlying re-

lation in data is 𝐴1/𝐴2 < 𝐵1/𝐵2. In the untruncated bar chart, we

could still use the visual length of bar charts and arrive at the same

conclusion:

𝐴1

𝐴2

<
𝐵1

𝐵2

=⇒ 𝐴1/100 × 𝐿

𝐴2/100 × 𝐿
<

𝐵1/100 × 𝐿

𝐵2/100 × 𝐿
(3)

However, in the truncated bar chart, if we rely on the visual length

of 𝐴1, 𝐴2, 𝐵1, 𝐵2 to judge whether 𝐴1/𝐴2 < 𝐵1/𝐵2, then for our

judgment to be valid, we need

(𝐴1 − 𝑡)/(100 − 𝑡) × 𝐿

(𝐴2 − 𝑡)/(100 − 𝑡) × 𝐿
<

(𝐵1 − 𝑡)/(100 − 𝑡) × 𝐿

(𝐵2 − 𝑡)/(100 − 𝑡) × 𝐿
(4)

=⇒ 𝐴1 − 𝑡

𝐴2 − 𝑡
<

𝐵1 − 𝑡

𝐵2 − 𝑡
(5)

↔ (𝐴2 −𝐴1︸   ︷︷   ︸
Δ𝐴

+𝐵1 − 𝐵2︸  ︷︷  ︸
−Δ𝐵

) × 𝑡 < 𝐵1𝐴2 −𝐴1𝐵2 (6)

=⇒ 𝑡 <
𝐵1𝐴2 −𝐴1𝐵2

Δ𝐴 − Δ𝐵
(7)

In other words, if the truncation 𝑡 satisfies Equation 7, then

using length in the truncated bar chart to judgemax{𝐴1/𝐴2, 𝐵1/𝐵2}
should not differ from that of using length in the untruncated

bar chart, since the relation between 𝐴1/𝐴2 and 𝐵1/𝐵2 in data is

preserved by the relation in visualization.

3.1 Data relations
Among the different quantities of interest in a grouped bar chart,

we choose to focus on two quantities that have been examined

by prior work [10]: (1) gap 𝐴2 −𝐴1, and (2) percentage change
(𝐴2 − 𝐴1)/𝐴1. To ensure completeness, we use Allen’s interval

algebra [1], a calculus initially introduced for temporal reasoning

but which has also found applications in visualization research [15].

Three out of the thirteen base relations of Allen’s interval algebra

apply to the quantities we study: (1) 𝑋 > 𝑌 , (2) 𝑋 < 𝑌 , and (3)

𝑋 = 𝑌 .1 Ignoring equality, there are two relations in data space for

gaps between groups𝐴 and 𝐵: (1) Δ𝐴 > Δ𝐵 and (2) Δ𝐴 < Δ𝐵. There
are also two relations in data space for percentage change between
groups 𝐴 and 𝐵: (1) Δ𝐴/𝐴1 > Δ𝐵/𝐵1 and (2) Δ𝐴/𝐴1 < Δ𝐵/𝐵1. A

1
Because all bars start at the same baseline, most of Allen’s relations do not apply. If

we were examining another visual form, e.g., stacked bar charts, more of the relations

in Allen’s interval algebra apply.
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A

A
A1 A2

B

B1 B2

B

100

0

(a) Δ𝐴 > Δ𝐵,
Δ𝐴/𝐴1 > Δ𝐵/𝐵1

A B

100

0

A
B

B1 B2A1 A2

(b) Δ𝐴 < Δ𝐵,
Δ𝐴/𝐴1 < Δ𝐵/𝐵1

A

A
A1 A2

B

B1 B2

B

100

0

(c) Δ𝐴 > Δ𝐵,
Δ𝐴/𝐴1 < Δ𝐵/𝐵1

A B

100

0

A

B

B1 B2A1 A2

(d) Δ𝐴 < Δ𝐵,
Δ𝐴/𝐴1 > Δ𝐵/𝐵1

Figure 3: An example of the four kinds of data relations.

combination of these relations in data space gives us a total of four

kinds of data relations when looking at two groups of bar charts:

(1) Figure 3a: Δ𝐴 > Δ𝐵,Δ𝐴/𝐴1 > Δ𝐵/𝐵1;

(2) Figure 3b: Δ𝐴 < Δ𝐵,Δ𝐴/𝐴1 < Δ𝐵/𝐵1;

(3) Figure 3c: Δ𝐴 > Δ𝐵,Δ𝐴/𝐴1 < Δ𝐵/𝐵1;

(4) Figure 3d: Δ𝐴 < Δ𝐵,Δ𝐴/𝐴1 > Δ𝐵/𝐵1.

For ease of exposition, we group the first two data relations as con-
cordant data relations (since the trend in comparing percentage

changes is the same as the trend in comparing gaps) and the later

two data relations as discordant data relations.

3.2 Monotonicity of truncation
We define amonotonic y-axis truncation to be a truncation that

does not result in a reversed data relation at hand (Figure 1). Let

𝑡 denote the amount of truncation performed. Then, for example,

a monotonic truncation for a concordant data relation Δ𝐴 >

Δ𝐵,Δ𝐴/𝐴1 > Δ𝐵/𝐵1 implies that

Δ𝐴

𝐴1 − 𝑡
>

Δ𝐵

𝐵1 − 𝑡
(8)

↔ 𝑡 <
Δ𝐵𝐴1 − Δ𝐴𝐵1

Δ𝐵 − Δ𝐴
(9)

while a non-monotonic truncation implies that

Δ𝐴

𝐴1 − 𝑡
<

Δ𝐵

𝐵1 − 𝑡
(10)

↔ 𝑡 >
Δ𝐵𝐴1 − Δ𝐴𝐵1

Δ𝐵 − Δ𝐴
(11)

Based on our definitions of data relations and monotonic y-

axis truncation, it is impossible to perform a non-monotonic y-axis
truncation for discordant data relations (refer to Appendix A). Put

anotherway, for discordant data relations, it is impossible to visually

alter the underlying data relations regardless of how one truncates

the y-axis.

Connecting this example back to the 𝐷 ↔ 𝑉 ↔ 𝑇 model, a

monotonic truncation on the y-axis is simply a structure-preserving

function 𝑓 (·). We hypothesize that monotonic y-axis truncations

will not affect user performance much (that is, 𝐷 ↔ ↔ 𝑇 should

behave similarly to 𝐷 ↔ 𝑓 ( ) ↔ 𝑇 when 𝑓 (·) is monotonic),

while non-monotonic truncations would have a more adverse im-

pact on user performance.

4 METHODOLOGY
To test our hypothesis that (1) 𝐷 ↔ 𝑓 ( ) ↔ 𝑇 scores similarly

to 𝐷 ↔ ↔ 𝑇 when 𝑓 (·) is monotonic, and (2) 𝐷 ↔ 𝑓 (
) ↔ 𝑇 scores worse compared to 𝐷 ↔ ↔ 𝑇 when 𝑓 (·) is non-
monotonic, we designed our experiment with two different data-

generating distributions and four different tasks. Our experiment

followed a mixed factorial design. The between-subjects factor is
the judgment task. The three within-subjects factors are (1) data-
generating distribution, (2) data relation, and (3) type of truncation.

We preregistered our conditions, sample sizes, and analysis on

osf.io. The remaining of this section details our choices for each

experiment factor.

Figure 4: Sample question from the experiment. The participant is
asked to estimate the ratio between the profit in 2020 and the profit
in 2021 for April. Note that the y-axis is truncated to start at 55.

4.1 Judgment tasks
We used four judgment tasks with varying levels of cognitive and

perceptual demand, following recent studies on how tasks affect

user performance [26, 32, 33]:

(1) Compare Gaps – “Which month has a greater difference in
profit between 2020 and 2021, [month A] or [month B]?’

(2) Compare Ratios – “Which month shows a greater percentage
change from 2020 to 2021, [month A] or [month B]?”

https://osf.io/k4hjd/?view_only=008b087fc3d94be7ba0ce7aea95012a7
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(3) Estimate Gap – “What is the difference between the profit in
2020 and the profit in 2021 for [month]?”

(4) Estimate Ratio – “What is the ratio between the profit in
2020 and the profit in 2021 for [month]?”

For Estimate Gap, we asked for an integer between 1 to 100

(measured in units). For Estimate Ratio, we asked for an integer

between 1 to 100 (measured in percentage points). This selection of

tasks covers some common tasks used in prior graphical perception

research [10], yet is different from prior work on y-axis truncation

[12, 30, 31, 44, 45] that elicited responses using Likert items.

4.2 Experiment stimuli and data generation
We generated visual stimuli using Vega-Altair [40] and hosted

them on an online survey created via the Qualtrics platform. We

framed our questions in the context of comparing profits between

2020 and 2021 for the first six months of the year to simulate a

real-world setting where grouped bar charts are used.

4.2.1 Data-generating distribution. Existing research [26, 33] has

shown that data impacts task effectiveness, yet prior work on y-

axis truncation either did not specify how their data was generated

[12, 30] or used only normal distributions [44]. To test if differ-

ent data-generating distributions have different impacts on y-axis

truncations, we selected two distributions with bounded support

between 0 and 100:

(1) We used a scaled Beta distribution with parameters 𝛼 =

16, 𝛽 = 6 as an approximation for data that is roughly nor-

mally distributed. We thought it necessary to include this

data-generating distribution since (approximately) normal

distributions are among the most commonly seen distribu-

tions in the wild.

(2) We used a truncated Pareto distribution with parameters

𝑏 = log
4
(5), 𝑐 = 5, scale = 20 to model real-life scenarios

where we have outliers in the data.

We sampled data using the Python packages numpy [20] and

scipy [41].

4.2.2 Data relation. As detailed in subsection 3.1, we have four

different kinds of data relations grouped into two categories: con-
cordant and discordant data relations. For any data set, there are

four potential judgment tasks that it could answer. The comparison

tasks require two months to examine, and these are selected by

going through all

(
6

2

)
= 15 pairs of months, finding the pairs that

satisfy the data relation we want to test, and selecting the pair that

has the minimum absolute difference between their gaps, i.e., the

pair that has minimum |Δ𝐴 − Δ𝐵 |. The estimation tasks require

one month to examine, and we randomly selected either the month

that has the biggest percentage change or the biggest difference

between the two bars. We did not control for the distance between

the two pairs of bars – they could be next to each other or separated

by four other pairs of bars. We adjusted the ordering of bars such

that for the two months for comparison, within each month, the

left bar is always the shorter bar.

4.2.3 Type of truncation. As detailed in subsection 3.2, there are

three types of allowed truncation: No truncation, monotonic trun-

cation, and non-monotonic truncation. The actual amount of trun-

cation was randomly sampled from the interval of monotonic trun-

cations and the interval of non-monotonic truncations respectively

(Figure 1). This differs from prior work where the authors either do

not specify how they chose the truncation value [30] or start the

y-axis from fixed values [12].

4.3 Experiment Procedure

Stimuli Generation

2

40 trials + 
2 attention 
checks

Experiment procedure

Participants
arrive

4
tasks

4
Training trials 
with feedback

Demographics

4
No , 

Mono , 
Non-mono 

3

Main study

2 repetitions

Assigned randomly
one of …

For each 

…

Figure 5: Overview of experiment procedure. Participants were first
randomly assigned to one of four tasks, then to the same set of
training stimuli in the same order, and then to the same set of 20
conditions, but different testing stimuli. Observe that 2 × 4 × 3 ×
2 = 48 ≠ 40 trials – this is because it is impossible to truncate non-
monotonically for the two discordant data relations, thus resulting
in 2 × 4 × 3 × 2 − 2 × 2 × 1 × 2 = 48 − 8 = 40 trials.

• Introduction and Consent. Participants began by reading

about the study goals and compensation. Participants were

instructed to not rely on any rulers and to refrain from taking

long breaks while answering the questions.

• Training. Participants were given 4 practice trials. All par-

ticipants were assigned the same set of training stimuli, dis-

played to them in the same order. After answering, partici-

pants will see their responses displayed alongside the actual

answers for the trial. For example, a participant assigned the

task Estimate Ratiowill see "You have entered [...] as your

answer. The actual ratio between the profit in 2020 and the

profit in 2021 for [month] is [...]%."

• Testing. Participants were given 42 testing trials, 2 of which

were attention checks. The first attention check was inserted

randomly into the first 20 trials, and the second attention

https://altair-viz.github.io/index.html
https://www.qualtrics.com/
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check was inserted randomly into the remaining 20 trials.

The attention check stimuli were the same for all partici-

pants.

• Demographics and optional written feedback. Partici-
pants were asked to provide demographic information on

their age and gender. Participants were also asked to pro-

vide optional feedback on the strategy they used for their

assigned perceptual task, as well as whether they followed

the instructions in the survey.

4.4 Participants and exclusion criteria
We recruited participants in an IRB-approved study on Prolific.co
who are between the ages of 18 to 65, have a normal or corrected-to-

normal vision, speak fluent English, and reside in the United States.

The study was distributed to a balanced sample of participants.

We excluded participants who failed to correctly answer both of

the attention check questions for comparison tasks and participants

who provided estimates that were more than 5 units away from the

actual answer for estimation tasks.We also excluded one participant

who answered "no" to the question in the feedback about whether

they followed the instructions or not. Due to a data collection issue,

we had two pairs of participants who were assigned to the same

task and the same stimuli. We excluded the participants who started

the survey later from our analysis.

In total, we collected data from 136 participants, and after exclud-

ing 11 participants for failing the attention checks, 1 participant for

not following the instructions, and 2 participants for data collection

issues, we had a total of 122 participants for analysis. Successful

participants were compensated with an average reward of $17.02 /

hour, exceeding the US minimum wage. The median completion

time was 17 minutes.

4.5 Analysis approach
We used multi-level Bayesian regression to analyze our results.

Specifically, we used logistic regression for the comparison tasks

and hurdle log-normal regression for estimation tasks. The hur-

dle log-normal distribution is a modified log-normal distribution

that allows zeros by modeling the probability of zero as a sepa-

rate process. For computing and presenting the results, we used

the following R packages: brms[7], tidybayes [25], rstan [35] and
tidyverse [43].

All of our models are random effects models. Due to the nature

of the small sample size we collected for each task, we believe it is

best to be conservative in our modeling approach, and thus adopted

random effects to maximize partial pooling of information with the

amount of data we had [19].

Let PID[𝑖] denote the participant ID associated with the 𝑖-th

observation. Let cut:dist:rel[𝑖] denote the combination of the type

of truncation, data-generating distribution, and data relation for the

𝑖-th observation. For the two comparison tasks, let 𝑦 denote the

binary dependent variable and 𝜋 denote the probability of success.

Then, we have the following model:

𝑦 ∼ Bernoulli(𝜋)
logit(𝜋) = ¯𝛽 + 𝛽

PID[𝑖 ] + 𝛽
cut:dist:rel[𝑖 ]

The corresponding brms formula is correct ~ 1 + (1|pid)+ (1|rel:

dist:cut), family = bernoulli.

For the two estimation tasks, let 𝑦𝑖 := |response𝑖 − answer𝑖 |
denote the numerical response variable, i.e., 𝑦𝑖 is the absolute error

for the 𝑖-th observation. Let 𝜋 denote the probability of zero. Then,

we have the following model:

𝑦 ∼ Hurdle Log-Normal(𝜇, 𝜎, 𝜋)
𝜇 = ¯𝛽 + 𝛽

PID[𝑖 ] + 𝛽
cut:dist:rel[𝑖 ]

logit(𝜋) = ¯𝛽 + 𝛽
PID[𝑖 ] + 𝛽

cut:dust:rel[𝑖 ]
The corresponding brms formula is bf(diff ~ 1 + (1|pid)+ (1|cut:rel

:dist), hu ~ 1 + (1|pid)+ (1|cut:rel:dist)), family = hurdle_lognormal

().

4.5.1 Priors. We used the following priors for all of our models:

• ¯𝛽 ∼ Normal(0, 1.5)
• 𝛽PID ∼ Normal(0, 𝜎PID)
• 𝛽

cut:dist:rel
∼ Normal(0, 𝜎

cut:dist:rel
)

• 𝜎PID, 𝜎cut:dist:rel, 𝜎 ∼ Exponential(1.5)

5 RESULTS
5.1 Data preliminaries
Among the 122 participants, there were 58 female participants

(47.5%), 59 male participants (48.4%), and 5 (4%) non-binary partici-

pants. The self-reported age of participants ranges from 20 to 60,

with a median age of 32 and a mean age of 35.31. The average time

(in seconds) for a participant to answer a question for each task,

ordered by magnitude, is Compare Gaps (13.76) < Estimate Gap
(13.86) < Compare Ratios (17.99) < Estimate Ratio (20.55).

5.2 Gap

For concordant data relations ... 

For discordant data relations ... 

no truncation

non-monotonic
truncation

 

monotonic
truncation

 
80% 85% 90% 95% 100%

NMT

NT
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MT − NT
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truncation
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concordant

DIS
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B
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P − B

-10% 10%-5% 0 5%
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80% 85% 90% 95% 100%
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Figure 6: Left: Posterior density, median, 66% and 95% quantile in-
terval of the probability of correctly answering. Right: Expected
difference in the means between different values of a variable. Pink
ticks represent the percentage of correct response answers.

The 32 participants performed well for Compare Gap (Figure 6).

https://www.prolific.co/
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We found no significant difference in performance between the

different types of truncation: for concordant data relations, the

difference between non-monotonic truncation and no truncation

has a mean of 0.26%with 95% CI [−1.89%, 2.39%], and the difference
between monotonic truncation and no truncation has a mean of

0.29% with CI [−1.83%, 2.41%]. For discordant data relations, the
difference between monotonic truncation and no truncation has a

mean of −0.99% with CI [−4.53%, 2.52%].
We also found no significant difference in performance between a

Beta distribution and a truncated Pareto distribution, given that the

difference in themeans between the two is 0.53% (CI [−1.25%, 2.38%]).
We did find a difference between performance for discordant

data relations and concordant data relations: on average, concor-

dant data relations lead to a higher probability of correctness com-

pared to discordant relations, with a difference of mean 5.88% (CI

[8.46%, 3.41%]).

absolute error
(unit)

For concordant data relations ... 

difference in absolute error 
(unit)

For discordant data relations ... 

no truncation
monotonic
truncation

 

no truncation

non-monotonic
truncation

 

monotonic
truncation
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MT − NT
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DIS − CON
DIS

CON
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Figure 7: Left: Posterior density, median, 65% and 95% quantile in-
terval of absolute error. Right: Expected difference in the means
between different values of a variable.

The 31 participants performed fairly accurately for the task of

Estimate Gap (Figure 7): 52% of responses had an absolute error

of 0, and the posterior distributions show a high concentration of

absolute error around 1.

For both concordant and discordant data relations, we found no

significant difference in performance between monotonic trunca-

tion and no truncation: the difference in absolute error between

no truncation and monotonic truncation has a mean of −0.05 (CI

[−0.23, 0.12]) for concordant relations and amean of 0.09 (CI [−0.11, 0.29])
for discordant relations.

Similarly, there is no significant difference between the two

different kinds of data relations or the two different types of data-

generating distributions. The difference between discordant and

concordant data relations has a mean of −0.08 (CI [−0.22, 0.06]),
and the difference between Pareto and Beta distributions has a

mean of −0.14 (CI [−0.29,−0.01]).

However, where non-monotonic truncation is allowed (in concor-

dant data relations), the difference in absolute error between non-

monotonic truncation and no truncation has a mean of 0.635 (CI

[0.371, 0.926]), suggesting that non-monotonic truncation causes a

small exaggeration in people’s estimation of gaps between groups

of bars.

5.3 Ratio

probability of success difference between predicted 
probability of success

Task:	Compare	Ratio
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Figure 8: Left: Posterior density, median, 66% and 95% quantile inter-
val of the probability of correctly answering. Pink ticks represent the
percentage of correct response answers. Right: Expected difference
in the means between different values of a variable. Similar to our re-
sults for Compare Gap in Figure 6, themedian of posterior predictions
(represented by black dots) are closer together than the raw data
(represented by pink ticks), which demonstrates model shrinkage.
This will make estimates of differences more conservative and is
thus suitable for the sample size we’ve collected.

The 29 participants performed on averagemuchworse in Compare
Ratios than Compare Gaps (Figure 8). For both concordant and

discordant relations, we found that monotonic truncations slightly

improve the probability of success compared to no truncation – for

concordant data relations, the difference in probability of success

between monotonic truncation and no truncation for concordant

data relations has a mean of 2.89% (CI [−2.43%, 8.38%]) and for

discordant data relations has a mean of 2.44% (CI [−3.18%, 8.19%]).
We also found that non-monotonic truncation decreases the prob-

ability of success compared to no truncation, with the difference

between the two having a mean of −12.5% (CI [−19.5%,−5.47%]).
We did not find a significant difference in performance between

different kinds of data relations – between concordant and discor-

dant relations, the difference in probability of success has a mean of

0.08% (CI [−3.51%, 3.65%]). We found a slightly higher probability

of success in Pareto distributions compared to Beta distributions,

with the difference between the two having a mean of 4.47% (CI

[0.83%, 8.32%]).
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Figure 9: Left: Posterior density, median, 66% and 95% quantile inter-
val of the absolute error for task Estimate Ratio. Right: Expected
difference in the means between different values of a variable.

Previously, we saw a 13% decrease in the predicted probability of

success between non-monotonic truncation and no truncation and

a 3 % increase between monotonic truncation and no truncation.

Could this be due to how y-axis truncation alters the precision of

the estimation of ratios (Figure 9)?

We found that no truncation has a smaller absolute error com-

pared to monotonic truncation for both concordant and discor-

dant data relations – the difference in absolute error between the

two is 0.42 (CI [−0.37, 1.35]) for concordant relations and 0.94 (CI

[−0.02, 2.04]) for discordant relations. We also found that no trun-

cation has a smaller absolute error compared to non-monotonic

truncation – the difference in absolute error between the two is

0.99 (CI [−0.01, 2.22]). This implies that truncation, regardless of its

monotonicity, is likely to bias the estimate of percentage change up-

wards, but non-monotonic truncations have larger absolute errors

compared to monotonic truncations.

For different data relations, we found that discordant data rela-

tions have a smaller absolute error compared to concordant data

relations – the difference between the two has a mean of −0.53 (CI

[−1.25, 0.05]).
We did not find much difference between the two kinds of data-

generating distributions. The difference between Pareto and Beta

in predicted absolute error has a mean of −0.22 (CI [−0.81, 0.29]).

5.4 Summary
At the end of subsection 3.2, we proposed two hypothesis:

(1) Monotonic truncation would not impact 𝐷 ↔ ↔ 𝑇 .

(2) Non-monotonic truncation would adversely impact

𝐷 ↔ ↔ 𝑇 .

We found that for tasks that examine a quantity whose data

relation is unaffected by truncation (i.e., gap), truncation has lit-
tle to no effect on user performance, regardless of whether
it is monotonic or not. Specifically, for Compare Gaps, there is

essentially no difference in user performance between no trun-

cation and monotonic truncation, as well as no truncation and

non-monotonic truncation. For Estimate Gap, non-monotonic

truncation leads to a larger estimated magnitude (as also seen in

prior work [12, 30, 44, 45]), but the degree of increase is small.

On the other hand, for tasks that examine a quantity whose data

relation is affected by truncation (i.e., ratio), monotonic trunca-
tion has similar user performance as no truncation, but both
are much better than non-monotonic truncation. Specifically, for

Compare Ratios, monotonic truncation slightly improves the prob-

ability of success compared to no truncation, while non-monotonic

truncation decreases the probability of success. For Estimate Ratio,
truncations (regardless of monotonicity) have larger absolute errors

compared to no truncation, but non-monotonic truncation has a

larger absolute error compared to monotonic truncation.

6 DISCUSSION
6.1 Recommendations for y-axis truncation
In a blog post [11] accompanying their paper [12], Correll cate-

gorized y-axis truncation recommendations into four groups: the

Anathemists, the Line Chart Exceptionists, the Signalers, and the

Libertines. We take a different approach and employ the 𝐷 ↔ 𝑉 ↔
𝑇 model to categorize recommendations into three broad groups:

those emphasizing the 𝐷 ↔ 𝑉 correspondence, those emphasizing

the 𝑉 ↔ 𝑇 correspondence, and those that focus on either 𝐷 or 𝑇 .

6.1.1 𝐷 ↔ 𝑉 correspondence. Arguments emphasizing the 𝐷 ↔
𝑉 correspondence are prominently featured in the bar vs line debate

[4, 8, 17, 28, 34]. People have long disagreed on whether the no trun-

cation rule only applies to bar charts or includes line charts as well.

Advocates of the “only bars” position argue that the correspondence

between data and the visual encoding of bar charts is distorted by

truncation. Since bar charts use either height/length [8, 17, 34, 47]

or size [4] to encode data, starting the y-axis from a non-zero value

disrupts the correspondence between bar height/length/size and

the original data value. On the other hand, since line charts and dot

charts use position/angle to encode information [4, 8, 34, 45], it is

not necessary to hold them to the zero-baseline rule because these

encodings do not get distorted [8].

6.1.2 𝑉 ↔ 𝑇 correspondence. While previous arguments focus

on how truncation affects the 𝐷 ↔ 𝑉 correspondence differently

for different visual encodings, other arguments focus on how the

decoding of information in line charts and bar charts could be

practically the same. For example, Skelton [34] and Kosara [28]

argue that people decode line charts and bar charts both by the

distance of the mark from the baseline and thus a non-zero line

chart poses a similar risk as a non-zero bar chart. This decoding

argument is also empirically supported by Correll et al.’s finding

that there is no significant difference between bars and lines when

participants are decoding charts into a measure of subjective trend

strength [11, 12].

Other people whose arguments emphasize the𝑉 ↔ 𝑇 correspon-

dence care about visual impression, or graphical perception,
which is operationalized by tasks 𝑇 in 𝐷 ↔ 𝑉 ↔ 𝑇 . For example,

Huff [23] argues that in a truncated graph, “nothing has been falsi-

fied – except the impression that it gives” and thus suggests that all
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charts should begin their y-axis from zero. Witt [44] reasons that

“when the [perceived] visual size of the effect aligns with the actual

size of the effect”, the reader exerts less mental effort decoding

information. Witt suggests setting the y-axis range to 1.5 SDs be-

cause she found “improved sensitivity in effect size” when doing so.

However, Witt did not explicitly state whether her recommendation

applies to bar charts because her experiment task “did not permit

measuring the spontaneous impression given by the graphs”, and

this impression could be either the differences or the ratios between
bars.

6.1.3 𝐷 or𝑇 . Other guidelines have proposed different exceptions
for the no-truncation rule, focusing on either the nature of data

𝐷 or the reader’s task/quantity of interest 𝑇 . On the data side, a

non-zero baseline is encouraged when it is meaningful or shows

small but meaningful changes in the data [8, 34]. On the task side,

it depends on whether the visualization is communicating absolute

change or relative change [5, 34]. On one hand, Brinton [5] suggests

that time-series line charts do not need to include the zero baselines

when the reader is interested in “the absolute amount of change

rather than ... the relative amount of change”. On the other hand,

Skelton [34] argues that for comparisons between the relative rate

of increase/decrease on the line chart, baseline zero is irrelevant,

and for “communicating the actual rate of increase/decrease ...,

baseline zero can be very important (and its absence potentially

misleading).”

6.1.4 Our approach and recommendation. In our paper, we pro-

posed the 𝐷 ↔ 𝑉 ↔ 𝑇 model, defined and examined properties

of truncations that are structure-preserving transformations of the

visual component of a 𝐷 ↔ 𝑉 ↔ 𝑇 correspondence, proposed

hypotheses of the effects of such truncations, and designed experi-

ments to test our hypotheses. As such, our recommendations stem

from a rigorous theoretical and empirical basis. Combined with

findings from prior studies [12, 44, 46], we propose the following

suggestions that we believe may extend well beyond grouped bar

charts:

When the designer has control over user tasks or knows
with high certainty the tasks a visualization will be used
for, and when the task examines quantities that are unaffected by

truncation (e.g., Compare Gaps and Estimate Gap), the designer
can truncate the axis to elicit the desired subjective perception of

effect size or make the visuals more task-aligned, as recommended

by previous work [12, 44]. However, if the tasks examine quantities

that are affected by truncation (e.g., Compare Ratios and Estimate
Ratio), then we suggest performing monotonic truncations or no

truncations to avoid creating visual relations that are contrary to

data relations.

In other scenarios when the designer does not have control
over user tasks or is uncertain about the tasks that visualiza-
tions will be used for, then fixed truncation in a static visualiza-

tion, such as tested in this paper, is likely inappropriate. However,

other approaches that use interactivity to gain the potential benefits

of truncation without introducing deception [31] may be effective.

Ultimately, it is the designer who faces constraints [8] and shoul-

ders the responsibility to determine the effect size they want to

show [12], but we provide a clear, empirically-verified rule on the

conditions under which a designer can justify their choice for the

amount they truncate. Our recommendations highlight the impor-

tance of tasks, data relations (as revealed by the examination of

structure-preserving transformations in our work) and subjective

perception (as revealed by previous work [12, 31, 44, 45]) to making

an informed decision about when and how to truncate the y-axis.

6.2 Limitations
Our research did not center on the cognitive aspect of graphical

perception. We did not investigate the causes of deception, nor did

we examine the relationship between inattention and deceptive vi-

sualizations. Additionally, we did not analyze how framing, priming,
or anchoring impacts the graphical perception of bar charts.

There are many interesting directions as potential follow-ups to

our work. A natural extension is to examine other tasks and see if

we can offer structure-preserving transformations for those tasks.

Additionally, we could investigate the feasibility of providing these

transformations to tasks that involve subjective perception of bar

charts rather than numerical perception. A third extension is to

impose a time limit on tasks and see if our results still hold while

participants are more time-constrained. With more data, we could

also characterize the Pareto-frontier of tradeoffs for different tasks.

Finally, we could empirically investigate the just noticeable differ-

ence (JND) for the perception of percentage change and investigate

its alignment with mathematical concepts of monotonicity.

7 CONCLUSION
In this paper, we systematically examined the controversial visual-

ization technique, y-axis truncation, applied to grouped bar charts.

We find that for simpler tasks that examine visual quantities whose

data relations are unaffected by truncation, such as comparing or

estimating differences between bars, y-axis truncation has mini-

mal impact on user performance. However, for tasks that examine

visual quantities whose data relations are affected by truncation,

such as comparing or estimating percentage changes between bars,

truncating the y-axis, specifically non-monotonically truncating

the y-axis, worsens user performance. We provide suggestions for

when designers can leverage previous recommendations on y-axis

truncation regarding the subjective perception of effect size without

compromising judgment accuracy.
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A MATHEMATICAL CALCULATIONS
For discordant data relation Δ𝐴 > Δ𝐵,Δ𝐴/𝐴1 < Δ𝐵/𝐵1:

Proof. Suppose for contradiction that truncation 𝑡 > 0 is non-

monotonic, i.e., 𝑡 reverses the data relation. This implies that

Δ𝐴

𝐴1 − 𝑡
>

Δ𝐵

𝐵1 − 𝑡

(Δ𝐵 − Δ𝐴)︸       ︷︷       ︸
<0

𝑡 > Δ𝐵𝐴1 − Δ𝐴𝐵1︸            ︷︷            ︸
>0

given by data relation

𝑡 <
Δ𝐵𝐴1 − Δ𝐴𝐵1

Δ𝐵 − Δ𝐴︸            ︷︷            ︸
<0

Since truncation can not be negative, we conclude that it is impos-

sible to have a non-monotonic truncation on data relation Δ𝐴 >

Δ𝐵,Δ𝐴/𝐴1 < Δ𝐵/𝐵1. □

Similarly, for discordant data relationΔ𝐴 < Δ𝐵,Δ𝐴/𝐴1 > Δ𝐵/𝐵1:

Proof. Suppose for contradiction that truncation 𝑡 > 0 is non-

monotonic, i.e., 𝑡 reverses the data relation. This implies that

Δ𝐴

𝐴1 − 𝑡
<

Δ𝐵

𝐵1 − 𝑡

(Δ𝐵 − Δ𝐴)︸       ︷︷       ︸
>0

𝑡 < Δ𝐵𝐴1 − Δ𝐴𝐵1︸            ︷︷            ︸
<0

given by data relation

𝑡 <
Δ𝐵𝐴1 − Δ𝐴𝐵1

Δ𝐵 − Δ𝐴︸            ︷︷            ︸
<0

Since truncation can not be negative, we conclude that it is impos-

sible to have a non-monotonic truncation on data relation Δ𝐴 <

Δ𝐵,Δ𝐴/𝐴1 > Δ𝐵/𝐵1. □
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