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Promises and Pitfalls: Using Large Language Models to
Generate Visualization Items
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Item design space (Sec 3.1) VILA pipeline (Sec 3.3 - 3.7) Evaluation (Sec 4) VILA bank (Sec 4.4) 

We constructed a design space 
for multiple-choice visualization 
items containing contexts 
(e.g., economy, education), 
chart types (e.g., bar chart), and 
vis tasks (e.g., identify range).

Innovation Scores by State
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innovation score?
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An example of a pitfall: Due to binning in the color mapping, information is 
lost by aggregation, so it is impossible to tell which state has the higher 
innovation score between Virginia and California. 
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An example of a promise: A well-designed item generated by VILA.
VILA particularly performs well on simple chart types (e.g., line, bar chart) and tasks 
within the Knowledge, Comprehension, and Evaluation levels in Bloom’s taxonomy.

We designed VILA, an LLM-based pipeline 
that generates datasets and visualizations, 
composes multiple-choice items, then 
checks items for mistakes. We generated 
1,404 candidate items using VILA.

Generator Composer Checker

We rated all items with a 
rulebook developed from 
11 experts’ ratings on 156 
representative items, identifying 
promises     and pitfalls 
of VILA.

We selected 1,103 
highly rated items 
(~79%) to form the 
VILA bank.

We used the VILA bank and 
customized the pipeline to 
create a new test: VILA-VLAT. 
We compared it with VLAT and 
assessed its convergent 
validity (R = 0.70).

VILA-VLAT (Sec 5)

Fig. 1: Overview of this paper: developing the VILA pipeline, evaluating the candidate bank, and demonstrating a potential application—
the new VILA-VLAT visualization literacy test.
Abstract—Visualization items—factual questions about visualizations that ask viewers to accomplish visualization tasks—are regu-
larly used in the field of information visualization as educational and evaluative materials. For example, researchers of visualization
literacy require large, diverse banks of items to conduct studies where the same skill is measured repeatedly on the same participants.
Yet, generating a large number of high-quality, diverse items requires significant time and expertise. To address the critical need for a
large number of diverse visualization items in education and research, this paper investigates the potential for large language models
(LLMs) to automate the generation of multiple-choice visualization items. Through an iterative design process, we develop the VILA
(Visualization Items Generated by Large LAnguage Models) pipeline, for efficiently generating visualization items that measure peo-
ple’s ability to accomplish visualization tasks. We use the VILA pipeline to generate 1,404 candidate items across 12 chart types and
13 visualization tasks. In collaboration with 11 visualization experts, we develop an evaluation rulebook which we then use to rate the
quality of all candidate items. The result is the VILA bank of ∼1,100 items. From this evaluation, we also identify and classify current
limitations of the VILA pipeline, and discuss the role of human oversight in ensuring quality. In addition, we demonstrate an application
of our work by creating a visualization literacy test, VILA-VLAT, which measures people’s ability to complete a diverse set of tasks on
various types of visualizations; comparing it to the existing VLAT, VILA-VLAT shows moderate to high convergent validity (R = 0.70).
Lastly, we discuss the application areas of the VILA pipeline and the VILA bank and provide practical recommendations for their use.
All supplemental materials are available at https://osf.io/ysrhq/.

Index Terms—Visualization Items, Large Language Models, Visualization Literacy Assessment

1 INTRODUCTION

Visualization items—factual questions about visualizations that ask
viewers to accomplish visualization tasks—are regularly used in the
field of information visualization as educational and evaluative ma-
terials [4, 8, 18, 20, 28, 41]. Teachers of visualization courses require
an extensive pool of materials for quizzes, practice problems, and ex-
ams; researchers require items to study and advance visualization liter-
acy [13,18,20,28]; and developers of visualization question-answering
(VQA) systems seek items as training and test data [23, 31, 32].

Many of these applications of visualization items require large and
diverse item banks. For example, visualization literacy researchers
may want to track skill development over time or to evaluate interven-
tion efficacy through pre- and post-testing; both require large banks to
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avoid item overuse (the same item being administered to the same per-
son multiple times). Visualization educators need large item banks to
reduce the labor of repeatedly creating new materials and to avoid the
risk of leaking homework or test materials. Item banks must also be
diverse to ensure that measurement is not biased by the properties of
any particular item or specific context, and educators need diverse item
banks so that they can assess students’ skills across a range of cogni-
tive levels. For example, having items that cover all levels of Bloom’s
taxonomy [26] (a widely-used taxonomy of learning goals) would help
students develop—and teachers assess—a variety of skills, all the way
from simple value retrieval tasks to high-level tasks like judging the
appropriateness of a visualization design.

However, the generation of high-quality, diverse banks of visualiza-
tion items is a resource-intensive task. Significant expertise is needed
to develop well-designed visualizations, craft questions that accurately
assess intended competencies, and curate multiple-choice answers
with one best option [4, 18, 28]. There is an untapped need for a way
to generate high-quality, diverse items more efficiently and at scale.

Recent advancements in LLMs have demonstrated their capacity to
perform tasks including text generation, code generation, and question
answering, with promising levels of success [2, 5, 9, 14]. Creating a
visualization item requires similar abilities such as generating code
for a visualization and writing questions based on it. Thus, LLMs may
be able to produce diverse, high-quality visualization items at scale.
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To investigate the promises and pitfalls of LLM-based generation of
multiple-choice visualization items, we:
1. Develop the VILA (Visualization Items Generated by Large

LAnguage Models) pipeline, an LLM-based pipeline for generat-
ing large, diverse banks of multiple-choice visualization items.
Through an iterative design process, we devise a three-stage
pipeline: Stage I: Generator generates a data visualization and its
associated dataset; Stage II: Composer composes the question, op-
tions, and correct answer of the multiple-choice item; and Stage
III: Checker checks the generated item and regenerates a new one if
mistakes are detected.

2. Use the VILA pipeline to construct the VILA bank, a bank of 1,103
multiple-choice visualization items covering 9 contexts (underlying
topics of data), 12 chart types, and 13 visualization tasks covering
all levels of Bloom’s taxonomy. We use the VILA pipeline to gener-
ate 1,404 candidate items and then evaluate them based on our rule-
book with 11 visualization experts’ input, yielding the VILA bank.

3. Identify promises and pitfalls of the VILA pipeline based on the eval-
uation of the VILA bank. We find the VILA pipeline can reliably
generate items with the most common chart types (e.g., line chart,
bar chart, and area chart) and items with tasks on the Knowledge,
Comprehension, and Evaluation levels of Bloom’s taxonomy. We
also identify six classes of errors that the VILA pipeline made, such
as Disregards Perceptual Limits and Information Lost by Aggrega-
tion, highlighting the current limitations of this approach.

4. Use VILA to create a new visualization literacy test, VILA-VLAT,
which measures the ability to read and interpret visualizations using
the same tasks and chart types as the existing VLAT (Visualization
Literacy Assessment Test) [28]. Results of an online study compar-
ing VILA-VLAT and VLAT show moderate-to-high convergent valid-
ity (R = 0.70), demonstrating the potential of our approach.
Our work highlights the need to precisely understand the promises

and pitfalls of LLMs for visualization item generation and to integrate
human oversight into their use. We provide recommendations on how
to use the VILA pipeline and discuss application areas that can benefit
from our work. Our work just scratches the surface of the potential
for LLMs, used appropriately, to help generate diverse, high-quality
visualization items at scale, addressing a persistent barrier that many
research and education applications currently face.

2 BACKGROUND

2.1 Multiple-Choice Visualization Items
Visualization items are used in the field of information visualization
to measure skills and abilities. In particular, multiple-choice visualiza-
tion items are prevalent in the development of visualization literacy
assessments [4,18,28]. Boy et al. [4] developed a set of tests to assess
people’s ability to interpret line charts, bar charts, and scatterplots. Fol-
lowing this work, Lee et al. [28] developed a Visualization Literacy
Assessment Test (VLAT) that contains 53 multiple-choice items across
12 chart types. Ge et al. [18] expanded prior definitions of visualiza-
tion literacy to incorporate the ability to detect visualization misin-
formation, creating the Critical Thinking Assessment for Literacy in
Visualizations (CALVI), which has a bank of 45 multiple-choice items.
Outside of assessment development, Huynh et al. [20] used multiple-
choice items in their educational role-playing games to support visual-
ization literacy education in young children.

Multiple-choice visualization items are also used in a wide range
of experiments outside of visualization literacy. For example, Tandon
et al. [41] used multiple-choice items to study the effects of domain
and spatial visualization ability on people’s performance on informa-
tion visualization tasks; Chen et al. [8] designed multiple-choice items
to compare different techniques of visualizing cyclical data; and Lee-
Robbins et al. [30] used multiple-choice items in a large-scale experi-
ment to study how specification formats impact visualization design.
Moreover, researchers who develop VQA systems use visualization
items to train and test computer vision models that answer questions
based on the images of data visualizations [23, 31, 32].

2.2 Automatic Item Generation
Traditional item development processes are highly costly and labori-
ous due to their manual nature. They usually involve subject-matter
experts writing and reviewing items. Thus, researchers in educa-
tional and psychological measurement have sought ways to reduce the
amount of human labor required in this process. This field of study is
automatic item generation (AIG) [27].

AIG generally consists of two steps: first, item developers create
item models or templates that characterize elements in the items that
are subject to change. Second, different values are inserted into these
templates to generate new but similar items [19]. In the area of achieve-
ment tests, researchers have used AIG to develop items for mathemat-
ics, science, and medical surgery licensing [16]. This approach has
also been used by VQA researchers to create datasets for training and
testing purposes: Kafle et al. [23], for example, used fixed templates
to generate bar chart items. Methani et al. [32] recruited crowdsourced
workers to generate questions for given visualizations, then extracted
templates from these questions to generate more items, and asked in-
house annotators to check and paraphrase the items. Although a large
number of items were generated by this approach, many have answers
that only come from a small fixed-sized vocabulary (e.g., “Yes” and
“No”) and do not cover visualization tasks that involve various opera-
tions such as comparison and aggregation [31].

Recent advances in large language models have drawn researchers
to explore their capabilities and applications in AIG. Nguyen et al. [34]
applied Google’s T5, a transformer-based encoder-decoder model,
to generate items based on reading materials from a graduate-level
data science course; 56.7% of their T5-generated items were deemed
pedagogically sound by human experts. For the purpose of training
VQA models, Masry et al. [31] used T5 to create a set of 23,100
free-response visualization items based on human-written chart
summaries of existing charts crawled from online sources. The
items are question-answer pairs across three types of visualizations
(line chart, bar chart, pie chart) and 4 types of questions (data
retrieval, visual, compositional, both visual & compositional); the
authors evaluated ∼5% of this set manually and found 86.4% to be
answerable and correct. Lee et al. [29] explored generating questions
in English education through ChatGPT; they invited experts and
teachers to validate the LLM generated questions and found that the
majority of questions have high validity.

Inspired by this work, we apply LLMs to generating multiple-choice
visualization items covering a wider variety of tasks, chart types, and
all cognitive levels of Bloom’s taxonomy. We also conduct a thorough
evaluation of the types of mistakes LLMs currently make when gener-
ating these types of items.

2.3 LLMs for Visualization Education
Data visualization researchers have begun to explore the potential of
LLMs in visualization education. Chen et al. [10] evaluated GPT’s abil-
ity to complete homework and quizzes in a college-level data visual-
ization course. They showed that GPT is capable of completing a range
of visualization tasks, such as data interpretation and visualization
design, at a promising success rate (GPT-4 scored 80% on the course
assignments). Chen et al. also identified limitations of GPT, such as
its inability to read visualizations accurately and lack of creativity.

In another empirical study, Joshi et al. [22] evaluated LLMs’ abil-
ity in educating novices about Parallel Coordinate Plots (PCPs) us-
ing Bloom’s taxonomy. They showed that while LLMs are capable of
generating useful and relevant recommendations to teach people about
PCPs, some recommendations are completely inappropriate for PCPs
and many do not fall under the proper levels of Bloom’s taxonomy.
Therefore, they recommend human expert oversight of LLM output.

2.4 Effective Prompt Design for LLMs
A prompt refers to the instructions that guide an LLM’s response. As
the quality of the prompt greatly affects the quality of the model’s
response [40], researchers and LLM developers have created and eval-
uated various prompting strategies. Wei et al. [43] introduced chain-of-
thought prompting, which works by decomposing multi-step problems
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into intermediate steps. They showed this approach improved LLM
performance on a range of reasoning tasks. Building on the chain-of-
thought design, Press et al. [39] developed the self-ask strategy, which
requires the LLM to state a series of follow-up questions and answer
them. LLM developers such as OpenAI have also published recommen-
dations regarding the design of prompts [36]. All of these prompt de-
signs share two common core principles—(1) specify the steps needed
to fulfill the user’s request and (2) separate complex tasks into simpler
subtasks—which guided us in the design of our prompts.

3 ITEM GENERATION

Our goal is to create a method capable of generating large, diverse
banks of multiple-choice items that span a wide range of chart types,
visualization tasks, and contexts. We first compiled comprehensive
lists of these characteristics, which formed our item design space.
Next, we used an iterative design process to create a three-stage LLM-
based item generation pipeline, the VILA pipeline. We then used it and
the item design space to create a candidate bank of 1,404 items.

3.1 Design Space of Items
Item Definition Figure 2 is an example multiple-choice visualization
item. On the left side is a bar chart on energy production by source,
which is the visualization component of the item. On the right side of
the chart is the textual component: the question stem asks a viewer to
identify the source with the highest bar; the question stem is followed
by the options and the correct answer.
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Fig. 2: An example multiple-choice visualization item with its compo-
nents labeled.

The visualization component can be described by its chart type and
context, where context is the underlying topic of the data. For example,
the chart type in Fig. 2 is bar chart and the context is energy and en-
vironment. In the textual component of Fig. 2, the question stem asks
the viewer to accomplish the visualization task, locate value, by choos-
ing the correct answer from the options. The combination of (context,
chart type, visualization task) characterizes a multiple-choice visual-
ization item, and forms the foundation of our item design space. Be-
low, we describe how we created a diverse and representative list for
each of these three dimensions.
Context To compile a list of contexts where data is prevalent in the
real world, we adapted the topics from Our World in Data [1], modified
the names of the topics for brevity, and created a list of 9 contexts for
our design space: economy, education, energy & environment, food
& agriculture, health, innovation, politics, population & demography,
and weather & climate.
Chart Type We selected the 12 chart types used in VLAT [28]: area
chart, bar chart, bubble chart, choropleth map, histogram, line chart,
pie chart, scatterplot, stacked area chart, stacked bar chart, tree map,
and 100% stacked bar chart.
Visualization Task To compile a diverse range of visualization tasks,
we adapted a visualization task taxonomy from Burns et al. [6], where
they categorized visualization tasks into Bloom’s taxonomy.

Considering our need to create multiple-choice items, we revised
the tasks in this taxonomy using the criterion of can a human visual-
ization expert create a multiple-choice item of this task with reason-
able quality?. We renamed some tasks to improve clarity (e.g., calcu-
late the difference between two points → estimate the difference be-
tween two values of the same type), added additional common tasks

from another taxonomy [3] that are sufficiently different from exist-
ing ones (e.g., identify range), and removed tasks that are not suitable
for the multiple-choice format (e.g., translate the data in a chart to
a table). We combined describe a trend and describe the relationship
between two variables into describe trend or correlation because they
are similar; we also expanded judge which design is more appropriate
into judge which task this visualization design best supports and judge
which visualization design is more appropriate for a task because they
are sufficiently different. The resulting taxonomy below contains 13
visualization tasks across Bloom’s taxonomy’s 6 cognitive levels:

1. Knowledge: identify labels of scales, identify range, locate value,
make comparisons, retrieve value.

2. Comprehension: describe the topic of the visualization.
3. Application: estimate average, estimate difference, estimate ratio.
4. Analysis: describe trend or correlation.
5. Synthesis: describe the characteristics of an alternative chart type.
6. Evaluation: judge which task this visualization design best supports,

judge which visualization design is more appropriate for a task.

Details of our revision can be found in the Revisions of Burns’ Taxon-
omy in supplemental materials.

While some visualization tasks may not always be appropriate for
certain chart types, we examined all combinations of chart type (12)
and visualization task (13) and confirmed that it was possible to de-
sign a meaningful, quality item for every combination (12×13 = 156).
Therefore, our design space contains all 9 contexts ×12 chart types
×13 visualization tasks = 1,404 possible combinations.

3.2 Design Process for the VILA Pipeline

We took an iterative approach to design the VILA pipeline and to engi-
neer the prompts. We made incremental changes to the prompts, used
the current pipeline to generate a small number of items, evaluated
the results, and iterated until the results could not be significantly im-
proved. None of the test items generated in this phase were included
in the final bank. Three important junctures led to significant changes
to the pipeline design, and we describe them below.

Separating Visual and Textual Components Generation We be-
gan by using a single-stage solution, prompting the LLM to write code
that generates a synthetic dataset, a visualization, and the textual com-
ponent of an item. The code would use random number generators to
create a dataset, and while it also used seeds to ensure reproducibil-
ity, the LLM cannot execute the code itself to create the actual dataset
before making the textual component of the item. As a result, the LLM-
selected correct answer in the item was often wrong due to the absence
of the actual dataset. Therefore, we separated item generation into two
stages: in Stage I: Generator, we prompt the LLM to generate code that
creates a synthetic dataset and a visualization based on it. We execute
the code to create the dataset and the data visualization locally. Then,
in Stage II: Composer, in a new request to the LLM, we provide the
dataset and prompt it to compose the textual component of the item.

Switching from Python to R We began by prompting the LLM
to write code for the visualizations using Python and the matplotlib
and seaborn libraries. We observed that, despite our instructions in
the prompt, the resulting visualizations often violated basic design
principles such as not overcrowding axes with labels. Therefore, we
experimented with using R and the ggplot2 library. We observed a no-
ticeable improvement in aesthetics and legibility and kept this change.

Adding Automatic Self-Inspection Prior work [33] shows that
LLMs have the potential to diagnose and fix their own mistakes, so
we developed a third stage that reuses the LLM to inspect the items.
We found preliminary evidence supporting this claim through our iter-
ative design process, so we created Stage III: Checker, where we pass
the item generated by Stage I and Stage II to the LLM, prompting it
to check the item and regenerate the item if mistakes are found.
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3.3 Overview of the VILA Pipeline

Our iterative design process yielded the three-stage VILA pipeline:
Stage I: Generator creates a dataset and a visualization based on the
given context and chart type; Stage II: Composer creates the textual
component of the item based on the output from the previous stage
and the given visualization task; and Stage III: Checker inspects the
item and re-generates the textual component if mistakes are detected.
The prompt summary for each stage is shown in Fig. 3.1 Each run of a
stage involves sending the LLM the prompt with specific inputs and ob-
taining one respective response (outputs); to obtain multiple responses
based on different inputs, a stage needs to be run multiple times and
runs of a stage are independent. The three stages are also indepen-
dent in that a stage does not have access to the prompt of the previous
stage. This design compartmentalizes the item generation process and
enables users to customize it based on their needs. For instance, if an
item developer wishes to use or build their own specific datasets and
data visualizations, they could modify or skip Stage I and start with

Stage II. We demonstrate this type of customization in Sec. 5.
We chose GPT-4 (gpt‑4‑1106‑preview), a state-of-the-art LLM for gen-

erating code and answering exam questions [2]. This GPT-4 version
also supports a seed parameter that improves the reproducibility of re-
sults [37]. We set the temperature parameter to be 0.2 in all three stages
to achieve consistent and coherent results [35]. Details of our model
specifications are in supplemental materials.
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3.4 Stage I: Dataset and Visual Component Generator

In this stage, we provide a context and a chart type of the visualiza-
tion as input to the LLM. In each run, we prompt it to generate the R
code for creating a synthetic dataset in the given context and the vis
code for rendering the given chart type from the dataset. Figure 3.A
contains the prompt summary of Stage I. The prompt has two parts:
(1) a generic part applied every time and (2) a chart-type specific part
for each chart type (line A19). The content of our prompt contains
requirements on the output (dataset and visualization), which can be
summarized into the following categories: consistency (lines A1–A2),
compatibility (lines A9 & A11), completeness (lines A14 & A17), leg-
ibility (lines A15–A16), and diversity (line A19).

For more complex chart types such as choropleth map and tree map,
prompting the LLM to use specific libraries (choroplethr and treemapify)
yielded code with satisfying outputs. Also, certain chart types require
prompting the LLM to use specific ggplot2 commands to ensure cor-
rectness: for example, 100 % stacked bar chart requires prompting the
LLM to include a specific line of code to ensure that the labels on the y-
axis range from 0% to 100%. In addition, when month (e.g., Jan) was
on the x-axis, it was often presented alphabetically despite our explicit
instruction requiring temporal values to be displayed chronologically;
therefore, we prompted the LLM to avoid using month in the dataset.

 

�����������������

��������

����������������������������������������� ���������������

���������������������������������

���������������

���������������

���������������������������������

3.5 Stage II: Textual Component Composer

In this stage, we provide three inputs to the LLM: (1) the dataset
from Stage I, (2) the vis code from Stage I, and (3) a vis task from
our list of 13 tasks in the revised taxonomy. In each run, we prompt
the LLM to output a question stem, its options, and the correct answer
for a single item (see Fig. 3.B).

Similar to Stage I, the prompt in Stage II consists of a generic
component applied to all items and a task-specific component (line
B6). The content of the prompt contains the explanation of the visual-
ization task (line B6) and instructions for how to generate the correct
and incorrect options (lines B7–B20).

1The full prompts for the three stages are in supplemental materials.

The prompting strategy of decomposing a multi-step problem into
sub-problems [36, 43] improved the performance of this stage, espe-
cially for value-related tasks including retrieve value, identify range,
and estimate difference/ratio/average, where creating the textual com-
ponent can be divided into a series of specific arithmetic operations on
how to find the correct answer and how to create the incorrect options.
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3.6 Stage III: Item Checker and Regenerator

In this stage, we provide (1) the dataset and vis code from Stage I,
(2) the vis task, and the (3) the textual component (question stem, op‑
tions, correct answer) from Stage II. In each run, we prompt the LLM
to output a new textual component (question stem, options, correct an‑
swer) for a single item if a mistake is detected and otherwise the same
textual component from the input.

Figure 3.C contains the prompt summary of Stage III: Checker. The
prompt again consists of a generic part that is applied to all items and a
task-specific part (line C9). The content of the prompt contains two in-
spection instructions that prompt the LLM to check whether the correct
answer is indeed correct (line C13) and whether it is the only correct
answer (line C14). It also contains a request to regenerate an item when
a mistake is detected (line C20). We present an analysis of the LLM’s
self-inspection performance in Sec. 4.6.

3.7 Creating the Candidate Bank of Items

We used the VILA pipeline to create a candidate bank of items. We
ran Stage I 108 times (9 contexts × 12 chart types) to create 108 data
visualizations (vis code and datasets). For each of these 108 outputs, we
ran Stage II 13 separate times to create the textual components for
1,404 items. These items were checked by Stage III, yielding 1,404
LLM-inspected candidate items that span all combinations of context,
chart type, and visualization task. Figure 4 shows 6 example items in
the candidate bank across 6 cognitive levels of Bloom’s taxonomy.

4 ITEM EVALUATION

We examined the quality of all candidate items. First, we developed
a set of evaluation questions to guide the process. We then conducted
a two-phase evaluation with these questions. In Phase I, we created a
rulebook for answering the evaluation questions based on 11 visual-
ization experts’ input. In Phase II, two author-evaluators followed the
rulebook and the questions to evaluate the entire candidate bank. Our
evaluation resulted in a final bank of 1,103 items and a set of limita-
tions of the LLM for generating multiple-choice visualization items.

4.1 Evaluation Questions

Four authors discussed the most important aspects of the quality of our
items. We iterated on the question wording and arrived at four:

1. Relevance: How relevant is this item to assess peoples ability to
carry out the visualization task? This is rated on a scale from 1
(Not relevant) to 4 (Highly relevant).

2. Clarity: How clear are the question statement and the options? This
is also rated on a scale from 1 (Not clear) to 4 (Highly clear).

3. Answerable: Is one of the options a correct or approximately cor-
rect answer to the question? This is rated with Yes and No options.

4. Correctness: Is the answer marked as correct indeed the correct
answer? This is rated with three options: Yes, No, and More than
one option could be considered correct.

Relevance is connected to content validity [38], which evaluates how
well an item measures what it aims to measure; Clarity ensures that
readers can understand the item clearly; Answerable and Correctness
are necessary measures that ensure the correct answer can be identified
by a reader and it is the best option among available options.
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Fig. 3: The prompt summary from the three stages of the VILA pipeline. The variables are replaced by a different value each time the prompt is
used. The inputs, requirements, and instructions at each stage are annotated on the right.
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Fig. 4: Example items from the candidate bank across 6 levels of
Bloom’s taxonomy. The task names are paraphrased for brevity. The
highlighted option is the LLM-selected correct answer.

4.2 Phase I: Development of the Rulebook
The goal of this phase is to create a rulebook that will allow two author-
evaluators to evaluate the entire candidate bank using criteria grounded
in a larger set of experts’ opinions. We invited external data visual-
ization experts to evaluate a representative sample of items from the
candidate bank, together with the two author-evaluators.
Experts We used a convenience sample of 11 expert participants.
They came from six universities and four industry organizations; none
were at the same institution(s) as any author. All have obtained a Ph.D.
in visualization-related fields.
Representative Sample of the Bank Due to the large size of the
bank, we selected a representative sample of 156 items, as a balance
between comprehensiveness and practical time constraint, to help cre-
ate the rulebook. We randomly selected one item from each of the
12×13= 156 (chart type, task) combinations, while also ensuring that
each of the 9 contexts is represented approximately equally. 2 Each ex-
pert received 52 of the 156 items, which included all 13 types of tasks
with 4 items for each task. Experts were asked to rate these items based
on the 4 evaluation questions and write optional comments. Each item
was evaluated by at least 3 experts. The two author-evaluators also
evaluated all 156 items independently.

To analyze the evaluations of the experts and author-evaluators for
the purpose of creating a rulebook, we focused on cases with disagree-
ments and low ratings. For instance, we examined all items that at least
one expert did not rate Yes for Answerable or Correctness. For such
items, we looked at the ratio of Yes to non-Yes ratings, read the experts’
comments (if any), and decided on a final rating. We also documented
the justifications for our final ratings and how to handle similar situa-
tions as part of the rulebook.
Rulebook Construction3 The rulebook contains both rating sugges-
tions and guidelines for each (chart type, task) combination.

For the Relevance and Clarity ratings of a (chart type, task) com-
bination, we computed the average ratings of these two categories, re-
spectively, across the experts and the two author-evaluators. We took
the floor and the ceiling of the average ratings and used them as the
recommended rating options for items with this (chart type, task) com-
bination. The rulebook contains suggested ratings for these two evalu-
ation questions for all (chart type, task) combinations.

The Answerable and Correctness categories require more scrutiny
depending on the specific item, so we do not provide specific sug-
gested ratings for all items with a (chart type, task) combination. In-
stead, we identify combinations that are prone to certain types of er-
rors to help author-evaluators make decisions. For example, the com-
bination (choropleth map, estimate difference) tends to have multiple
correct answers, because precise values are lost through aggregation
on the color scale; the rulebook reminds the author-evaluators to be
mindful of such situations and give ratings on a case-by-case basis.

4.3 Phase II: Evaluation of the Candidate Items
In this phase, the two author-evaluators each evaluated half of the
candidate items. When they encountered situations not documented in
the rulebook, they discussed to reach an agreement and added it to the
rulebook. They also documented cases with ratings against the rule-
book’s recommendations and their justifications for those decisions.

4.4 Final Bank (The VILA Bank)
We used the following inclusion criteria to select the final bank of
items: items must have a rating of 3 or 4 for both Relevance and Clarity
and a rating of Yes for both Answerable and Correctness.

Figure 5 summarizes the VILA bank. Each cell indicates the number
of items in that (chart type, task) combination in the VILA bank. The
VILA bank contains a total of 1,103 items (out of 1404) across 154
(chart type, task) combinations, which is ∼79% of the candidate bank.
All items have Yes ratings to both Answerable and Correctness. The

2The representative sample of items and the code used to select them are pro-
vided in supplemental materials.

3The complete rulebook is available in supplemental materials.
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Fig. 5: Summary of the final bank of 1,103 items. Names of chart types
and visualization tasks are paraphrased for brevity. Each cell represents
a (chart type, task) combination and shows the number of items with that
combination in the final bank. The maximum is 9 because there are 9
contexts in our item design space.

average Relevance and Clarity ratings for the bank are 3.7 and 3.8,
respectively. The VILA bank is available in supplemental materials.

4.5 Promises and Pitfalls

Through this evaluation, we also identified the strengths of the VILA
pipeline and classified the errors that it is prone to make.

4.5.1 “Promises” of the VILA Pipeline

From Fig. 5, we observe that the VILA pipeline is capable of reliably
producing high-quality items with many chart types and tasks. In par-
ticular, it performs well on generating items with the most common
and simplest chart types, such as line chart, bar chart, pie chart, and
area chart. It also performs well on creating items with tasks in the
Knowledge and Comprehension cognitive levels. Moreover, we note
that the VILA pipeline can reliably generate items with tasks on the
highest cognitive level in Bloom’s taxonomy, Evaluation, which in-
clude the tasks judge which visualization design is more appropriate
for a task (choose vis for task) and judge which task this visualization
design best supports (choose task for vis).

4.5.2 “Pitfalls” of the VILA Pipeline

To better understand the limitations of the VILA pipeline, guide
others in its use, and help researchers improve upon this method, we
classified the errors the pipeline produced into six major categories.4

I. Disregards Perceptual Limits
The item disregards humans’ percep-
tual limits and is too difficult to an-
swer. For instance, in the stacked bar
chart on the right, it is very hard to
visually estimate the average number
of students in Grade 9 across the 5
schools because the red segments are
not aligned. If the incorrect options
are too close to the correct one, this
item can be impossible to answer.
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4The classification of all errors is available in supplemental materials.

II. Information Lost by Aggre-
gation Data aggregation in the
visualization obscures the correct
answer. For instance, identifying
the state with the highest innovation
score (locate value) on the choro-
pleth map on the right is impossible
because there are multiple states
with the same darkest color due to
binning in the color mapping.

Innovation Scores by State

Innovation 
Score

III. Inappropriate Visual-Data
Correspondence The visualiza-
tions do not correctly represent
relationships in the data, violating
the principle of visual-data corre-
spondence [25]. For instance, the
stacked area chart on the right
stacks wind speed, temperature, and
precipitation values together, but the
sum of these values on the y-axis is
not meaningful.
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IV. Task Not Suitable for Chart
The design of the visualization does
not support the item’s visualization
task. For instance, the pie chart on
the right does not contain temporal
or geographic variables, so the task
describe trend or correlation is not
suitable for this chart.
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V. Unclear Phrasing of Question
The question stem is not phrased
clearly enough for the reader to iden-
tify the data needed to answer the
question. For instance, when asked
“which country has a larger popula-
tion size, the one with higher GDP
or the one with lower unemployment
rate?” for the bubble chart on the
right, it is unclear which two coun-
tries the question is describing, so
the item is not answerable.
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VI. Incorrect Answer The options
do not contain a correct answer, or
the actual correct answer is not the
LLM-selected correct answer. For in-
stance, the histogram on the right
has a symmetric distribution, but
the LLM-selected correct answer to
the question “what pattern does the
histogram show?” is “right-skewed”.
This may be related to the concept
of hallucination in language models
[21, 24], where the LLM-generated
content is nonsensical or unfaithful
to the provided source content [21].
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While some errors may be fixable by better prompt engineering or
different pipeline designs, these classes of errors reveal the limitations
of our LLM-based approach. Human experts possess nuanced, often
implicit knowledge of how to design good visualizations and good
items that the LLM does not currently have. It is therefore crucial to
elicit experts’ implicit knowledge and incorporate them into the design
process. To this end, we discuss the importance of human oversight in
Sec. 6.2 and the potential of human-LLM collaboration in Sec. 6.5.

4.6 Performance of Stage III
To investigate the performance of Stage III: Checker, we also evaluated
the versions of the 1,404 items before they were inspected by Stage
III: Checker. Combined with the evaluation of the candidate bank from

Stage III, this allows us to examine Stage III: Checker’s capability of
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detecting and fixing mistakes. We defined a mistake as an item that
would not pass the inclusion criteria in Sec. 4.4.

Figure 6 summarizes the performance of Stage III. The accuracy
of the pipeline with Stage III: Checker is 958+89+56

1404 = 0.79. If we were
to use the pipeline without Stage III: Checker, the accuracy would be
958+100

1404 = 0.75; if we were to use Stage III: Checker and just remove
all items it flags as mistakes without fixing them, the accuracy would
be 958

958+220 = 0.81. This demonstrates that Stage III is capable of
improving the VILA pipeline’s performance by fixing items that it
deemed to have mistakes, but discarding all such items without fixing
is also a reasonable approach with high accuracy.

89 still have no mistakes,
11 have a new mistake,

56 are fixed successfully,
70 still have a mistake.
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Fig. 6: Confusion matrix of the performance of Stage III: Checker.

5 APPLICATION DEMONSTRATION: VILA-VLAT

In this section, we provide a demonstration of applying the VILA
pipeline and the VILA bank to measure visualization literacy. Specifi-
cally, by using the final bank and customizing the VILA pipeline, we
created and validated a visualization literacy test, VILA-VLAT, that
covers the same (chart type, task) combinations as VLAT [28].

5.1 Construction of VILA-VLAT

To ensure VILA-VLAT is as comprehensive as VLAT, we used VLAT’s
structure to create VILA-VLAT. VLAT contains 53 items that span 12
chart types with 8 tasks [28]. Each VLAT item is a unique (chart type,
task) combination, and each test taker is expected to take all 53 items.
Reclassification of vlat Tasks The VILA bank has the same 12
chart types as VLAT, but the tasks are not identical. Therefore, we re-
classified the task in each VLAT item using our revised task taxonomy.
We did so by examining the question stem and the options of each
VLAT item to see what task the viewer is asked to accomplish and then
looking through our revised task taxonomy to find the most fitting task.
This reclassification yielded 46 unique (chart type, task) combinations
under our task taxonomy.
Pipeline Customization for Special Items There are 5 VLAT items
whose tasks did not fit in our taxonomy: identify anomalies for scatter-
plot and bubble chart, identify clusters for scatterplot and bubble chart,
and identify the hierarchical structure for tree map. All three tasks are
specific to certain chart types, and some require special considerations
on the data visualization (e.g., the task identify anomalies is only suit-
able for a scatterplot that contains an outlier).

The VILA pipeline is designed to support using customized visu-
alizations and datasets by modifying Stage I. Stage II can also be
modified to include additional visualization tasks. To construct these
5 items for VILA-VLAT, we customized the VILA pipeline: for iden-
tify anomalies and identify clusters, we added four chart types (scat-
terplot with outlier, scatterplot with cluster, bubble chart with out-
lier, and bubble chart with cluster) in Stage I to create 4 chart types
× 9 contexts = 36 visualizations. We checked these visualizations
and removed 14 that do not contain a visible outlier or cluster. Next,
we added the two tasks and their descriptions in Stage II’s prompt,
and the 22 remaining visualizations were then used by Stage II and

Stage III to create and check the items. Then, we evaluated all 22
items using the 4 evaluation questions and decided to keep all, because
they passed the inclusion criteria in Sec. 4.4. For identify the hierarchi-
cal structure, we used the 6 treemap visualizations and datasets from
our final bank. We added the task and its description to the prompt in

Stage II and used Stage II and Stage III to create the textual compo-
nents. All 6 items passed the inclusion criteria.

VILA-VLAT contains 51 items from 51 (chart type, task) unique
combinations. For each test taker, one item from each (chart type,

task) combination is randomly drawn from our final bank and the 28
customized items. VILA-VLAT uses a total of 371 items: 343 items
from the VILA bank and 28 customized items.

5.2 Validity of VILA-VLAT

The inclusion criteria in Sec. 4.4 ensure that all items in VILA-VLAT
have a Relevance rating of 3 or 4, which is evidence for high content
validity [12,38]. We also evaluate the convergent validity [11] of VILA-
VLAT by computing the correlation between test-takers’ performance
on VILA-VLAT and VLAT. Convergent validity is a measure that estab-
lishes the equivalence of two tests through strong correlation.5

Participants We recruited 120 participants via Prolific.6 We selected
our sample size based on similar experiments on convergent validity
from Cui et al. [13], anticipating that about 100 of the 120 participants
would complete the entire study. All participants fall under the follow-
ing criteria: speak fluent English, have normal or corrected-to-normal
vision, do not have colorblindness, are between 18 and 65 years old,
and are U.S. residents. In addition, Prolific participants from similar
studies that the authors conducted in the past were excluded.
Procedure Each participant was asked to take both VLAT and VILA-
VLAT,7 with a minimum 5-hour break between sessions to avoid fa-
tigue. We counterbalanced to avoid ordering effects: half of the partic-
ipants (Group I, 60 people) took VLAT first, and the other half (Group
II, 60 people) took VILA-VLAT first. In each session, we presented par-
ticipants with the consent form and information page describing the
structure of the study. We informed them that they needed to select an
answer for the current item before proceeding to the next one, and once
they moved on, they could not return to previous ones. Participants
who failed two or more attention check questions (out of three) were
excluded. In the second session, 44 and 45 returned in Groups I and II
respectively, for a total of 89 participants. Two participants failed the
attention check, leaving 87 participants who completed both tests, and
we used their data to compute the correlation for convergent validity.
Results The correlation coefficient between VLAT and VILA-VLAT
was 0.70 with 95% CI of [0.57, 0.79]. Although there is no gold stan-
dard, a coefficient below 0.50 should be avoided and above 0.70 is rec-
ommended [7], so VILA-VLAT has moderate to high convergent valid-
ity. In addition, the average correctness rates for VLAT and VILA-VLAT
are 0.76 and 0.77, respectively. Together with the convergent validity
evidence, this shows that VILA-VLAT is a valid visualization literacy
test that measures similar skills as VLAT and has similar difficulty.8

6 DISCUSSION

6.1 Hypothetical Cost Comparison
Is using the VILA pipeline actually worth it? It is hard to provide a
universal answer because it depends on the specific needs of differ-
ent users. Based on the authors’ experience on creating visualization
items, we present a rough, hypothetical cost comparison for generating
the VILA bank to help prospective users reason about the cost of our
method and offer people a template to evaluate their specific situations.
Financial Cost The financial cost of creating items consists of two
variables: the number of items needed and the unit cost of an item. The
cost of creating the VILA bank of 1,103 items using our pipeline and
OpenAI’s GPT-4 model is ∼$50, which means the unit cost of an item
is ∼$0.05. Two author-evaluators, who are Ph.D. students, evaluated
all items in the candidate bank, and it took roughly 8 hours per person
(a total of 16 hours). A typical hourly rate of a Ph.D. student in the
U.S. is $20; it would cost $0.23 to evaluate one item. Thus, the total
cost per item is $0.05+$0.23 = $0.28.
5Our analysis code is preregistered on OSF (see link in abstract) and can be
found in supplemental materials.

6This study received institutional IRB approval.
7Both are implemented using reVISit [15], an open-source software toolkit for
creating empirical visualization studies.

8Due to an implementation error, two items not in the final bank were adminis-
tered as part of VILA-VLAT in this study along with the other 371 items. We
removed those two items from the responses of participants who encountered
them. Details are in the analysis code file of supplemental materials.
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An alternative for creating quality items, for instance, is to hire a
Ph.D. student in data visualization to make them from scratch. Sup-
pose they can create 4 context-specific visualizations in an hour; it
will take them 27 hours to create 108 visualizations (9 contexts × 12
chart types). Suppose they can write 10 textual components (question,
incorrect options, correct option) of a visualization in an hour; it would
take them 140 hours to create 1,404 textual components. The unit price
of an item in this approach is (27+140)×$20

1,404 = $2.38. While there are
other alternatives and the specific costs of humans can vary, the VILA
pipeline could be a better financial option than manually creating ev-
erything from scratch.

Time Cost Without parallelization, it took ∼40 seconds for the VILA
pipeline to create an item, so the total time of creating the candidate
bank is 16 hours. Together with the 16 hours of evaluation, the total
time of creating the VILA bank of 1,103 items is 32 hours, which trans-
lates to 34 items per hour. Following our previous assumption, a Ph.D.
student can create 1,404

27+140 = 8.4 items per hour, so our method could
be advantageous in time compared to an entirely manual approach.

6.2 Recommendations for Using the VILA Pipeline

We recommend prospective users of the VILA pipeline first enumerate
what chart types, visualization tasks, and contexts their desired items
should cover. Users can consult Fig. 5 and the analysis in Sec. 4.5 to as-
sess whether our pipeline can reliably generate the specific (chart type,
task) combinations they require. We advise against using our pipeline
to generate combinations that are prone to error. If our item design
space does not contain certain chart types, tasks, or contexts that users
need, we recommend incorporating these new elements by customiz-
ing Stage I and Stage II as we did for constructing VILA-VLAT in
Sec. 5.1. For (chart type, task) combinations that the VILA pipeline
can reliably generate (the dark cells numbered 8 or 9 in Fig. 5), human
oversight may not be necessary depending on the users’ requirements
and constraints. For (chart type, task) combinations that are less reli-
able (cells numbered 5, 6, or 7 in Fig. 5), we recommend users manu-
ally evaluate them using the four evaluation questions in Sec. 4.1 and
look out for the errors in Sec. 4.5.2. It is also important to consider
whether use of VILA with any necessary human supervision will have
a cost or time advantage for a particular application (as in Sec. 6.1).

6.3 Potential Application Areas

Visualization Literacy Visualization literacy researchers need large
banks of items to reduce item overuse in repeated studies. They also
need diverse items to assess people’s ability to complete a wide range
of tasks across different cognitive levels of Bloom’s taxonomy. Adap-
tive testing of visualization literacy [13], where the next item for a test
taker is adaptively chosen based on a person’s performance on pre-
vious items, can measure people’s abilities more accurately and effi-
ciently, but also typically requires large item banks. The VILA pipeline
could be used to generate large, diverse banks of visualization literacy
items needed for these applications.

Visualization Courses Teachers of data visualization and statistics
classes need evaluative and practice materials to assess students’ per-
formance and help them improve. The VILA pipeline offers them an
efficient way to generate a wide range of items at scale to reduce man-
ual labor. Having a large item bank also reduces the risk of leaking
test materials due to recycling content. The diversity of items the VILA
pipeline can generate can also help teachers customize interventions
for students with different needs.

Visualization Question-Answering (vqa) VQA researchers require
large amounts of question-answer pairs and visualization images to de-
velop their models. The VILA pipeline offers an alternative method of
dataset creation compared to using fixed templates or recruiting crowd-
sourcing participants. In addition, current VQA datasets mainly consist
of items with tasks on the lower end of Bloom’s taxonomy. As research
in VQA advances, the ability of the VILA pipeline to generate items
with tasks across a wide range of cognitive levels will help researchers
assess the ability of their systems and improve their models.

6.4 Design Guidelines for Visualization Items
Throughout the refinement of the VILA pipeline and the evaluation of
items, we regularly found the need to explicitly write down otherwise-
implicit rules about good item construction so that the LLM was able
to apply them. When human developers design visualization items, we
often rely on our implicit expertise or have a “hunch” of what makes
an item good. For example, if a human expert makes an item that asks
the reader to estimate the average value of a line chart, they are aware
that the incorrect options cannot be too close to the correct one (see
Disregards Perceptual Limits in Sec. 4.5.2). However, there is no ex-
isting set of explicit guidelines on how to effectively create multiple-
choice visualization items. This creates a barrier for people who need
to make items but do not have sufficient expertise, and it also makes
the item-creation process less systematic. We collected the criteria and
instructions from our prompts, as well as the classes of errors from
our evaluation, and organized them into design guidelines for creating
multiple-choice visualization items. These guidelines are available in
our supplemental materials.

6.5 Design Lessons and Human-LLM Collaboration
It is difficult and time-consuming for human developers to design di-
verse, high-quality visualization items at scale. We demonstrate it is
possible to partially automate the item-generation process and create
large sets of diverse items. While our prompt designs and resulting
items are still imperfect, our work reveals that item generation effi-
ciency can be improved while maintaining quality through human eval-
uation of items (which is less costly than pure human item generation;
see Sec. 6.1), and that our pipeline can be customized to handle special
cases where the LLM otherwise cannot generate items (see Sec. 5.1).

However, we have only scratched the surface of the potential
for item generation using LLMs. We only used one LLM, and it is
worth investigating the pipeline’s performance on multiple LLMs
or on LLMs fine-tuned for this specific application. We could also
incorporate large multimodal models (LMMs) with vision capabilities
into the pipeline to generate items based on real-world visualizations.
These models may also help address errors we identified in our
pipeline, such as Information Lost by Aggregation and Disregards
Perceptual Limits. Also, Stage I and Stage II currently are separated,
making the visualization generation stage unaware of what types of
visualization tasks it needs to support, which can lead to errors such
as Task Not Suitable for Chart.

In addition to improving the model, we could adopt a more collabo-
rative approach to human–LLM teaming. Currently, human evaluation
occurs only after the items have been generated. A more collaborative,
interactive system might seek human feedback continuously through-
out the entire process, showing possible visualizations or datasets that
experts could select from or refine, feeding back into further visualiza-
tion or item generation. Or, experts might design item templates inter-
actively, triggering real-time generation of items that they can quickly
see, evaluate, and refine. We believe methods and insights from creativ-
ity support tools in HCI [17] and human-AI collaboration [42] could
lead to more efficient and reliable item-generation systems.

7 CONCLUSION

To create large, diverse multiple-choice visualization items at scale, we
developed the LLM-based VILA pipeline that consists of Stage I: Gen-
erator, Stage II: Composer, and Stage III: Checker. We used the VILA
pipeline to create 1,404 candidate items across 9 contexts, 12 chart
types, and 13 visualization tasks, covering all levels of Bloom’s taxon-
omy. We developed a rulebook with visualization experts and used it
to evaluate the candidate items. The result is the VILA bank of 1,103
items, ∼79% of the candidate items. We categorized the errors of the
pipeline, identifying important avenues for future work. We also used
the VILA bank and pipeline to create a visualization literacy test, VILA-
VLAT, and validated it via an online study. As visualization items are
widely needed in research and education, VILA can be used to sup-
port the efficient creation of evaluative materials under proper human
oversight. Our work establishes a foundational step for the continued
exploration of LLMs in visualization item generation.
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