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ABSTRACT

This position paper critically examines the graphical inference
framework for evaluating visualizations using the lineup task. We
present a re-analysis of lineup task data using signal detection
theory, applying four Bayesian non-linear models to investigate
whether color ramps with more color name variation increase false
discoveries. Our study utilizes data from Reda and Szafir’s previous
work [20], corroborating their findings while providing additional
insights into sensitivity and bias differences across colormaps and
individuals. We suggest improvements to lineup study designs and
explore the connections between graphical inference, signal detec-
tion theory, and statistical decision theory. Our work contributes
a more perceptually grounded approach for assessing visualization
effectiveness and offers a path forward for better aligning graph-
ical inference methods with human cognition. The results have
implications for the development and evaluation of visualizations,
particularly for exploratory data analysis scenarios. Supplementary
materials are available at https://osf.io/xd5cj/.

Index Terms: Graphical inference, visual evaluation, signal de-
tection theory.

1 INTRODUCTION

How do we evaluate the strength of a “signal” in a visualization?
Buja et al. first [2] proposed a framework called “graphical in-
ference” to address this question by “furnish[ing] visual statisti-
cal methods with an inferential framework”. The lineup task, also
known as the “lineup protocol”, is the primary method for perform-
ing graphical inference. In this task, the target plot (i.e., true data
plot) is randomly embedded among m — 1 decoy plots (i.e., plots
from the “reference distribution”), and the viewer is asked to iden-
tify which plot appears the most different. Buja et al. [2] argued that
in a lineup task, “[i]f the viewer chooses the plot of the real data,
then the [visual] discovery can be assigned a p-value of 0.05” and
that the lineup protocol provides “inferential validity”. Later exten-
sions of Buja et al.’s ideas [12, 18] used the Binomial distribution
and Beta-Binomial distribution respectively to model the distribu-
tion corresponding to the “null” hypothesis that the target plot is
visually indistinguishable from the decoy plots.

Beyond evaluating the significance of visual discoveries, the
graphical inference framework has also been used to assess dif-
ferent visualization designs. By comparing the “power” of lineup
tasks across various design alternatives, researchers can determine
which design choices lead to better overall performance. This ap-
proach has been applied to evaluate various aspects of visualization
design, such as the impact of different color schemes [20], coordi-
nate systems [12], and feature hierarchy [24] on the ability to detect
significant patterns in data.
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We believe that the lineup task, when properly designed, can be
considered a type of signal detection theory task and should be an-
alyzed as such. We present a re-analysis of lineup task performance
using data collected by Reda and Szafir [20]. We built four dif-
ferent Bayesian models to answer whether color ramps with more
color name variation lead to more false discoveries. Our results cor-
roborate the original findings from Reda and Szafir but also reveal
additional insights into the sensitivity and bias differences across
color ramps and individuals. Furthermore, we discuss potential im-
provements to the experimental design of lineup tasks and explore
how graphical inference and signal detection theory connect to sta-
tistical decision theory.

2 BACKGROUND AND RELATED WORK
2.1 Graphical inference

Graphical inference, specifically the lineup protocol, has been
mainly used for two purposes — to evaluate the validity of graph-
ical findings (i.e., inference), and to evaluate plot designs.

2.1.1 Lineup tasks for inference

Buja et al. first [2] proposed the lineup protocol to “formalize the
process of visual discovery” and provide an “inferentially valid”
test of whether an observed pattern in a plot is “really there”. Ma-
jumder et al. [18] proposed a Binomial model for the count of cor-
rect observers and Vanderplas et al. [25] extended the Binomial
model to a Beta-Binomial model. For more details on the distinc-
tion between these models, refer to Appendix A.

Modeled this way, the lineup task has been primarily used as a
visual approximation of a hypothesis test to reject “null” assump-
tions. For example, Loy and Hofmann [16] used the lineup task in
hierarchical linear models to determine whether the within-group
residual variance is constant across groups. When the observed
residual plot stands out, this indicates that the assumption of con-
stant within-group variance may be violated. Kossimer et al. [14]
used lineups to test for funnel plot asymmetry. They argued that if
the viewer correctly identifies the real funnel plot, then it suggests
that the observed data is inconsistent with the null hypothesis of no
publication bias.

2.1.2 Lineup tasks for visualization evaluation

Hofmann et al. proposed to estimate
the “power” of a lineup by calcu-
lating “the ratio of correct identifi-
cations y out of K viewings” [12].
Hofmann et al. [12] used this defi-
nition to compare different plot de-
signs and found that Cartesian coor-
dinates result in significantly higher
accuracy and shorter response time
than polar coordinates for spotting
patterns in airport flight data. Van-
derplas et al. [24] experimented us-
ing lineups with two target plots em-
bedded to test for feature hierarchy.
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They found that aesthetics that emphasized clustering (e.g., color,
shape, ellipses) increased the selection of the cluster target. In con-
trast, aesthetics that emphasized continuity (e.g., trend line, error
band) increased the selection of the trend target. Reda and Szafir
[20] studied how the design of color ramps affects people’s ability
to make inferences from visualized scalar field data. The authors
used lineups with m = 4 and analyzed error rates for each type of
stimuli. They found that participants were “more accurate when
viewing colormaps that cross a variety of uniquely nameable col-
ors” [20].

To summarize, when applied to evaluating visualizations, the
graphical inference framework primarily relies on two dependent
measures — empirical accuracy and response time. We propose
an alternative approach: to analyze lineups using well-established
techniques from signal detection theory, which can potentially be
more informative.

2.2 Signal Detection Theory
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Figure 2: Model of equal variance signal detection theory. Both distributions
(i.e., S; and S,) are normal distributions with unit variance. Sensitivity &’ is the
distance between the mean of the distributions.

In a review of visualization evaluation techniques, Elliott et al.
[8] describe signal detection theory (SDT) as a method for model-
ing visualization performance as a function of sensitivity and bias.
It uses a probabilistic framework that incorporates inherent uncer-
tainty in decision-making using noisy observations [9]. SDT’s key
assumption is that the strength of sensory and cognitive events is
continuously variable [17]. In its most basic form, there are two
possible states of the world, S; and S, which correspond to the ab-
sence or presence of the signal. Each observation is regarded as a
one-dimensional random variable drawn from one of two sensory
distributions [9], and errors arise because the sensory distributions
overlap. This presents a problem for the observer in choosing a re-
sponse. The solution is to divide the strength axis into two regions
with a criterion so that high values lead to “yes” responses and low
values lead to “no” responses (Fig. 3) [17].

The roots of SDT can be traced back to Gustave Fechner’s work
as early as 1860, but the term was initially conceived in a series of
technical reports and publications that appeared in 1953 and 1954
[29]. Since then, SDT has inspired conceptual advances in both
experimental psychology and cognitive neuroscience [29]. Its ap-
plications have expanded beyond these fields, with more recent uses
including analysis of criminal lineup data [5].

In the most widely used version of the model (Fig. 2), the two
evidence distributions are normal with the same unit variance [19].
The degree of overlap between S; and §; is termed “sensitivity”
and defined as

d’' = &~ ! (Hit rate) — &~ ! (False alarm rate) (1)

where ®~! : [0,1] — R is the quantile function of the standard nor-
mal distribution, otherwise known as the probit function. Hit rate
is defined as Pr(“yes”|signal present) and false alarm rate is de-
fined as Pr( “yes”|signal absent).

The location of the criterion is a measure of response bias, the
tendency towards one response or the other [17]. There are differ-
ent ways to define response bias (see Appendix B for details); for
comparing two evidence distributions, we adopt the definition of
criterion location' c:

c= 7% . (d:'_] (Hit rate) + @~ ! (False Alarm Rate)) (2)

The neutral point is when neither response is favored, which cor-
responds to ¢ = 0 [23]. Negative values of ¢ correspond to liberal
biases with many “yes” responses, whereas positive values corre-
spond to conservative biases with many “no” responses [17].
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Figure 3: False alarm rate (top left) and hit rate (top right) mapped to the
probit function &' (bottom). S; and S, are unit-variance normal distributions.

3 ANALYZING LINEUP TASK USING SDT
3.1 Overview

Among the several papers that implement the lineup task, we se-
lected Reda and Szafir [20] given its well-documented nature and
readily available data found athttps://osf.io/tck2r/. We pro-
vide a condensed account of the necessary details and encourage the
interested reader to check out the original work.

In their paper, Reda and Szafir study how a cognitive metric —
color name variation (CNV) — impacts people’s ability to make
model-based judgments [20]. The CNV metric is obtained by ex-
tending Heer and Stone’s name distance model [11] for a pair of
colors to a continuous color ramp. A higher CNV indicates a ramp
that combines a variety of distinctly named colors [20]. Reda and
Szafir looked at four different color ramp design families: single-
hue, multi-hue, divergent, and rainbows.

Reda and Szafir conducted two experiments utilizing the lineup
task [2]. Unlike the conventional approach where the lineup task

I'The criterion location c is defined relative to the mean of S;. Historically, the
mean of §; is set to be 0, which implies that ¢ = —®~! (False alarm rate). The current
definition of ¢ sets the mean of S; to be — %d’ . The exact location of the mean of S;
does not matter for computing hit rates and false alarm rates.
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is typically formulated with m = 20, the authors opted for m = 4
(Fig. 4). They justified their choice of a smaller m as a means “to
reduce the per-trial response time and allow for a larger number of
stimuli per subject” [20].

We are particularly interested in the second experiment. Exper-
iment 2 hypothesized that color ramps with high CNV cause peo-
ple to detect false differences between visualizations of the same
model [20]. In this experiment, half of the trials consisted of four
plots from the same target model, and the remaining half of the tri-
als consisted of one plot from the target model and three plots from
the decoy model. This design enables us to analyze the collected
responses using an SDT approach.

3.2 Data and experiment design

Click on the image that doesn't belong. Alternatively, select "no discernible difference" if
you think the images are indistinguishable from each other.

color
scale

Figure 4: Screenshot of interface for experiment 2’s training phase. The cor-
rect answer is the bottom left plot. This is a signal present (i.e., positive) stim-
ulus.

Reda and Szafir [20] recruited 59 participants from Amazon Me-
chanical Turk for experiment 2. Each participant was assigned four
blocks of trials, with each block corresponding to a unique color
ramp. In other words, each participant experienced all four color
ramps: blues I (CNV: 1.2), cool-warm & 3l (CNV:
2.42), viridis " (CNV: 2.75), and RGB-rainbow IE .|
(CNV: 4.6). Each color ramp is from a distinct design family. Each
block had 24 trials, of which 12 are positive trials (consisting of
three decoy plots and one target plot), and the remaining 12 are
negative trials (consisting of four plots from the target model). Data
was generated by sampling from a mixture of bivariate normal dis-
tributions. The distance between the target model’s dataset and the
decoy model’s data set is measured by the Kullback—Leibler (KL)
divergence. A distance of O corresponds to a negative trial and a
non-zero distance corresponds to a positive trial.

In total, each participant saw 24 x 4 = 96 trials and 8 engagement
trials, resulting in 96 x 59 = 5664 lineup judgments for analysis.

Table 1: Stimuli-Response table

Lineup Stimuli

1 target + 3 decoys 4 targets
Response (Positive) (Negative)
One of the True positive False positive
four plots Hit False alarm

“No discernible )
difference False negative
between images” Miss

True negative
Correct rejection

3.3 Modeling with spT
3.3.1 Overview

Experiment 2 manipulated two factors:

1. Requested distance. This is the requested KL divergence be-
tween the data sets of the target and decoy plots. It should be
close to the actual distance with minor variations.

2. Color ramp. There are a total of 4 different color ramps.
It could be modeled as a categorical or a numerical variable
(using CNV).

Using SDT, we investigate whether more colorful color ramps
increase the false positive rate. We analyze four models. We first
calculate point estimates of sensitivity ¢’ and criterion ¢ for a sin-
gle participant’s responses (Sec. 3.3.2). Then we apply a Bayesian
fixed effects model to the same participant’s responses (Sec. 3.3.3).
Then we extend the previous model to include responses from all
59 participants and consider random effects (Sec. 3.3.4). The third
model uses the requested distance first as a nominal predictor and
then as an ordinal predictor with monotonic effects (Sec. 3.3.5).
The final model uses rounded distance as an ordinal predictor.

For computing and presenting our results, we used the following
R packages: brms [4], ggplot2 [26], modelr [27], tidybayes
[13], and tidyverse [28]. We adopted weakly informative priors
and ran four chains, each with 5000 iterations for all our models.
We inspected the minimal bulk and tail effective sample size (ESS)
to ensure reliable estimates. We also examined R values to ensure
all of our models converge.

3.3.2 Point estimates for a single participant

In a typical SDT workflow, one starts by aggregating responses
across items, participants, or both [22]. We first aggregate across
color ramps and calculate the point estimates of the hit rate and
false alarm rate. Then, we transform these rates into SDT parame-
ters using the probit function &~ (-) [23].

Table 2: Stimuli-Response table for participant 300

Picks one
Positive  of the four
stimuli? plots? Count
No No 33
No Yes 15
Yes No 12
Yes Yes 36

To illustrate this concretely, let’s examine the participant with
subject id 300 and aggregate their responses across all items.
The hit rate is 36/(36 + 12) = 0.75 and the false alarm rate is
15/(15+33) = 0.3125. Using Equations (1) and (2), we can eas-
ily calculate point estimates of participant 300’s sensitivity d’ and
criterion ¢ (averaged over all four color maps): d’ = ®~1(0.75) —
@ 1(0.3125) = 1.16; ¢ = —1/2(®1(0.3125) + ®~1(0.75)) ~
—0.09. Likewise, we can also calculate participant 300’s hit rates
and false alarm rates for each color map:

Table 3: Hit rate, false alarm rate, sensitivity &', and criterion ¢ for
participant 300

color ramp hitrate  false alarm rate d c
blues 8/12 4/12 0.86 0
cool-warm 10/12 5/12 1.18  -0.38
viridis 8/12 3/12 .11 0.12
RGB rainbow  10/12 3/12 1.64 -0.15

From the point estimates in Table 3, participant 300 is most sen-
sitive to the rainbow ramp and least sensitive to the blues ramp.



Blues also appear to be least biased, while both cool-warm and rain-
bow have liberal criterions and viridis has a conservative criterion.

3.3.3 Pooling information for a single participant

As a warm-up, we use a fixed-effects Bayesian model to analyze
participant 300’s responses. The full model formula is:

line 1  responds yes; ~ Bernoulli(m;)

line 2 probit(m;) = Acmap(i + Bemapji - signal present;
(@3]

line 3 o~ A(0,1), ce{l,2,3,4}

line 4 Be~ A(0,1), ce{l1,2,3,4}

line 1 Let i denote the i-th observation in data, and 7; the proba-
bility of answering the i-th observation correctly. When participant
300 selects one of the four plots rather than “no significant differ-
ences detected”, they indicate perceiving a difference. We model
this as a “yes” response to whether a signal is present in the stimu-
lus.

line 2 CMAPJi| denotes the color ramp of the i-th observation,
that is, CMAP[i] € {blues, viridis, cool-warm, RGB rainbow)}?. sig-
nal present is the binary predictor variable of whether the stimu-
lus is composed of one target plot + three decoy plots (< signal
present) or four target plots («+ signal absent).

lines 3,4 We expect that intercepts (as) and slopes (fs) vary
with different color ramps, and defined weakly informative priors
for each color ramp.

sulting model formula is as follows:

line 1  responds yes; ~ Bernoulli(m;)
line 2 pI‘Obit(TL'i) = aCMAP[i], +

Bemaryi, - signal present;
line 3 Oc = O , cef{l,...4}
line 4 Be = B. ce{l,...,4}
line 5 U, B~ AH(0,1), cefl,..,4}
line 6
line 7

line 2 PID[i] indexes the participant for the i-th observation.

line 3, 4 Jq j,0p ; denote participant j’s random effect for inter-
cept a and slope f respectively.

line 6 The covariance matrix ¥ = diag(t) Rdiag(7), where 7 is a
vector of standard deviations of ¢, ; and 5;37 j and R is their correla-
tion matrix. We expect some variance in slopes and intercepts and
therefore set T ~ Exponential(1) as priors.

line 7 LKlJcorr(2) implies a weak correlation between partici-
pants’ slopes and intercepts.

The point estimates were calculated using log-linear correction
[10] to account for hit rates equal to 1 and false alarm rates equal
to 0. Observe that the point estimates of sensitivity are consistently
smaller than the posterior estimates of sensitivity (Fig. 8). This
aligns with prior work [21, 22], which has demonstrated that aggre-
gation may lead to an asymptotic underestimation of sensitivity.

The results indicate that an average participant is most sensitive
to the rainbow color ramp and least sensitive to the single-hue blues
color ramp (Fig. 8). Figure 7 clearly shows that an average partic-
ipant is more conservative (i.e., has more tendency to respond “no
significant differences detected”) to all color ramps except cool-
warm.

criterion sensitivity
more .
CNV 4 : conservative, CNV 4
rainbow —-0:'— rainbow ————
1
viridis —t— viridis ———f—
1
coolwarm —+:- coolwarm ————
1
more
blues liberal —-I+— blues ———
CNVY 2 0 1 2 cnvy 7 o 1 2 3

Figure 5: Posterior density, median,
66% and 95% quantile interval of cri-
terion for participant 300. Pink ticks
represent the point estimates.

Figure 6: Posterior density, me-
dian, 66% and 95% quantile interval
of sensitivity for participant 300. Pink
ticks represent the point estimates.

The results are comparable to the point estimates in Sec-
tion 3.3.2, with the added advantage of providing a more precise
quantification of uncertainty for SDT parameters. Observe that the
results demonstrate model shrinkage (Figs. 5 and 6).

criterion sensitivity
CNV 4 1 CNV 4
rainbow :'-0- rainbow Jo-
viridis i - viridis do-
coolwarm -:#- coolwarm o
blues : - blues >
oawd g 0 i vl g 1 2 3

Figure 7: Posterior density, me-
dian, 66% and 95% quantile interval
of criterion for an average partici-
pant. Pink ticks represent the point
estimates.

Figure 8: Posterior density, me-
dian, 66% and 95% quantile interval
of sensitivity for an average partic-
ipant. Pink ticks represent the point
estimates.

3.3.4 Pooling information with mixed effects

It is reasonable to expect participant-level variability in sensitivity.
Some participants can differentiate colors better than others, while
some may adopt a more conservative criterion, saying “no” to most
presented stimuli. When aggregating events across participants, it
is implicitly assumed that people have the same sensitivity and cri-
terion. These assumptions are likely too restrictive [22]. To address
this limitation, we extend the previous model in Section 3.3.3 by
incorporating participant-level effects as random effects. The re-

2 An alternative notation is to subscript by i and j, where i denotes the
i-th observation and j indexes which color ramp.

There is also significant variation in participants’ performance.
For example, consider participants 310 and 313. Figure 10 demon-
strates that the two participants share similar sensitivity for all color
ramps (except for cool-warm). However, participant 310 is signif-
icantly more conservative than 313 in terms of response criterion
(Fig. 9). In other words, 310 tended to respond “no significant dif-
ferences detected” while 313 tended to respond with one of the four
plots, despite the prior instruction that half of the trials are nega-
tive trials. This suggests that individual biases can influence the
interpretation of color ramps, even though the underlying percep-
tual sensitivity is similar.
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] Figure 10: Posterior density, me-
Figure 9: Posterior density, median,  dian, 66% and 95% quantile interval
66% and 95% quantile interval of cri-  of sensitivity for participants 310 and
terion for participants 310 and 313. 313.

3.3.5 Going beyond binary — modeling signal strength as
ordinal categorical

In the previous models, we treated the signal as a binary variable,
either present or absent. However, in most psychophysical ex-
periments, researchers are also interested in investigating how the
strength of the signal impacts sensitivity and criterion. To address
this, we extend our analysis by modeling “signal strength” as an
unordered categorical variable (i.e., nominal). Specifically, we
replace the binary variable signal present with

a categorical variable with five levels: 0, 0.21, 0.23, 0.24, and 0. 26
This changes line 2 in Section 3.3.4 to

probit(7;) = otcmapyi,siji) + BemaPi.SIDJi -

«— smaller CNV — sensitivity —— bigger CNV -

blues coolwarm viridis rainbow

021 023 0.24 026 021 023 024 026 021 0.23 0.24 0.26 0.21 0.23 024 0.26
requested distance

w

N

sensitivity

-

Figure 11: Posterior density, median, 66% and 95% quantile interval of sen-
sitivity across different levels of requested distance for different color ramps
for an average participant. Pink ticks represent the point estimates.

It is clear from Figure 11 that for an average participant, as the
requested distance increases, the general trend is an increase in sen-
sitivity across color ramps. However, we also see decreases from
0.21 to 0.23 for blues and from 0.24 to 0.26 for viridis.

Theoretically, one would expect that sensitivity increases with
signal magnitude. Combined with the above results, we next model
requested distance as an ordinal predictor with monotonic effects

(31

Monotonic effects model

blues coolwarm viridis rainbow

021 023 0.24 026 0.21 023 024 026 021 0.23 0.24 0.26 0.21 0.23 024 026
requested distance

N w

-

sensitivity

Figure 12: Posterior density, median, 66% and 95% quantile interval of sen-
sitivity across different levels of requested distance for different color ramps
for an average participant. Pink ticks represent the point estimates.

In this new model, the increase in sensitivity across requested
distance levels is more uniform for the more perceptually-uniform
color ramps (i.e., blues and cool-warm) compared to viridis and
rainbow (Fig. 12). For color ramps with higher CNV, the increase
in sensitivity between 0.23 and 0.24 seems to be the highest.

One might wonder whether the disproportionate jump in sensi-
tivity from the requested distance of 0.23 to 0.24 (Fig. 12) is due to
aggregation.
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Figure 13: Distribution of rounded distance. More trials are administered
with rounded distances 0.23 and 0.24 compared to the tail end (0.20 and 0.27).

We extend the prior model by rounding the distance between the
target plot and decoy plots and using it as an ordinal predictor with
monotonic effects. The new predictor, , has eight
distinct levels ranging from 0.20 to 0.27 with a step size of 0.01.
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Figure 14: Posterior density, median, 66% and 95% quantile interval of sen-
sitivity across different levels of rounded distance for different color ramps
for an average participant.

The disproportionate jump from 0.23 to 0.24 (Fig. 12) no longer
exists in the new model (Fig. 14). The rainbow color ramp has
more uncertainty compared to the three other color ramps when the
rounded distance is 0.27 — this could be due to not enough trials
compared to the other color ramps.

Recall  that criterion
location is defined for a pair
of evidence distributions

CNV . .
) (Eq. (2)). The interpretation
rainbow -t . . . .
of the criterion location is
viridis| =1 less clear when there are
coolwarm )\ multiple signal distributiops.
For the sake of an easier
blues -

interpretation, we plot the
posterior estimate of the
false alarm rates instead
(Fig. 15). Observe that the
results demonstrate model

CNVYd 000 025 050 075 1.00
Pr(say yes | signal absent)

Figure 15: Posterior density, median,

66% and 95% quantile interval of false hrink Except for !
alarm rate across different levels of S age. cept for coot-

requested distance for different color ¢/, an average participant
ramps for an average participant. Pink has similar false alarm rates

ticks represent the point estimates. for all color ramps.

3.4 Compare to non-SDT models

To analyze the data they collected, Reda and Szafir [20] ran four lo-
gistic regression models to separately analyze error rates for each
stimulus type, i.e., true positive (“sensitivity”) and true negative



(“specificity”) rates. The first two models only examine responses
to negative stimuli and the remaining two examine responses to
positive stimuli. All models examine a binary response variable of
whether the participant correctly identified the stimuli’s underlying
type (positive vs negative). The two models that are most relevant
to our models use design family, an unordered categorical predictor
variable with four distinctive levels.

Reda and Szafir [20] found that:

“... cool-warm ramp exhibited significantly lower [true nega-

tive rate]”

* Pairwise comparison with Tukey’s adjustment show cool-
warm to be worse than viridis.

* “both RGB rainbow and cool-warm led to higher true positive
rate than viridis and blues”

To calculate SDT parameters, our models examine the hit rate (i.e.,
true positive rate) and false alarm rate (i.e., false positive rate = 1 —
true negative rate). We found that:

* An average participant is most sensitive to rainbow and least
sensitive to blues. We also find the cool-warm ramp to be
the least biased, while the remaining three color ramps are all
slightly biased towards responding “no significant differences
detected” (Sec. 3.3.4).

» As KL divergence increases between the target plot and the
decoy plots, an average participant becomes more sensitive
for all examined color ramps (Sec. 3.3.5).

* Variations exist both within an individual (e.g., different cri-
terion for each color ramp) and between individuals (e.g., dif-
ferent sensitivity to color ramp)

Returning to the original question that Reda and Szafir posed, do
rainbow color ramps lead to more false discoveries, compared to
other color ramps? While an average participant is most sensitive
to the rainbow color ramp (Fig. 8), they still have a conservative cri-
terion (i.e., participants tended to respond “no difference detected”)
(Fig. 7). From our results, we agree with Reda and Szafir in that
rainbow color ramps do not lead to more false discoveries, despite
their higher sensitivity compared to other color ramps.

3.5 Discussion and limitations for modeling

We used both the probit function and the logit function as link func-
tions in our models. The probit and logit functions generally yield
similar results, with the main difference being in how the param-
eters are scaled [6]. While these are the most common choices,
other link functions are also available, e.g., complementary log-log
link [6]. It’s important to note that each link function embodies
a different assumption about the underlying sensory distribu-
tions. The probit link assumes a normal distribution, the logit link
assumes a logistic distribution, and the log-log link assumes an ex-
treme value distribution.

Our models assume equal variance between the two sensory dis-
tributions. While this is a common assumption, it may not always
be appropriate [21]. Works such as Lages [15] extended the equal-
variance hierarchical SDT model to an unequal-variance model by
constraining the sensitivity and criterion distributions at the popu-
lation level. Future work could explore this extension, as well as
the application of multi-dimensional SDT, as our current model as-
sumes a one-dimensional scale for the perception of an “odd” plot.
Additionally, we were unable to implement the Receiver Operating
Characteristic (ROC) curve analysis due to the lack of confidence
rating data in Reda and Szafir’s work [20].

An alternative way to analyze data collected via the typical
lineup task is to analyze it as an m-alternative forced choice (mAFC)
task, where m — 1 stimuli are drawn from the signal-absent distri-
bution and another stimulus is drawn from the signal-present dis-
tribution. Bias is typically ignored when analyzing mAFC data
due to the intractability it introduces into modeling, yet choosing

to not model bias does not imply its non-existence [10]. A potential
approach to incorporate bias into analyzing mAFC data was intro-
duced by Decarlo [7]. In a typical lineup with m = 20 plots, we will
need nineteen criteria to carve up the decision space to incorporate
response bias into the model. Let b;,i € [19] denote the bias to-
wards the response associated with plot i and let ¥;,i € [20] denote
the realized perception of plot i. The decision rule is to respond

e plot 1 if ¥y + by > max{¥, + by, Y3+ b3,.... ¥}

e plot2if Wy + by > max{‘{‘l +b1,¥Y3+b3,...,. ¥}

e plot 20 if Wy > max{‘Pl +b1, Wy +bs,....,¥19 +b19}

To fit all the above parameters would likely require more data
and have potential issues with overfitting and multicollinearity.

4 GENERAL DiscussioN
4.1 Suggestions for better lineup experiment design

The lineup task is an innovative approach for evaluating visual-
izations, but it is essentially a reinvention of an existing task that
falls within SDT. When designed and analyzed correctly, lineup
tasks can provide valuable insights. However, the traditional lineup
experimental design and analysis are lacking because they expose
participants only to the signal-present distribution — that is, partic-
ipants are only shown trials that include one target plot and m — 1
decoy plots. Measuring sensitivity requires exposing participants
to signal-present and signal-absent distributions, as sensitivity de-
pends on both hit rate and false alarm rate [10].

To enable SDT analysis and improve lineup experiment design,
we propose integrating elements from Reda and Szafir’s experiment
design:

1. Include a response option for “no significant differences de-

tected”.

2. Introduce stimuli where all plots are drawn from the same de-

coy or target model.

3. Employ payoffs to incentivize participants to adopt better

decision-making criteria.

4. Continue to collect participant confidence ratings for their se-

lections.

These modifications will expose participants to both signal-
present and signal-absent distributions, allowing for SDT analysis,
ROC curve analysis, and potentially improving lineup task inter-
pretability.

4.2 Beyond lineups

Beyond analyzing the lineup task, SDT can also be applied to an-
alyze data collected through various tasks [8]. Elliott et al. [8] in-
troduced a design space categorization that divides dependent mea-
sures for assessing visualization into two categories: direct depen-
dent measures and model-based dependent measures. Direct depen-
dent measures, such as accuracy (measured by percentage correct
or error), response time, and precision, appear frequently in exist-
ing visualization experiments. Model-based dependent measures,
such as performance slope, psychometric function, and senstiv-
ity & bias detection (modeled via SDT), appear less frequently but
enable more precise claims about the visual system. However, there
is a trade-off — model-based dependent measures typically require
more data and more complex experimental designs [8]. Ultimately,
it is up to the designer to choose the most appropriate measures
for their specific goals, balancing the costs and benefits of each ap-
proach.

4.3 Connections to statistical decision theory

Graphical inference and SDT are both inspired by statistical deci-
sion theory. However, despite a brief mention of the Rorschach
protocol by Buja et al. [2], existing models of graphical inference
predominantly focus on rejecting some null hypotheses.



We believe that SDT provides a better model for the ideas in
Buja et al. [2]. SDT has been influenced by statistical decision the-
ory since its conception [29], and there is a clear analogy between
an observer in a detection experiment and a statistician deciding
between data sources. The observer must determine whether the
simulation arose from the signal-present distribution or the signal-
absent distribution. Similarly, a statistician must decide whether the
data is best explained with an alternative hypothesis (i.e., a real dif-
ference in the world) or a null hypothesis (i.e., a difference arising
from sampling variability).

Compared to the graphical inference framework, SDT is more
explicit about its assumptions about human perception. Every the-
ory of the mind embraces some sets of assumptions, either explic-
itly or implicitly [29]. There is no free lunch. Employing SDT
enables us to separate the world of stimuli and their perturbations
from that of the decision process [10]. By separating the factors
that influence the effectiveness of plot designs into sensitivity and
bias, we can gain deeper, more nuanced insights (e.g., non-uniform
increase in sensitivity across different color ramps in Section 3.3.5)
and make more informed decisions.

5 CONCLUSION

In this position paper, we re-examined the graphical inference
framework and its primary method, the lineup task, for evaluating
visualizations. By re-analyzing data from Reda and Szafir’s [20]
study using Bayesian signal detection theory (SDT), we demon-
strated that the SDT approach can provide a more nuanced under-
standing of the factors influencing the effectiveness of visualiza-
tions. Furthermore, we suggest integrating elements of Reda and
Szafir’s experiment design into typical lineup task designs to en-
able SDT analysis and potentially improve lineup task interpretabil-
ity. Our approach demonstrates the general utility and benefits of
applying SDT for evaluating and comparing visualization designs
using visual lineups.

A DISTINCTION BETWEEN BUJA ET AL.
JUMDER ET AL. [18]

Buja et al.’s [2] lineup protocol is about evaluating and quantifying
the significance of graphical findings. It involves embedding the
true data plot (i.e., target plot) among m = 20 decoy plots generated
from “simple generic null hypotheses” [2]. The act of selecting the
target plot as the most different is considered as rejecting a null
hypothesis, and the “[visual] discovery can be assigned a p-value
of 0.05 (=1/20)” [2].

In a follow-up work, Majumder et al. [18] proposed a model
where a lineup is shown to K independent observers (as opposed
to the single observer in Buja et al.). Each observer is assumed
to have the same probability 7 of correctly identifying the target
plot. The number of observers ¥ who correctly identify the tar-
get plot follows a Binomial distribution, as Y is the sum of K
independent Bernoulli random variables. In more formal terms,
Y ~ Binomial(K,n). Given Y’s distribution, the probability that
Y exceeds a particular value y, i.e., the complementary cumulative
distribution function (CCDF) of Y is

[2] AND MA-

Pr(Y >y) = fPr(Y =1i)
i=y

—g(ll.()ni(l—n)l(i 3)

Under the assumption that the target plot is indistinguishable
from the decoys ( AsMp. 1), the probability of a participant cor-
rectly identifying the target plot by chance is 7 = 1/m = 1/20.
The minimum number of correct responses y needed to confi-
dently reject asvp. 1, that is, y such that Pr(Y >y | aswp. 1) =

small signi
nomial CCDF.

In Majumder et al. [18]’s framework, the null hypothesis H,
is asvp. 1, which implies that the null distribution follows a
Binomial(K, 1/m) distribution. The “p-value of a lineup of size
m evaluated by K observers”[18] is the Binomial CCDF in Equa-
tion (3) with & = 1/m, and the test statistic is y, the observed num-
ber of participants who correctly identify the target plot. The sig-
nificance level a, once defined, can help us solve for y, where y is
defined such that Pr(Y >y | Hp) < a.

Therefore, inferential validity achieved via Majumder et al.’s
[18] Binomial model deviates from the original ideas in Buja et al.
that “plots take on the role of test statistics, and human cognition
the role of statistical tests” [2]. The distribution of the perception
of plots and the distribution of counts of correct participants under
ASMP. 1 are two different distributions.

ce level 0.01, can be solved for via the inverse Bi-

B ADDITIONAL DEFINITIONS OF CRITERION

There are different ways of measuring bias. We have already in-
troduced criterion location (Eq. (2)). We can also define relative
criterion location ¢’ [10]:

Another definition of criterion is the likelihood ratio  [10]:

_SG1)
F(l51)

C INTERPRETING SDT MODEL PARAMETERS
Consider a simplified version of 1line 2 in Section 3.3.4:

B

probit(w;) = a; + B; - signal present;

When no signal is present, then false alarm rate m; = ®(0;). When
there is signal present, then hit rate ; = ®(; + ;). This implies

o; = @~ ! (False alarm rate;)
o; + Bi =¢! (Hit ratei)
— B = @ !(Hit rate;) — & ! (False alarm rate;) = d’

D BRMS FORMULAE
D.1 Section 3.3.3
The corresponding brms formula is

responds_yes ~ 0 + colormap + colormap:signal_present,
family = bernoulli("probit"),
data = filter(df, subjectid == 300)

D.2 Section 3.3.4
The corresponding brms formula is

responds_yes ~ O + colormap + colormap:signal_present +

(0 + colormap + colormap:signal_present | subjectid),
family = bernoulli("probit"),
data = df

D.3 Section 3.3.5

The corresponding brms formula is
responds_yes ~ 0 + colormap + colormap:req_dist +

(0 + colormap + colormap:req_dist | subjectid),

family = bernoulli("probit"),

data = df

The modified brms formula for monotonic effects is



responds_yes ~ 0 + colormap + colormap:mo(req_dist) + [11] J. Heer and M. Stone. Color naming models for color selection, image
(0 + colormap + colormap:mo(req_dist) | subjectid), editing and palette design. In Proceedings of the SIGCHI Conference
family = bernoulli("logit"), on Human Factors in Computing Systems, pp. 1007-1016, 2012. doi:
data = df 10.1145/2207676.2208547 2
Hereon we use the logit function for easier model fitting. The (121 g’ngfn;mCr:)’Ii';?llitt;?dc'oﬁaj;?ldeg’eapi?' I%};)Il;.TGraphitc'al tests
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data = df [15] M. Lages. A hierarchical signal detection model with unequal vari-
ance for binary responses. Psychonomic Bulletin & Review, pp. 1-24,
SUPPLEMENTAL MATERIALS 2024. doi: 10.3758/513423-024-02504-5 6
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