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Our initial bank has
9 items. We built an 
assessment tool that 
is easy to use and 
supports the 
combinatorial nature 
of selecting visual 
encodings.

We generated a complete set 
of 163,584 visualization answers 
for 9 items. After eliminating 
nonsensical answers, 3,109 
answers remained, which we 
clustered into item-specific 
answers of similar quality.

Assessment 
tool

We assembled an expert 
panel to evaluate the 
quality of the items 
and score samples of 
visualization answers.

Randomly 
sample 
answers 
from 
clusters

We summarized a Z-score 
lookup table and built an 
autograder that synthesizes 
expert scoring schemes.

(Sec. 3.2)

(Sec. 3.3)

(Sec. 4) (Sec. 5) (Sec. 5.3)
Test Tryout (N=95)

Visualization answer 
autograded (Sec. 6.2)

(Sec. 6)
We tried our test on 95 
participants, refined the 
autograder using their 
data, and finalized 
a bank of 8 items.

Answer Sets

Figure 1: The systematic development process of avec. We created a design space to generate a bank of 9 items (Section 3.2) and

built an assessment tool that is easy to use and supports the combinatorial nature of selecting appropriate visual encodings

(Section 3.3). From a complete set of possible visualization answers per item (Section 4), we clustered visualization answers of

similar quality after first eliminating poor quality answers. We assembled an expert panel to rate the quality of the items and

samples from the clusters of remaining visualization answers (Section 5). We then built an autograder that synthesizes expert

scoring schemes using expert ratings and data from test tryout (Section 5.3 and Section 6.2), which can automatically assign

scores to visualization answers.

Abstract

Visualization literacy is the ability to both interpret and construct
visualizations. Yet existing assessments focus solely on visualiza-
tion interpretation. A lack of construction-related measurements
hinders efforts in understanding and improving literacy in visual-
izations. We design and develop avec, an assessment of a person’s
visual encoding ability—a core component of the larger process
of visualization construction—by: (1) creating an initial item bank
using a design space of visualization tasks and chart types, (2) de-
signing an assessment tool to support the combinatorial nature of
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selecting appropriate visual encodings, (3) building an autograder
from expert scores of answers to our items, and (4) refining and
validating the item bank and autograder through an analysis of test
tryout data with 95 participants and feedback from the expert panel.
We discuss recommendations for using avec, potential alternative
scoring strategies, and the challenges in assessing higher-level vi-
sualization skills using constructed-response tests. Supplemental
materials are available at: https://osf.io/hg7kx/.

CCS Concepts

• Human-centered computing → Empirical studies in visual-

ization; Empirical studies in HCI.
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1 Introduction

The ability to construct effective visualizations is a critical com-
ponent of visualization literacy [4, 11], analogous to the way in
which writing is inseparable from textual literacy. With the rapid
increase in data availability and accessibility, visualizations are
not only created by professional designers [22, 43, 49], but also by
members of the general public; for example, people who are not
in data-oriented jobs or who might not be trained in visualization
are nevertheless constructing visualizations at work (e.g., through
Excel) or in a personal context (e.g., through personal visualization
and visual analytics [28]). Despite increased participation in con-
structing visualizations and efforts to support non-experts [29, 51],
the current focus of visualization literacy studies and assessments is
still on visualization interpretation [9, 20, 24, 32, 41]. We lack valid
measurements of construction-related abilities, which we need to
effectively measure, teach, and improve these skills in novices and
amongst the general public.

Constructing visualizations, however, is a complex and multi-
step process [13, 31], which includes transforming raw data into
a form suitable for visualization (e.g., cleaning, filtering, and ag-
gregating as necessary [52]), translating data variables to visual
variables (e.g., setting the position of a data point by mapping data
to desired 𝑥 and𝑦 axes [36]), and transforming the visual encodings
to convey a meaningful message (e.g., applying appropriate scaling
functions or applying creative visual metaphors [56] to facilitate
interpretation). All of these components make up the broad notion
of a visualization construction ability.

Although there are many steps involved in visualization con-
struction, one of its core components is selecting appropriate visual
mappings [13]. We designate a person’s ability to appropriately
map data to visual channel(s) for effectively answering data-relevant
questions their visual encoding ability. This ability, which is
governed by established visualization principles [13, 36] and rules
(e.g., the Grammar of Graphics [53]) and common to all visualiza-
tion design, is critical for constructing well-formed visualizations
and for visualization creators to master. We therefore focus on the
visual encoding ability as a first step in systematically assessing
construction-related abilities.

The complexity of visualization construction also translates into
challenges in measuring construction-related abilities. The tradi-
tional multiple-choice question format cannot accurately represent
the design space a visualization creator has to work with. Visually
encoding data requires a designer to appropriately apply gram-
matical rules of visualization design and consider multiple data
variables and visual encodings at once; the design space quickly
explodes to thousands of possible combinations of data mappings.

This combinatorial nature is inherent to selecting appropriate vi-
sual encodings and must also be present in measurements of such
abilities.

To create an assessment of the visual encoding ability in visual-
ization construction, we:

(1) Created 9 initial items to measure the visual encod-
ing ability. To create the items, we first constructed an
item design space consisting of 3 visualization tasks and 8
chart types. We used it to generate 38 candidate constructed-
response items, each of which asks the test-taker to create a
visualization for answering a true-or-false (T/F) statement
about a dataset. We selected the 9 items that make up the
initial item bank by varying the number of necessary data
variables, mark types, and size of datasets.

(2) Developed a web-based assessment tool that can sup-

port the combinatorial nature of selecting appropriate

visual encodings. This tool allows test-takers to create a
wide variety of visualization answers for the items, while
still being easy to use without requiring prior knowledge
of a specific visualization tool or programming language.
This ensures that differences in test-takers’ scores are due
to differences in their abilities and not the usability of the
tool, which contributes to the validity of the assessment.

(3) Created an autograder based on expert scores of visu-

alization answers to our assessment items.We invited
an expert panel of 17 Information Visualization researchers
to assess the content validity of candidate items and provide
grading criteria for clusters of similar answers to the items.

(4) Conducted test tryout to assess the quality of our items

and to refine the autograder. Ninety-five online partic-
ipants used our web-based assessment tool to answer the
9 candidate items in a test tryout study. We used Item Re-
sponse Theory (irt) analysis to measure how easy or difficult
each item is and how reliably each item separates people
of different abilities. We also used the test tryout data to
refine the autograder and assign final grades to participants’
answers.

(5) Refined the bank to afinal set of 8 constructed-response

items, which have high content validity, have varying

difficulty, and can differentiate people of different lev-

els of ability. We finalized the item bank of avec using
feedback from the expert panel and results of the irt analy-
sis, removing one item with low content validity and high
variance in experts’ scores.

Reflecting on our efforts to go beyondmultiple-choice formats, avec
demonstrates the importance of and the complexities involved in
measuring higher-level abilities in visualization literacy. Dealing
with these complexities necessitates a line of future research that
could transform both the ways that we assess visualization skills
and our understanding of visualization literacy.

2 Related Work

2.1 Visualization Construction

Visualization, as described by Card et al. [13], is the mapping of data
to a visual form that supports human sense-making. A sequence of
steps are involved in this process, including data transformations,

https://doi.org/10.1145/3706598.3713364
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visual mappings, and view transformation, and have been referred
to by Card et al. as a reference model. This information visualization
reference model has been extended, adapted, and refined in prior
work [14, 16, 31, 50]. We focus on the core of this model, which
is the visual mapping transformation: the mapping from data
to visual representation. Visual mappings involve encoding data
variables to appropriate visual structures, such as visual marks
(e.g., point, line) and visual channels (e.g., position, color, size). The
mapping of data to visual structures are governed by established
principles such as the ranking of perceptual tasks [36], effectiveness
and expressiveness criteria [36], and the Grammar of Graphics [53].

Visualization construction is a complex process, and previous
work has studied how people create visualizations [30] and how
to improve the ability to create visualizations. For instance, both
Alper et al. [3] and Gäbler et al. [23] developed interventions to help
young children learn about bar charts; He and Adar [27] created
VizItCards, a toolkit to facilitate collaborative visualization design in
classroom instruction; Bishop et al. [8] developed Construct-A-Vis, a
tool that scaffolds the visual mapping process and supports children
in free-form visualization creation; and Adar and Lee-Robbins [1]
created Roboviz, a game-based activity for visualization courses to
facilitate the creation of interactive visualizations. However, limited
work has focused on measuring how well people can construct
visualizations, which requires valid measurements of construction-
related abilities. Such measurements can help identify areas of
improvement in novice learners and evaluate the effectiveness of
proposed interventions.

2.2 Assessments of Visualization Literacy

Researchers have developed several assessments and frameworks
for measuring and studying visualization literacy. Boy et al. [9]
demonstrated a method for assessing visualization literacy and
designed tests for line charts, bar charts, and scatterplots. Lee et
al. [32] developed the Visualization Literacy Assessment Test (vlat)
that contains 53 multiple-choice items that measures the ability
to “read and interpret visually represented data in and to extract
information from data visualizations”. Following vlat, Pandey and
Ottley [41] developed Mini-vlat to more efficiently measure this
ability with fewer items. Börner et al. proposed a data visualization
literacy framework (dvl-fw) that aims to guide the teaching and as-
sessment of visualization literacy, which includes both visualization
interpretation and construction. Extending prior definitions of vi-
sualization literacy that focus on the interpretation of well-formed
charts, Ge et al. [24] developed the Critical Thinking Assessment
for Literacy in Visualizations (calvi) composed of a 45-item bank
to assess people’s ability to “read, interpret, and reason about erro-
neous or potentially misleading visualizations”. Cui et al. [20] then
applied Computerized Adaptive Testing (cat) methods to develop
a-vlat and a-calvi to adaptively assess a person’s basic visualiza-
tion interpretation ability and critical thinking ability in detecting
visualization misinformation.

However, visualization literacy consists of the ability to both
interpret and construct visualizations [4, 11]. Yet many of the ex-
isting assessments focus on interpretation alone. Adelberger et
al. [2] also noted this lack of measurement of visualization con-
struction abilities and created a set of multiple-choice items to

evaluate Iguanodon, a gamified intervention they designed to im-
prove visualization literacy. However, their items only test for the
overplotting issue and do not cover the core of visualization con-
struction. Valid measurements of construction-related abilities can
help evaluate the effectiveness of targeted interventions to improve
such abilities and support research efforts in the holistic study of
visualization literacy. The need of such measurements was also
called for in a CHI 2024 workshop: Toward a More Comprehensive
Understanding of Visualization Literacy [26].

2.3 Item Formats Beyond Multiple Choice

Existing assessments of visualization literacy often use multiple-
choice items [9, 19, 20, 24, 32, 41]. However, simply choosing from a
short list of answers is not an accurate representation of construction-
related abilities, and thus is not a format that can sufficiently support
measuring the ability to appropriately map data to visual channel(s).
Constructed-response items, on the other hand, require a test-taker
to “generate an answer rather than select from a short list of op-
tions” [6]. They are often used to measure higher-level and more
complex skills in literature, mathematics, and music [34]. While
these items can better capture the skill of interest, they are harder
to grade. The Educational Testing Service (ets), for example, recog-
nizes this and has applied automated scoring to support the grading
of the constructed-response items [34]. In the context of a visu-
alization assessment, we might opt to use a computer-mediated
constructed-response item format, rather than purely asking test-
takers to draw visualizations by hand, for example. Allowing test-
takers to directly control the mapping of data variables to visual
encodings serves as a proxy to hand-drawing visualizations and
also preserves the combinatorial nature of selecting appropriate
visual encodings (more details in Section 3.3).

3 Test Development: Items and Assessment Tool

Visual mappings are a core component of both the visualization
reference model [13] and visualization grammar [53], making them
essential for visualization creators to master. We dub the ability to
appropriately map data to visual channel(s) for effectively answering
data-relevant questions a person’s visual encoding ability, and focus
on developing an assessment that measures this ability. We aim
to design the assessment for non-experts, including members of
the general public and students who are beginning to learn how to
construct visualizations.

We use constructed-response items in our assessment because
generating an answer—rather than choosing from a short list of
answers—aligns better with the combinatorial nature of mapping
data to visual channels. An item of avec consists of a constructed-
response question that asks the test-taker to create a chart for an-
swering a true-or-false (T/F) statement about a dataset. The format
of each item is as follows:

"Create the best chart to use to determine whether this statement
is true: [T/F statement]".

Thus, for a diverse bank of items, we need a set of T/F state-
ments whose reasonable visualization answers cover a diverse set
of commonly-used visualization tasks and chart types (Section 3.1
and Section 3.2). Additionally, the items must be administered via
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Table 1: The data variables in each dataset. The size of the dataset for each item may be different, but each item asks about a

subset of these variables.

Data variable Description

Date A recorded date (year-month-date) to track daily spending, income, or savings.

Month The month.

Year The year.

Income The amount of income ($) on each recorded date.

Savings The amount of savings ($) on each recorded date.

Spending The amount of spending ($) on each recorded date. In this hypothetical dataset,
the person spends money on only one spending category each day.

Spending category Daily spending category: Entertainment, Food, Transport, or Utilities.

an easy-to-use assessment tool that also supports the combinatorial
nature of selecting appropriate visual encodings (Section 3.3).

3.1 Item Design Space

To systematically generate a set of suitable candidate T/F statements
that will allow for a diverse set of visualization answers, we created
a design space composed of a variety of visualization tasks and
chart types.

Visualization Tasks. We started with the initial set of 8 tasks
from vlat [32], which was designed to assess the visualization in-
terpretation ability of the general public. We excluded 2 tasks that

are lower-level (involving local point judgements) to focus on
higher-level tasks (involving visual patterns with many data points),
because the visual encoding ability that we intend to measure in-
volves whether people can create an appropriate visual form to
answer a data-relevant question. Specifically, we excluded Retrieve
Value and Find Extremum because they are single-point judgements,
so we consider them lower-level. Additionally, we aimed to create a
diverse set of items that would lead test-takers to construct a variety
of visualization types. To this end, wemerged tasks that would

generally lead to similar visualizations. Namely, we merged
Determine Range, Find Anomalies, and Find Clusters into Describe
Distributions.1 We kept the remaining 2 tasks from the original set
of 8 as-is (i.e., Find Trends / Correlations and Make Pattern Com-
parisons) because they are higher-level tasks and are distinct from
the task of describing distributions. As a result, our reduced set
contains 3 tasks:

• Describe Distributions: describe the spread of the values of a
variable and/or how frequently different values occur.

• Find Trends / Correlations: find the relationship between two
variables or how a variable changes over time.

• Make Pattern Comparisons: compare patterns (e.g., data dis-
tributions, trends, or relationships) in the dataset.

Chart Types. To identify a set of chart types that the visualiza-
tion answers should cover, we started with a set of 12 chart types
from vlat [32]. We aimed to compile a diverse set of chart types

1We renamed the original Characterize Distribution from vlat to better reflect this
merged set, which includes tasks related to describing the spread of data values rather
than only characterizing distributions.

that cover our set of 3 tasks and can support varying the difficulty
levels of items in the bank. However, for usability purposes, we also
wanted to keep our assessment tool’s interface consistent across
items so that test-takers do not have to learn different interfaces
for different items—in order to reduce the influence of the interface
on a test-taker’s performance. Out of the 12 initial chart types, a
majority of chart types have 𝑥 and 𝑦 axes, which could be kept
consistent across items. Thus, we retained 8 Cartesian chart types,2
as this would allow us to have a diverse set of chart types while

maintaining a consistent chart-creation interface. Our result-
ing set contains 8 total chart types,3 and each supports a maximum
of 4 encoding channels (i.e., 𝑥-axis, 𝑦-axis, color, size).

3.2 Item Generation

We generated one T/F statement for each candidate item using the
item design space. For all T/F statements, we used a dataset in the
context of personal finance, because this topic is relevant to most
people. We generated datasets of varying sizes (e.g., a year’s or a
month’s data) to introduce some diversity between items, but all
of the datasets contain the same set of data variables, as described
in Table 1. Each T/F statement asks about a subset of the variables
in this dataset. This reduced the need for test-takers to learn new
datasets during the assessment: how well one can get familiar with
a new dataset is not necessarily part of our measure of the ability
to map data to visual channels.

We first generated T/F statements with a differing number of
necessary data variables (i.e., variables that must be visualized to
answer the T/F question correctly) for each combination of visu-
alization task and chart type. This was our attempt at generating
items with varying difficulty. The ultimate difficulty of these items
will be determined by irt analysis (Section 6.5). For 6 of the 8 chart
types, we generated two candidate T/F statements per combination
of task and chart type, resulting in 36 items (2 items × 6 chart types
× 3 visualization tasks). For stacked bar chart and stacked area chart,
we generated one candidate T/F statement each (under the task of
Make Pattern Comparisons), because they require three and only

2Between stacked bar chart and 100% stacked bar chart, we only kept stacked bar chart.
Because of their similarity, keeping both would add little value to having a diverse set.
3The 8 chart types are bar chart, stacked bar chart, histogram, line chart, scatterplot,
bubble chart, area chart, and stacked area chart.
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ID True-or-false statements Mark Types

Daily income rarely went over $300.

Total monthly utilities spending was generally lower than $300.

Total yearly spending rarely exceeded $10,000.

Daily spending often fluctuated between about $10 to about $30.

Daily savings was generally higher when income was higher.

Total monthly utilities spending strictly decreased from Jul to Oct.

The number of times that daily spending was around $50 increased from 2020 to 2023.

The range of daily transport spending was wider than food spending.

Daily food spending consistently decreased at the same rate as transport spending.

Task

DD.1

DD.2

DD.3

FTC.1

FTC.2

FTC.3

MPC.1

MPC.2

MPC.3

Figure 2: The set of T/F statements in our initial item bank. Each statement has its own set of mark types that we think are

most relevant based on its relevant data type(s) and task, which covers a variety of chart types.

three necessary variables. Thus, we created 36 + 2 = 38 candidate
T/F statements. We referred to a summarization of suitable chart
types for different data types by authors of vlat [32] and inferred
the set of most relevant mark types for each T/F statement. For
instance, scatterplots are less likely to be useful for items with T/F
statements that require yearly aggregations, and line charts are
more likely to be useful for T/F statements that require order in the
data (e.g., trend over time).

We then reviewed the set of candidate T/F statements and no-
ticed redundancies that involved the same type of statement that
only differ in the quantitative variable of interest (e.g., “[quantita-
tive variable] rarely went over [numeric value as threshold]”). To
remove redundancies and ensure a variety of items, we selected T/F
statements from each visualization task category while ensuring a
diverse set of relevant chart types,4 a varying number of necessary
variables, and a varying size of datasets. This allowed us to arrive at
a set of T/F statements that can lead to a diverse set of visualization
answers that also cover all 3 visualization tasks. The result is a set
of 9 items, with 3 items per task, as shown in Figure 2.

3.3 Assessment Tool

We need an assessment tool that is easy to use, able to support the
combinatorial nature of selecting appropriate visual encodings, and
expressive enough to allow test-takers to construct a good answer
to the items. This led to the following design considerations:

• (DC.1) Does not require coding expertise: The target test
population for avec includes non-experts in visualization, so
we cannot assume they have any programming experience.

4We did not end up including T/F statements from bubble chart combinations due to a
conflicting property of such T/F statements: the statements tend to be overly long and
difficult to parse, but the visualization answer always includes all 3 of the quantitative
variables in the dataset, which can make it easy to arrive at the answer.

• (DC.2) Easy to use: Our goal is to assess visualization-
related abilities, not expertise with the interface—therefore
we need an assessment tool that non-experts can pick up
quickly with little training. This will help ensure that dif-
ferences in test-takers’ scores are due to differences in their
abilities and not the usability of the tool.

• (DC.3) Familiarity of user interface: Similar to the pre-
vious consideration, we do not want our measurement con-
founded by a test-taker’s familiarity with a specific visualiza-
tion tool—therefore, we require an interface that is familiar
to a broad set of users (e.g., one which uses standard UI
widgets).

• (DC.4) Consistency across items: An assessment interface
that is consistent across items reduces the need for the test-
taker to learn new parts of the interface during the test,
reducing noise in our measurement.

• (DC.5) Expressive: Even though we need to keep the as-
sessment interface simple, it must be able to support the
construction of a wide variety of chart types to give test-
takers the flexibility to construct visualization answers of
varying quality.

We went through an iterative design process to develop an as-
sessment tool that meets all of the above design considerations.
To broaden the user group for our assessment, we eliminated the
need for programming experience by keeping controls at a high
level: users only need to decide which visual channels they want
to map data variables to (DC.1). Behind the scenes, we manipulate
Vega-Lite [46] specifications according to the test-taker’s desired
mappings. The color schemes we used are color blind safe.5

5See supplemental materials for the results from Adobe’s color accessibility checker.
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(I) (II) (III)
Test-takers start from a blank 
workspace. Channel drop-downs are 
placed at their typical axis or legend 
location for familiarity.

Each drop-down contains all data 
variables described in Table 1. The 
drop-downs for the x and y axes also 
contain a “Count of Records” option 
to support histograms.

After test-takers click "Next", they 
answer the T/F question and provide 
reasoning for their answer.

A

B

C

Figure 3: The interface of the assessment tool, which displays the item’s question text (A) and includes an interactive area for

constructing the visualization answer that allows test-takers to select their desired mark type (B) and contains drop-downs (C)

to control the mapping between data to visual channels. On a separate page after a test-taker constructs their answer, they are

asked to select an answer for the T/F question.

Early versions6 of the interface included individual controls in a
drag-and-drop format (similar to visualization tools like Tableau)
for different data transformations (e.g., binning, sorting, mean, sum,
count), scale transformations (e.g., reversing or truncating scales),
and a larger set of encoding choices (e.g., sequential, diverging,
qualitative colors). However, when piloting the interface, we found
that the drag-and-drop features were too overwhelming for some
users to navigate and were difficult to learn through short training.
As our goal was to create an interface that did not require extensive
training (DC.2) and which did not simply measure a user’s famil-
iarity with some particular visualization tool (DC.3), we changed
the interface to use more typical drop-down widgets and refined
our scope to focus on visual mappings, the core component of the
visualization reference model [13]. We refined the tool to support
a maximum of 4 encodings (𝑥-axis, 𝑦-axis, color, and size) and 4
mark types, which together determine the resulting chart type. The
4 mark types are bar (for bar chart, stacked bar chart, histogram),
line (for line chart), point (for scatterplot, bubble chart), and area
(for area chart, stacked area chart) (DC.5, Figure 3.B).

In the refined version of the assessment tool, we automatically
apply aggregation functions for the purpose of supporting the
creation of all of the chart types in our design space. In cases where
the desired chart type requires aggregation, we manipulate Vega-
Lite specifications to apply aggregation depending on the selection
of mark types and data variable types. We included 2 aggregation
functions:

• count is included to support histograms. If a test-taker selects
the Count of Records option for one of the positional axes,
then we apply the count aggregation and bin the variable on
the other axis.

6See supplemental materials for details of early iterations.

• sum is included to support stacked bar and stacked area
charts. If a test-taker selects a bar or area mark, maps a
categorical variable to one of the positional axes and/or color
and/or size, and maps a quantitative variable to the other
axis, then we automatically sum the quantitative variable
within combinations of the categorical variables.

Having a minimum set of built-in aggregation functions simpli-
fied the interface compared to earlier prototypes, which required
test-takers to manually specify aggregation functions, but which
participants found difficult to learn in pilots (DC.2). We further
discuss the importance of the role of the assessment tool in mea-
surements of complex construction-related skills in Section 7.5.

Throughout the assessment, we display each item in the same
format for consistency (DC.4, Figure 3.A): the question text fol-
lowed by an interactive area for the test-taker to construct their
visualization answer (Figure 3). We placed the drop-downs close to
the channel they control (or, for color and size, where their legends
might often appear on simple charts), taking advantage of familiar
spatial associations (DC.3, Figure 3.C). On a separate page, after the
test-taker constructs the chart, we ask them to select the answer
to the T/F question and provide their reasoning (Figure 3.III). We
included this for us (and future test administrators) to use as a
resource to revise the T/F statement if needed, but the test-takers’
answers to the T/F questions do not affect the assessment of their
visual encoding ability.

4 Test Development: Visualization Answers

The combinatorial nature of selecting appropriate visual encodings
implies there should be a large number of possible answers of vary-
ing quality for each item in our assessment. Unlike the traditional
multiple-choice format—where the correctness of the answer is
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binary—we need a grading approach that allows test administrators
to evaluate the quality of a broad spectrum of possible visualization
answers.

It would be time-consuming to manually grade each possible vi-
sualization answer our assessment tool can generate. Therefore, we
built an autograder for each item. Specifically, we (1) generated the
complete set of possible visualization answers (as Vega-Lite specifi-
cations) to each question (Section 4.1); (2) used established rules and
design principles from the literature [15, 36] to eliminate nonsensi-
cal answers, which will receive the lowest score (Section 4.2); (3)
grouped the remaining answers into clusters we believe might re-
ceive similar scores from experts (Section 4.3); (4) randomly selected
visualization answers from each cluster to form representative sets
of visualization answers for each item. These representative sets of
answers will be scored by an expert panel (Section 5). These expert
scores will allow us to refine clusters (if needed) and will serve as
the basis for our autograder.

4.1 Complete Sets of Visualization Answers

Our assessment tool, as explained in Section 3.3, gives test-takers
the flexibility to map 7 data variables to 4 encoding channels and
choose among 4 mark types. The test-taker manipulates each en-
coding channel through a drop-down list and is allowed to leave
any channel “empty”. Thus, with the “empty” option, there are (4
mark types × 8 options on 𝑥-axis × 8 options on 𝑦-axis × 8 options
on color × 8 options on size) 16,384 combinations. In addition to
data variables, test-takers can also map Count of Records to one
positional axis and a data variable to another to create histograms.
This generates an additional (4 mark types × 7 data variables on 𝑥-
axis × 8 options on color × 8 options on size) 1,792 combinations,7
yielding 16, 384 + 1, 792 = 18, 176 possible visualization answers for
each item.

4.2 Initial Elimination

It would be impractical to ask the expert panel to rate the complete
set of 163,584 visualization answers (18,176 answers for each of the
9 items), so we reduced the set of visualization answers for each
item using the following criteria:

• Whether all of the necessary data variables for that

item are in the visualization specification: Visualizations
that do not contain all of the variables asked about in the
T/F question statement would not be able answer that item,
so we eliminate these answers.

• Whether the visualization passes the linter rules: We
reviewed linter rules from VizLinter [15] and only included
the rules that pertain to the functionalities of our assessment
tool. For example, the rule of not using both bin and aggre-
gate on the data at the same time was excluded because our
assessment tool automatically bins or aggregates depending
on the data variable mapped, so it would not be possible to
violate this rule. As a result, we curated the following three
rules to use for this initial elimination:

7We fixed Count of Records to the 𝑦-axis when generating the combinations because
versions with Count of Records on the 𝑥-axis would be redundancies that add little
value to summarizing the grading rubric, which were combinations we could eliminate
immediately to reduce the answers under consideration.

– Use different fields for 𝑥-axis and 𝑦-axis
– Use no more than one continuous data in the 𝑥 and 𝑦

channels for mark ‘bar’ and ‘tick’
– Mark ‘bar’, ‘tick’, ‘line’, ‘area’ require some continuous
variable on 𝑥 or 𝑦

Additionally, the assessment tool allows for some combinations
of mark type and data variable mappings that would lead to vi-
sualizations that make it theoretically impossible to answer the
corresponding T/F question; we eliminated these answers. For ex-
ample, visualization answers that use the bar or area mark and
contain Month or Year were eliminated for items that ask about
correlation between daily values of two variables (FTC.2), as aggre-
gating by Month or Year would not allow the test-taker to judge
daily correlation (see supplemental materials for a representative
theoretically impossible answer for each rule). The visualization
answers eliminated during this phase are of poor quality.

In total, 160,475 visualization answers failed the initial elimina-
tion criteria, leaving 3,109 answers that must be graded (see Figure 4
for a breakdown by item).

4.3 Answer Clusters

It would still be impractical to have experts rate all 3,109 remaining
non-eliminated answers. Instead, we first created clusters of visual-
ization answers that we consider to be similar to each other, have
experts score answers sampled from those clusters, then build our
autograder based on those scores.

To build the clusters, we first partitioned the visualization an-
swers to each item into broad clusters using high-level rules, such
as Do core quantitative variable(s) use positional encodings?. We then
built a tool to display all of the visualization answers in a given
cluster, which allowed us to quickly look through clusters and judge
their quality and similarity. The authors reviewed all clusters in-
dependently, then iteratively refined the clusters and high-level
clustering rules, reaching consensus after regular discussion. The
resulting high-level rules closely aligned with prior work on the
ranking of perceptual tasks [36].

Next, we split the initial broad clusters into smaller clusters
based on our judgments of the effectiveness and expressiveness
of the visualizations. For example, a scatterplot with both neces-
sary quantitative variables on positional axes is more effective for
judging correlation than a plot with both variables mapped to color
and size channels (FTC.2). Thus, we split the broad clusters based
on properties of answers that could impact the visual form of the
visualization: mark type, what data type is mapped to the encod-
ing channels, and (for stacked bar or area) the orientation of the
chart (orientation of a stacked bar can affect whether a subgroup
of interest is aligned to the baseline, and therefore the difficulty of
estimating values from that subgroup).

While forming the clusters, we further identified visualization
answers that make it practically impossible or extremely difficult
to answer the question statement and eliminated them based on
item-specific rules. For example, it would be practically impossible
to determine the correlation between two quantitative variables if
the mark type is bar and one of the necessary quantitative variables
is mapped to the size channel instead of the positional axis (FTC.2).
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Figure 4: The left-most column in gray indicates the number of answers that were initially eliminated for each item. The set of

numbers in colored boxes indicates the number of visualization answers that were in each item-specific cluster. The clusters

are unordered; we use the expert scores to determine the relative order after conducting the expert panel (Section 5).

The resulting clusters for each item represent sets of visualization
answers that we would expect to receive similar scores. However,
we wanted to both validate our clustering and receive broader
expert input to determine final scores. Therefore, we formed an
expert panel to collect experts’ scores on answers sampled from
these clusters.

5 Expert Panel

The goal of the expert panel is threefold: (1) collect expert ratings of
relevance to compute the content validity index (cvi) of each item
(cvi is a measure of how well an item on a test measures what it is
intended to measure [42]); (2) gather expert criteria for assessing
the quality of the visualization answers in order to validate our clus-
tering scheme; and (3) use experts’ scores of visualization answers
sampled from our clusters to build autograders. We recruited 17 re-
searchers in Information Visualization who have obtained (𝑁 = 13)
or are obtaining (𝑁 = 4) a doctorate.

The expert panel was conducted on Qualtrics. For each item, we
generated 5 representative sets of visualization answers. This was to
have the expert panel rate a variety of samples. Each representative
set contained one answer from each of its item’s clusters, selected
at random (see Section 4.3 and the breakdown of clusters by item in
Figure 4). Each expert was randomly assigned 3 items from the set
of 9, then shown one representative set of answers for each item
they were assigned. We ensured that each item was seen by at least
5 experts, which is important for the purpose of computing the
content validity index.

We asked each expert to (1) rate the relevance of each question
statement to assessing a test taker’s ability to create a visualization
that serves that item’s corresponding task, (2) score each visual-
ization answer on a scale from 0 (poorly designed and unable to
answer the question) to 100 (well designed and able to answer the
question); this yields a holistic judgment of answer quality, which
we later use to build our autograder, and (3) explain their grading
criteria.

5.1 Content Validity of avec

The content validity index (cvi) is a metric that uses expert ratings
to assess how well test items measure what they are intended to
measure. The cvi is typically calculated from relevance ratings on
a 4-point scale and is the proportion of experts who rated an item 3
(quite relevant) or 4 (highly relevant) [42]. Items with a cvi below
78% are candidates for revision [42]. We use cvi in conjunction
with irt analysis in Section 6.6 to finalize the item bank.

In our expert panel, if an expert rated the relevance of an item
below 3, they were asked to provide free-text comments to explain
their reasoning. We used their comments to evaluate whether the
revision for the item would be minor; if minor, the item would
not require a second round of expert review [42]. Two items were
candidates for revision:

• DD.3: “Total yearly spending did not exceed $10,000 in 2020”
(cvi: 0.33, task: Describe Distributions). Several experts men-
tioned that DD.3 only asks for one specific aggregated value,
which would not need a distribution of values. Thus, we
made a minor wording revision to better align the statement
to its intended task: “Total yearly spending rarely exceeded
$10,000”. This way the question does not focus on one par-
ticular year.

• MPC.2: “The number of times that daily spendingwas around
$50 increased from 2020 to 2023” (cvi: 0.67, task:Make Pattern
Comparisons). Experts’ comments did not suggest particular
wording changes to the T/F statement, and 4 out of 6 experts
rated it a 3 or 4, so we kept it as a candidate for revision and
defer to the results from test tryout (Section 6.5) for the final
verdict.

The remaining seven items have a cvi of at least 80%.

5.2 Qualitative Analysis of Grading Criteria

To better understand the experts’ scoring rules, and to validate
(or if needed, refine) our initial clustering of answers, we asked
the experts to provide free-text responses to explain their grading
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Do core quantitative variable(s) use 
positional encodings?

Are there encodings that are potentially 
distracting or misleading?

Does the temporal variable use positional 
encoding when order is necessary?

High-level rules

Stratify by ...

what data type is mapped to 
visual channels

Expert Grading Criteria

Whether necessary variables prioritize 
positional axes

Whether there are irrelevant encodings

Whether time is on the x-axis

Whether data type is appropriate for the 
visual channel

Whether the mark type is best suited for 
the underlying task 

Whether the rotation of chart aligns important 
segments to the baseline

Whether there is overplotting or visual clutter

Whether there is proper aggregation 

Initial Elimination (Sec 4.2)

Broad answer clusters 
(Sec 4.3)

Answer clusters (Sec 4.3)

what mark type is selected

rotation of stacked bar or area charts

Figure 5: The mapping between our clustering rules and expert grading criteria. Each grading criterion could be mapped to one

or more clustering rules we applied to cluster visualization answers of similar quality. This mapping suggests that our clusters

capture the meaningful differences between answers that experts were using to form their holistic grades.

criteria for the visualization answers. We coded their responses and
compared them against our clustering rules. If each expert criterion
can be mapped to at least one of the clustering rules we used, then it
suggests that our clusters were reasonably partitioned and captured
the meaningful differences between visualization answers.

Coding Process. Two of the authors independently examined
these comments and assigned codes to summarize each expert’s
grading criteria. The two coders then discussed their codes for
each comment, resolved differences and ambiguities, and created a
final consensus codebook and consensus labels for experts’ grading
criteria.8 Using the grading criteria codebook, we categorized the
codes at the item level as item-specific rules, which we then use to
assess the rules we applied for clustering visualization answers of
similar quality. This ensures that our clusters are not missing some
meaningful differences between answers that experts are using to
form their holistic grades.

Results. We found a total of eight recurring grading criteria in
the experts’ comments across all items, and each criterion can
be matched to one or more rules that we first used to divide the
visualization answers into clusters (see Figure 5). While some of
these mappings are straightforward (e.g., whether the rotation of
chart aligns important segments to the baseline is captured by the
clustering rule rotation of stacked bar or area charts), a few depend on
properties of our data or our tool. For example, in our datasets visual
clutter most often occurred when a categorical variable is mapped to
bar size, leading to overlapping bars of varying sizes, so the grading
criterion whether there is overplotting or visual clutter is captured by
the clustering ruleswhat data type is mapped to visual channels,what

8The codebook is in supplemental materials.

mark type is selected, and are there encodings that are potentially
distracting or misleading. As explained in Section 3.3, we apply
aggregation based on the selection of mark types and data variable
types, so the grading criterion whether there is proper aggregation is
captured by the clustering rules what data type is mapped to visual
channels and what mark type is selected. The expert grading criteria
corroborated the rules we used for clustering answers of similar
quality, which suggests that our clusters do capture the meaningful
differences between answers. Thus, we proceed to use these clusters
and expert scores as a basis for developing an autograder to grade
visualization answers (Section 5.3) and further refine the autograder
with participants’ data from test tryout (Section 6.2).

5.3 Development of Initial Autograder

We develop an initial version of the autograder based on scores
from the expert panel. We later refine and finalize the autograder
using test tryout data in Section 6.

5.3.1 Holistic Grading. Existing approaches for grading constructed-
response questions can be separated into two classes: holistic and
analytical [34]. Although both approaches are based on guidelines
(e.g. a rubric), the holistic approach is more top-down and aims to
make a single judgement about the answer as a whole, while the
analytic approach is more bottom-up, accumulating points based
on specific features of the answer [34]. We used the holistic ap-
proach for grading the visualization answers, because it can better
capture the qualitative differences between visualizations (e.g., two
visualizations that both pass the same analytical rule of mapping
necessary variables may still differ qualitatively depending on the
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chart type or the specific orientation of the chart).9 Thus, we asked
experts to score answers on a single scale from 0 (poorly designed
and unable to answer the question) to 100 (well designed and able
to answer the question).

5.3.2 Grading Mechanism: Developing a 𝑍 -Score Lookup Table. To
remove idiosyncrasies in experts’ scoring (e.g., tendencies to use
only one end of the scale), within each expert we standardized
their scores into 𝑍 -scores using the mean and standard deviation
of their scores. To compare the scores across items, we further
standardized the expert-level 𝑍 -scores by transforming them into
item-level 𝑍 -scores using the mean and standard deviation of the
experts’ 𝑍 -scores for each item.

We then examined each item-specific cluster of answers that
experts scored. For each cluster, if the variance of the 𝑍 -scores
for the answers was relatively low (meaning there are not much
disagreements between experts’ scores), then we assigned the mean
𝑍 -score as the final 𝑍 -score for all visualization answers in that
cluster. If the variance was high (meaning there are some disagree-
ments between experts’ scores), we referred to the experts’ text
responses on their grading criteria as well as our own judgment
to determine if the disagreement warrants (1) further dividing the
cluster, (2) merging the cluster with another similar and relatively
lower-variance cluster, or (3) keeping the cluster as-is and assign-
ing the mean 𝑍 -score as the final 𝑍 -scores for the cluster. We also
looked through the clusters ordered by their mean 𝑍 -scores to see
if the relative order of scores reflects a reasonable ordering of the
quality of the visualizations.

5.3.3 Results. After examining all 116 clusters across the 9 items,
we identified and merged 2 pairs of clusters where one of the clus-
ters within the pair had higher variance but the other cluster of
the pair contained visualization answers of similar quality and
had lower variance. We noticed that item MPC.2 had an especially
high variance within several clusters that we believe reflected sub-
stantive disagreements between experts’ scoring schemes, and we
identified several instances of mean 𝑍 -scores for clusters on that
item that would imply a relative ordering of answer quality that we
disagreed with. We decided to keep MPC.2 provisionally for test
tryout and re-examine this item after irt analysis in Section 6.

Our initial autograder contains 114 clusters,10 each with its own
corresponding 𝑍 -score, which becomes the lookup table for au-
tomatically assigning scores to visualization answers. We further
refine the autograder after collecting test tryout data, described
next.

6 Test Tryout

We tried out our 9 test items to refine the autograder and conduct
irt analysis. We then used the item analysis results along with
evidence from Section 5 to finalize the item bank.

9We originally planned to grade each visualization answer holistically and analyti-
cally, but opted to just holistically because we reviewed the cluster-specific scores
(Section 5.3.2) and found the holistic scores experts gave already took the important
properties of the question, underlying task, and data into consideration.
10After we conducted item analysis using test tryout data, we decided not to include
MPC.2 in the final bank. Therefore, there is a total of 103 clusters with their associated
𝑍 -scores in the lookup table after removing clusters corresponding to MPC.2.

6.1 Participants and Procedure

We recruited 100 participants from a Prolific pool with people who
are aged 18 to 65, are fluent in English, and have normal or corrected-
to-normal vision. The study was expected to take 30 minutes, and
participants were compensated 6 USD for successfully completing
the study. We filtered out three participants who did not complete
the study and two participants who failed all of the attention check
questions. The 95 remaining participants consisted of 50 males and
45 females aged 18 to 54.

At the beginning of the survey, we presented the consent form
to all participants, which described what to expect in the study. The
study contained two sections: the training section and the main
section.11 The training section included five training questions
which asked participants to reproduce charts using the assessment
tool. Participants must correctly answer all training questions in
order to proceed. Afterwards, participants were asked to fill out the
System Usability Scale (sus) [10]. We used the sus to determine if
the assessment tool is easy to use (DC.2), which helps ensure that
differences in test-takers’ scores are due to their ability and not the
usability of the tool.

The main section included all 9 items from our item bank and
2 attention check questions. Item order was randomized. For each
item, participants were asked to create the best chart for deter-
mining whether a T/F statement is true. Then, they were asked to
use the chart they created to select an answer for the T/F question
and provide their reasoning. The participants were instructed that
they could not go back once they proceeded to the next item. We
designed the attention checks to ensure there was no room for
misinterpretation if the participant had paid attention, following
the format of Instructional Manipulation Checks (IMCs) [40]. Each
attention check question explicitly instructed participants to select
a specific mark type, drop-down value(s), and T/F answer.12

6.2 Autograder Refinement and Final Scores

Weassigned initial grades to participants’ answers using the𝑍 -score
lookup table from Section 5.3.3. That is, our autograder assigned
each answer the 𝑍 -score from its corresponding cluster. If a visual-
ization answer was eliminated during the initial elimination phase
(Section 4.2), the autograder assigned it a score of -2, which is less
than the minimum autograder score (-1.22) and is (by definition)
two standard deviations below the mean, indicating a visualiza-
tion of poor quality. Using -2 as the lowest autograder score also
helps make the score distribution roughly symmetrical (the highest
autograder score is 1.81).

Next, to refine the autograder and generate final grades for par-
ticipants’ answers, we examined each visualization answer that
received a 𝑍 -score of -2 to identify any question-specific edge cases
that should instead be merged into one of the existing clusters. As
a result, we merged 8 types of edge cases into another cluster:

• One edge case was associated with FTC.1, which involved
a rule that governed mapping quantitative variables to the
color channel with mark area. This usually caused the visual-
ization specifications to be unrenderable on the interface due

11The demo video of the assessment tool participants used and a live demo link are
both documented here: https://osf.io/hg7kx/.
12See supplemental materials for the exact attention check questions.

https://osf.io/hg7kx/
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to having too many colors. FTC.1, however, used a smaller
dataset that made it an exception to this rule.

• Two cases were associated with MPC.1. In one case, the
necessity of data variables varied depending on mark type
(“Date” became a necessary variable along with “Spending”
and “Spending Category” when themark type is line, because
without “Date” the line would inappropriately connect the
data points in each spending category). In the other case,
a visualization answer had been eliminated based on the
linter rule of Use different fields for 𝑥-axis and 𝑦-axis, which
actually did not result in a poor visualization because the
task for MPC.1 (making spending range comparisons) is still
doable if “Spending” was mapped to both positional axes
with mark point. This suggests that visualization linters must
be used with caution and the relevance of the linter rules
may vary depending on the context and question of interest.
See supplemental materials for the visualization examples.

The other 5 out of 8 edge cases are associated with MPC.2.13 After
the autograder refinement, we reran the autograder to assign final𝑍 -
score grades to the visualization answers from test tryout. Figure 6
shows each item in the final bank alongside distributions of 𝑍 -
scores of participants’ answers and example visualization answers
of varying quality from test tryout.

6.3 Bayesian irt Model

Model Specifications. The 2-parameter irt model has been used
by visualization literacy test developers to infer item easiness (i.e.,
how easy it is to correctly answer the item) and item discrimination
(i.e., how well the item can differentiate people of different abilities)
of test items [20, 24]. The traditional 2-parameter irt model uses
logistic regression, because it assumes that an answer is graded in
a binary way: correct or incorrect. Since our items are graded on a
continuous scale, we modified the traditional irt model to instead
use linear regression by changing the response distribution to a
Gaussian. We implemented a Bayesian irt model with the brms R
package [12].

The outputs of this model are posterior distributions of item
easiness, item standard deviation, and the ability of each test-taker.
In the context of this model, item discrimination can be understood
as the inverse of the item standard deviation: when the standard
deviation of an item is high, then it cannot easily differentiate people
with different abilities, because there is a lot of variance in people’s
scores on that item. Thus, the higher the standard deviation, the
lower the discriminating power of an item. We set the priors for the
intercept to N(0, 1), standard deviations of ability, easiness, and
responses to N+ (0, 1), and the correlation matrix to LKJ(2).14

Sample Size. To determine the sample size for test tryout, we
conducted a pilot study (𝑁 = 10) to fit our modified irt model,
and used the model to simulate various sample sizes. We found
a sample size of 100 was sufficient for model convergence, had
reasonable posterior predictive checks, and yielded intervals for the
item easiness and standard deviation parameters from the model

13Because we ultimately remove MPC.2 from the final item bank during test revision
(Section 6.6), we defer details on its edge cases to supplemental materials.
14This model was preregistered on OSF: https://osf.io/hg7kx/.
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Figure 7: The item easiness estimates and item standard devi-
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and standard deviation coefficient plots represent themedian

estimates.

output that are of similar width to prior work that has also applied
irt [24].15

6.4 Descriptive Statistics and sus Score

The total completion time in minutes ranged from 8.50 to 64.76
(𝑀 = 21.70, 𝑆𝐷 = 12.61), suggesting that 30 minutes are reasonable
to complete the test. The item-level correctness of the T/F questions
ranged from 0.67 to 0.96 (𝑀 = 0.82, 𝑆𝐷 = 0.10). The participant-level
correctness of the T/F questions ranged from 0.44 to 1 (𝑀 = 0.82,
𝑆𝐷 = 0.15).

We computed the sus scores for each participant following the
established procedure [10]. The average sus score of participants
is 77.76 (𝑆𝐷 = 19.80), which is considered to be in the acceptable
range [5]. This provides some evidence that we were able to create
an interface that is easy to use (DC.2), such that unfamiliarity with
the interface should be less likely to interfere with measurement of
participants’ visualization encoding abilities.

6.5 irt Analysis Results

We ran our irt model on the test tryout data with final grades of
participants’ answers for the items. The minimum bulk effective
sample size is 6,530 and the minimum tail effective sample size is
6,796, and all 𝑅 values are approximately 1.

Figure 7 shows the coefficient plots displaying both item easiness
and standard deviation (higher values correspond to lower discrim-
inating power), each with 95% and 66% credible intervals (CI) and a
dot indicating the median estimate. The median estimates of the
item easiness parameter ranged from -0.90 to 1.50, with an average
of 0.19. The median estimates of the item standard deviation pa-
rameter ranged from 0.74 to 1.51, with an average of 1.09. Figure 8
shows the distribution of the estimated abilities of participants.

15See OSF preregistration: https://osf.io/hg7kx/.
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Figure 8: The distribution of the estimated abilities of partic-

ipants from test tryout.

6.6 Final Item Bank

We made a holistic judgment when finalizing the item bank by
considering many factors [17], including the content validity of an
item, how difficult an item is, its standard deviation compared to
other items in the bank, and preserving the diversity of the bank.
We re-evaluated the two items identified as revision candidates (cvi
< 78%) in Section 5.1:

• DD.3: we retained the revised item because it has a median
easiness of around 1.50, which contributes to the coverage
of a wide range of abilities.

• MPC.2: we removed MPC.2 because it had a low cvi of 0.67,
high variance of expert scores within answer clusters, and
there is one item in the same task category (MPC.1) that has
similar easiness and standard deviation, so removing MPC.2
would not necessarily affect the diversity of the item bank.

The remaining 7 items were retained because they possess at least
one of the following qualities: (1) high cvi, (2) low item standard
deviation, or (3) they contribute to the diversity of the item bank.
We also calculated McDonald’s Omega [18, 21, 44], a reliability
measure widely used to assess the internal consistency of a test,
and found the overall reliability 𝜔𝑡 to be 0.73, which is considered
to be acceptable [39]. As a result, our final bank consists of 8 items,
which can serve as a valid assessment of the visual encoding ability
in visualization construction, and the items have varying easiness
and can differentiate participants of different levels of ability.

7 Discussion

7.1 Usage Recommendations

Based on our test tryout data, the mean completion time was around
21 minutes (Section 6.4). If test administrators prefer a shorter test,
they could pick from the item bank based on their desired item
easiness and standard deviation estimates. For instance, if the tar-
get test population is people with lower abilities, administrators
could select a set of items with low item standard deviation at

lower-ability ranges. Or if they would like to focus on a specific
visualization task, such as Describe Distributions, then they could
include only the items pertaining to that task. Items with low stan-
dard deviation (corresponding to high discriminating power in
traditional irt) should generally be preferred if one were to select a
customized subset, as with prior work on assessment development
using irt [24].

Our procedure of developing avec could also be extended for test
administrators interested in having a larger item bank. The design
space we used to generate the T/F statements contains redundancies
that we removed during item generation, such as T/F statements
that only differ in the quantitative variable of interest (Section 3.2).
One could start with the validated items in avec then identify other
items that might have similar answer clusters as a way to expand to
a larger bank. If answers for the new item fit into existing clusters,
the autograder can automatically grade the answer. Otherwise, test
administrators should reassess the set of visualization answers for
the new item(s) and devise a scoring scheme most appropriate for
the context of use.

7.2 Applications of avec in Future Research

One obvious area of application for avec is facilitating the study of
the abilities involved in visualization literacy, such as the interplay
between visualization interpretation and construction. For instance,
avec could be used to investigate whether people who can appro-
priately map data to visual channels are also better at interpreting
visualizations, and vice versa. Additionally, future work can study
how much the ability to reason about potentially misleading vi-
sualizations [24] might contribute to construction-related abilities
such as the visual encoding ability, which can further inform vi-
sualization teaching curricula and the design of interventions for
improving a person’s overall visualization literacy.

Beyond assessing a person’s visual encoding ability, avec can
also be used to evaluate the effectiveness of interventions designed
to improve this ability, such as different curricula in visualization
classes, through pre-post testing. These studies might help teachers
identify areas that need special attention during instruction. Future
work could also explore the potential for avec as an educational in-
tervention itself and investigate whether providing automated and
personalized feedback to users through the web-based assessment
tool could improve their visual encoding ability.

7.3 Alternative Scoring Strategies

Unlike multiple-choice items, answer correctness on a constructed-
response item is often not binary, and the degree of answer cor-
rectness may vary depending on the rubric or scoring scheme. We
used item-specific scores from an expert panel to create a lookup
table of 𝑍 -scores. The lookup table offers a flexible way of scoring
the possible visualization answers in avec and could potentially be
adjusted based on test administrators’ needs. For instance, test ad-
ministrators could reduce the granularity of the grades by merging
clusters and their mean 𝑍 -scores, or could transform the 𝑍 -scores
into simpler rankings (e.g., whole number scores from 0 to 4).

We used a holistic grading approach, as explained in Section 5.3.1,
but another approach, such as analytical grading, may lead to al-
ternate rubrics and interpretation of the scores. Alternative ways
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of grading visualization answers might start with the set of expert
grading criteria we summarized from the expert panel and assign
points based on the number of criteria a visualization answer satis-
fied. Or one could take a mixed approach to grading that involves
both holistically evaluating the visualization answer then applying
analytical points, or vice versa. Our answer clusters and the 𝑍 -
score lookup table can be easily adapted to support such alternative
scoring schemes. For example, a test administrator who adopts a
partially automated scoring system might use the 𝑍 -score lookup
table to first filter out visualization answers that did not pass a
predetermined threshold (e.g., filtering out answers that are below
average), then apply analytical rules to grade the remaining visual-
ization answers, which should greatly reduce the time for grading.
Alternatively, future work could further refine the autograder us-
ing the data we collected from the expert panel. One could adapt
existing methods of ranking visualizations (e.g., Draco [38, 55], Mul-
tiVision [54]) to incorporate our item-specific expert knowledge,
e.g. by tailoring the knowledge base and fine-tuning the constraint
weights [55] or learning weights for soft constraints from ranked
pairs of visualizations (as in Draco-Learn [38]). If test administra-
tors alter grading schemes, they should rerun the irt analysis with
the new grades, because the grades of the visualization answers
would affect the item parameter estimates.

7.4 Limitations and Future Work

Individual Differences in Visualization Skills. In the test
tryout study, we collected participants’ basic demographics (Sec-
tion 6.1) but did not collect their visualization expertise levels or
familiarity with different chart types. We therefore did not explore
individual differences in visualization skills or the relationships be-
tween participants’ prior expertise levels and their visual encoding
ability. Similar to prior work on visualization literacy assessments
(e.g., Boy et al. [9], vlat [32], calvi [24]), this limitation does not
necessarily affect avec’s validity, which we demonstrated through
having (1) items with high cvi ratings from experts (Section 5.1)
and (2) an assessment tool that preserves the combinatorial nature
of selecting appropriate visual encodings while still being easy to
use (Section 6.4). Exploring the relationships between different vi-
sualization skills (e.g., reading, constructing) would be interesting
directions for future research.

Visualization Construction Beyond Visual Mappings. Visu-
alization is a complex, multi-step process. Although avec focuses on
the core of the visualization reference model (visual mappings) [13]
and includes two types of aggregations (count and sum), there
are many other facets of visualization construction that are im-
portant to study and measure. For instance, effectively visualiz-
ing data also requires creators to correctly handle raw data and
perform appropriate data transformations (e.g., avoiding cherry
picking [24, 25, 33, 35], normalizing data correctly [25, 35, 37]) for
the resulting visualization to convey a clear—and correct—message.
Creating effective, engaging visual narratives often requires creativ-
ity and extensive iteration (e.g., [7, 47, 48]). Expert designers may
make use of interactivity or animation (e.g., [45]) to pull readers in
or better convey their intended message; these techniques require
time and skill to master. Future work should expand our efforts in

assessing construction-related abilities and deepen the study of the
complex skills related to visualization construction.

7.5 Assessment Tools for Complex

Visualization Skills

An immediate challenge facing studies of more complex skills in
visualization construction is how to effectively measure such abili-
ties. However, unless people are hand-drawing visualizations, their
experience with the tool they use to construct a visualization in-
evitably affects the kinds of visualizations they are able to create.
This presents a challenge when the goal is to measure their ability
to create visualizations, not their familiarity with a specific tool.
For example, a tool with a steeper learning curve that is familiar
only to some users (e.g., Tableau, PowerBI) might artificially deflate
unfamiliar participants’ scores, even if they do have high visual-
ization construction abilities. Thus, part of the validity of a test of
construction-related abilities is dependent on demonstrating that
the usability of the assessment tool does not adversely affect mea-
surement of the ability. At a minimum, assessment tools should
adhere to acceptable standards of usability (e.g., [10]) and provide
adequate training to ensure participants familiarize themselves
with the tool prior to assessment.

The assessment tool used to administer avec could be expanded
to create a more versatile tool for measuring other construction-
related abilities. However, arriving at a simple-to-use tool that can
also measure complex construction-related abilities is a challenging
design problem: higher-level skills often require more functionality,
but a more complex tool runs the risk of confoundingmeasurements
of a person’s ability with measurements of their familiarity with the
assessment tool (or other tools like it). Future work for assessing
and studying more complex skills should especially pay attention
to the tool-building component and might also investigate people’s
ability to construct different types of visualizations with a minimal
usage of computerized tools (e.g., drawing). This type of comparison
study could offer insights on just how much a tool might contribute
to a person’s overall ability of constructing visualizations.

8 Conclusion

We systematically developed avec, an assessment of a person’s
visual encoding ability in visualization construction, which mea-
sures the ability to appropriately map data to visual channel(s) for
effectively answering data-relevant questions. avec consists of 8
constructed-response items and is administered through a web-
based assessment tool we built to support the combinatorial na-
ture of selecting appropriate visual encodings. We developed an
autograder for avec by clustering the complete set of possible vi-
sualization answers across the 9 initial items in the bank. Based
on the results from an expert panel (𝑁 = 17), we validated our
answer clusters and created a lookup table of cluster-specific 𝑍 -
scores, which the autograder uses to automatically assign scores
to visualization answers. The autograder significantly reduces the
burden for grading constructed-response items. We refined and
finalized the autograder and item bank through irt analysis of test
tryout data with 95 participants. We estimated the item easiness
and standard deviation parameters for each item using irt, which
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can be used to customize the assessment based on test administra-
tors’ needs. avec demonstrates the importance of going beyond
traditional ways of measuring visualization literacy, while shift-
ing the focus to the more complex and higher-level construction
component of visualization literacy.
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